CS443: Compiler
Construction

Lecture 13: Liveness Analysis
Stefan Muller

Based on material by Steve Zdancewic

A variable is “live” when its value is needed

int f(int x) {

, X is live
int a = X + 2;

) a and x are live
int b = a * a;

b and x are live

int ¢ = b + X3

] cis live
return c;

CS 443 - Fall 2022 - Lecture 13

Liveness =/= Scope

int f(int x) {
int a = X + 2;

X is live

) a and x are live
int b = a * a;

. b and x are live
int ¢ = b + X;

cis live
return c;

¥

* Scopes of a, b, ¢, x overlap, Live ranges of a, b, c don’t.

* Why is this useful?
* a3, b, ccan all bein the same register!

CS 443 - Fall 2022 - Lecture 13

We analyze liveness by looking at CFGs (at
different granularities)

Fall-through edges

7.7 "

Basic block CFG V out-edges
“Exploded” CFG

CS 443 - Fall 2022 - Lecture 13

Liveness is associated with edges
Live: a, b

] [Live: b, d, e

Live: b

4 Register Allocate:
. a 2> rax, b 2 rax
* Compiles to: _
ve:a

| Movroxrox |
Live: a (maybe)

CS 443 - Fall 2022 - Lecture 13

* Example: a=b+1

Liveness analysis is based on uses and
definitions

* For a node/statement s define:
e use[s] : set of variables used (i.e. read) by s
e def[s] : set of variables defined (i.e. written) by s

* Examples:
c az=b+c use[s] = {b,c} def[s] = {a}

c aza+1l use[s] = {a} def[s] = {a}

CS 443 - Fall 2022 - Lecture 13

Liveness, formally

e A variable v is live on edge e if:
There is
 anode nin the CFG such that use[n] contains v, and

* a directed path from e to n such that for every statement s’ on the path,
def[s’] does not contain v

CS 443 - Fall 2022 - Lecture 13

A simple inefficient algorithm

e “A variable v is live on an edge e if there is a node n in the CFG using it
and a directed path from e to n passing through no def of v.”

* Algorithm:
* For each variable v...

* Try all paths from each use of v, tracing backwards through the control-flow
graph until either v is defined or a previously visited node has been reached.

* Mark the variable v live across each edge traversed.

O(number of edges * number of var uses)

CS 443 - Fall 2022 - Lecture 13 8

Instead, compute liveness info for all variables
simultaneously

* Approach: define equations that must be satisfied by any liveness

determination.
* Equations based on “obvious” constraints.

* Solve the equations by iteratively converging on a solution.
e Start with a “rough” approximation to the answer

 Refine the answer at each iteration
» Keep going until a fixed point has been reached

e This is an instance of a general framework for computing program
properties: dataflow analysis

Equations for liveness analysis

AN
e Definitions: L
* use[n] : set of variables used by n -
« def[n] : set of variables defined by n out(n]
* in[n] : set of variables live on entry to n /\

e out[n] : set of variables live on exit from n

CS 443 - Fall 2022 - Lecture 13 10

Equations for liveness analysis

use[n] : set of variables used by n

def[n] : set of variables defined by n

in[n] : set of variables live on entry to n

out[n] : set of variables live on exit from n in[n1]

* Constraints: —
* in[n] 2 use[n] (but not through defs) \yﬁﬁ]
e out[n] 2 in[n’] if n” € succ[n]
* in[n] 2 out[n] / def[n]

in[n2]

P
B

out[n2]

CS 443 - Fall 2022 - Lecture 13 11

'terative Dataflow Analysis

* Find a solution to those constraints by starting from a rough guess.
e Start with: in[n] =@ and out[n] =@ x
* |dea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.
e Each iteration will add variables to the sets in[n] and out[n]
(i.e. the live variable sets will increase monotonically)

* We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above)

* in[n] = use[n] U (out[n] / def[n])
* out[n] = U, cqecminln’]

Full Liveness Analysis Algorithm

forall n, in[n] := @, out[n] := @
repeat until no change in ‘in” and ‘out’:
for all n:
out[n] := U cqueeminln’]
in[n] := use[n] U (out[n] / def[n])
end
end

* Finds a fixed point of the in and out equations.
* The algorithm is guaranteed to terminate... Why?

