
CS443: Compiler
Construction

Lecture 14: Dataflow Analysis

Stefan Muller

Based on material by Steve Zdancewic

CS 443 - Fall 2022 - Lecture 14 1

Dataflow algorithm can be used for more
than just liveness analysis
• Reaching definitions analysis

• Available expressions analysis

• Alias Analysis

• Constant Propagation

CS 443 - Fall 2022 - Lecture 14 2

Generalized dataflow analysis: produce a set
of “facts” in and out of each node
• Every statement (node):

• Produces (generates) some set of facts

• Eliminates (kills) some set of facts

• Constraints at each node computed from other nodes based on
constraints (somewhat) specific to the analysis

CS 443 - Fall 2022 - Lecture 14 3

Dataflow analysis in 4 steps

1. Define facts, gen, kill

2. Define constraints

3. Convert constraints to equations
• Sets should increase or decrease monotonically

4. Initialize facts for each node
• Initial value should be consistent with whether sets are increasing or

decreasing

CS 443 - Fall 2022 - Lecture 14 4

Liveness analysis as a dataflow analysis (Steps 1-2)

• Facts: Live variables

• gen[n] = use[n]

• kill[n] = def[n]

• Constraints:
• in[n] ⊇ gen[n]

• out[n] ⊇ in[n’] if n’ ∈ succ[n]

• in[n] ⊇ out[n] / kill[n]

CS 443 - Fall 2022 - Lecture 14 5

Liveness analysis as a dataflow analysis (Steps 3-4)

• Equations:

• out[n] := ∪n’∈succ[n]in[n’]

• in[n] := gen[n] ∪ (out[n] / kill[n])

• Initial values:
• out[n] := Ø

• in[n] := Ø

CS 443 - Fall 2022 - Lecture 14 6

Dataflow algorithm can be used for more
than just liveness analysis
• Reaching definitions analysis

• Available expressions analysis

• Alias Analysis

• Constant Propagation

CS 443 - Fall 2022 - Lecture 14 7

Recall from last time: a variable might be live
for a long time, but w/ different definitions

CS 443 - Fall 2022 - Lecture 14 8

v = a

v = b

v = c

return v

Reaching definitions:
What definitions of a var might reach a node?

CS 443 - Fall 2022 - Lecture 14 9

b = a + 2

c = b * b

b = c + 1

1

2

3

return b * a

4

out[1]: {1}
in[2]: {1}

out[2]: {1,2}
in[3]: {1,2}

out[3]: {2,3}
in[4]: {2,3}

2 still reaches
even though c

not live

Reaching definitions:
What definitions of a var might reach a node?

CS 443 - Fall 2022 - Lecture 14 10

if (a > 2)

c = b * b b = c + 1

1

2 3

return b * a

4

in[2]: {} in[3]: {}

out[3]: {3}
out[2]: {2}

out[1]: {}

in[4]: {2,3}

Reaching definitions as a dataflow analysis
(Step 1)
• Facts: set of nodes whose definition of a variable reaches n

• Let defs[a] be the set of nodes that define the variable a

CS 443 - Fall 2022 - Lecture 14 11

n gen[n] kill[n]
a = b op c {n} defs[a] - {n}
a = load b {n} defs[a] - {n}
store b, a Ø Ø
a = f(b1,…,bn) {n} defs[a] - {n}
f(b1,…,bn) Ø Ø
br L Ø Ø
br a L1 L2 Ø Ø
return a Ø Ø

Reaching definitions as a dataflow analysis
(Step 2)
• out[n] ⊇ gen[n]

• in[n] ⊇ out[n’] if n’ is in pred[n]

• out[n] ∪ kill[n] ⊇ in[n]
• Equivalently: out[n] ⊇ in[n] / kill[n]

CS 443 - Fall 2022 - Lecture 14 12

Reaching definitions as a dataflow analysis
(Steps 3-4)

• in[n] := ∪n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] / kill[n])

• Algorithm: initialize in[n] and out[n] to Ø

CS 443 - Fall 2022 - Lecture 14 13

Dataflow algorithm can be used for more
than just liveness analysis
• Reaching definitions analysis

• Available expressions analysis

• Alias Analysis

• Constant Propagation

CS 443 - Fall 2022 - Lecture 14 14

When is this optimization safe?

• a = x + 1 a = x + 1
… …
b = x + 1 b = a

• Available expressions: nodes whose definitions are “available”

CS 443 - Fall 2022 - Lecture 14 15

As long as a
isn’t

redefined
here

Available =/= Live

a = x + 1

c = a

b = x + 1

d = b * 2

return d - c

CS 443 - Fall 2022 - Lecture 14 16

a = x + 1:
Live? No

Available? Yes

Available expressions as a dataflow analysis
(Step 1)
n: gen[n] kill[n]

a = b op c {n} uses[a]

a = load b {n} uses[a]

store b, a Ø uses[*x] (for all x that may equal a)

br L Ø Ø

br a L1 L2 Ø Ø

a = f(b1,…,bn) Ø uses[a]∪ uses[*x] (for all x)

f(b1,…,bn) Ø uses[*x] (for all x)

return a Ø Ø

CS 443 - Fall 2022 - Lecture 14 17

Alias analysis!

(assuming impure
functions)

Memory at loc. x

Available expressions as a dataflow analysis
(Steps 2-3)
• out[n] ⊇ gen[n]

• in[n] ⊆ out[n’] if n’ is in pred[n]

• out[n] ∪ kill[n] ⊇ in[n]
• Equivalently: out[n] ⊇ in[n] / kill[n]

• in[n] := ∩n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] / kill[n])

CS 443 - Fall 2022 - Lecture 14 18

Available expressions as a dataflow analysis
(Steps 3-4)

• in[n] := ∩n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] / kill[n])

• Initialize in[n] and out[n] to {set of all nodes}
• Iterate the update equations until a fixed point is reached

• The algorithm terminates because in[n] and out[n] decrease monotonically
• At most to a minimum of the empty set

• The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CS 443 - Fall 2022 - Lecture 14 19

Contrasting RD/AE

CS 443 - Fall 2022 - Lecture 14 20

Reaching Defs Available Expressions

in[n] := ∪n’∈pred[n]out[n’]
out[n] := gen[n] ∪ (in[n] / kill[n])

in[n] := ∩n’∈pred[n]out[n’]
out[n] := gen[n] ∪ (in[n] / kill[n])

Which definitions may reach n? Which expressions must reach n?

Initialize to Ø Initialize to all expressions

“May” analysis “Must” analysis

Contrasting RD/Liveness

CS 443 - Fall 2022 - Lecture 14 21

Reaching Defs Liveness

in[n] := ∪n’∈pred[n]out[n’]
out[n] := gen[n] ∪ (in[n] / kill[n])

out[n] := ∪n’∈succ[n]in[n’]
in[n] := gen[n] ∪ (out[n] / kill[n])

Propagate information forward Propagate information backward

Forward analysis Backward analysis