* Why do we start with @?

Example Liveness Analysis Bl

e = 1;
while(x>0) {
zZ = e * e;
y = e * X;
X =X - 1;
if (x & 1) {
e = z;
} else {
e =Y,
}
}

return Xx;

1 def: e
use:

out:

out:

in:
Fif x>0 |def
use: X

out:
Viu/ in:
q Z=e * e def: z ret X def:
. use: e use: X
ou
in:
q =e * def:y
y use: e,x
out
in:
x=x-1 def: x
use: x
out:
in:
if (x & 1) | def

def: e

use:y out:

14

Example Liveness Analysis IF

1 def: e

out: .
Each iteration update: in: x

.) i def:
out[n] := U cqueernyin[n’] X207 e
. out:
in[n] := use[n] U (out[n] - def[n]) e |
.° |teration 1: q J—p*e | def ot x| def
|n[2] =X — use: e use: x
|n[3] - e in: e,x
in[4] = x y=e*x |,
in[5] = e,x e
In[6] =X qx=x_1 def:'x
In[7] =X out: e
in[8] — Z E n: x o
in[9] = y if (x & 1)
(showing only updates that make a change)
def: e

out: use:y out:

Example Liveness Analysis Bl

1 def: e
out: x o
Each iteration update: Fifx>0 "
out[n] := Un,ESucc[n]in[n’] out: e,x -
in[n] := use[n] U (out[n] - def[n]) q incex in:x
. —p ¥ def: z def:
* |teration 2: uk P LS et
out[1]= x out[6] = x q n: e
. y=e Y def:y
in[1] = x out[7] =zy = userex
out[2] = e,x in[7] =x,z,y in: x
. Xx=x-1 def:'x
in[2] = e, x out[8] = x] use:x
out[3]=e,x in[8]=x,z In: X,y,2
if (x & 1) | def

in[3] = e,x out[9] = x
out[5] = x in[9] = x,y

def: e

out: x use:y out: x

Example Liveness Analysis IP

Each iteration update:
out[n] := Un,Esucc[n]in[n’]
in[n] := use[n] U (out[n] - def[n])

* |teration 3:
out[1]= e,x
out[6]=x,y,z
in[6]=x,y,z
out[7]=x,y,z
out|{sf=e,x
out|9f=e,x

8]
9]

1

out: e,x

use:

in: e,x
Fif x>0 | def
use: x

out: e,x

* e def: z ret x def:

use: X

def: e

use:y out: e, x

17

Example Liveness Analysis IP

Each iteration update:
out[n] := Un,ESucc[n]in[n’]

in[n] := use[n] U (out[n] - def[n])

* |teration 4:

out[5]=x,y,z
in[5]=e,x,z

1

use:

out: e,x

in: e,x

> 0 def:
use: X

out: e,x

ret x | def:

use: X

def: e

use:y out: e,x

18

Example Liveness Analysis IF

Each iteration update:
out[n] := Un,Esucc[n]in[n’]

in[n] := use[n] U (out[n] - def[n])

* [teration 5:
out[3]=e,x,z

Done!

1 def: e
use:
out: e,x

CS out efx

in: e,x
Fif x>0 | def
use: x

out: e,x

z7=e *e def: z ret x def:
use: e use: x
out: e,x,z
in: e,x

def: e

e=y

use:y out: e,x

19

Improvement: only need to update a node if
its successors changed

* Observe: the only way information propagates from one node to
another is using: out[n] := U_cqccqminln’]
* This is the only rule that involves more than one node

* |dea for an improved version of the algorithm:
» Keep track of which node’s successors have changed

Worklist algorithm: Use a FIFO queue of
nodes that might need to be updated

forall n, in[n] := @, out[n] := @
w = new queue with all nodes
repeat until w is empty:
let n = w.pop() // pull a node off the queue
old_in =in[n] // remember old in[n]
out[n] := U cqueernin[n’]
in[n] := use[n] U (out[n] - def[n])
if (old_in !=in[n]): // if in[n] has changed
for all m in pred[n]: w.push(m) // add pred to worklist
end

