
CS443: Compiler
Construction

Lecture 13: Liveness Analysis

Stefan Muller

Based on material by Steve Zdancewic

CS 443 - Fall 2022 - Lecture 13 1

A variable is “live” when its value is needed

int f(int x) {

int a = x + 2;

int b = a * a;

int c = b + x;

return c;

}

x is live

a and x are live

b and x are live

c is live

CS 443 - Fall 2022 - Lecture 13 2

Liveness =/= Scope

int f(int x) {

int a = x + 2;

int b = a * a;

int c = b + x;

return c;

}

• Scopes of a, b, c, x overlap, Live ranges of a, b, c don’t.

• Why is this useful?
• a, b, c can all be in the same register!

x is live

a and x are live

b and x are live

c is live

CS 443 - Fall 2022 - Lecture 13 3

We analyze liveness by looking at CFGs (at
different granularities)

Move

Binop

If

Unop

Jump

Move

Binop

If

Unop

Jump

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

CS 443 - Fall 2022 - Lecture 13 4

Liveness is associated with edges

• Example: a = b + 1

• Compiles to:

Instr

Live: a, b

Live: b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov rax, rax

Add rax, 1

Register Allocate:
a → rax, b → rax

CS 443 - Fall 2022 - Lecture 13 5

Liveness analysis is based on uses and
definitions

• For a node/statement s define:
• use[s] : set of variables used (i.e. read) by s

• def[s] : set of variables defined (i.e. written) by s

• Examples:
• a = b + c use[s] = {b,c} def[s] = {a}

• a = a + 1 use[s] = {a} def[s] = {a}

CS 443 - Fall 2022 - Lecture 13 6

Liveness, formally

• A variable v is live on edge e if:
There is
• a node n in the CFG such that use[n] contains v, and

• a directed path from e to n such that for every statement s’ on the path,
def[s’] does not contain v

a = v

Binop

e

a = v

Binop

e

v = b

CS 443 - Fall 2022 - Lecture 13 7

A simple inefficient algorithm

• “A variable v is live on an edge e if there is a node n in the CFG using it
and a directed path from e to n passing through no def of v.”

• Algorithm:
• For each variable v…

• Try all paths from each use of v, tracing backwards through the control-flow
graph until either v is defined or a previously visited node has been reached.

• Mark the variable v live across each edge traversed.

O(number of edges * number of var uses)

CS 443 - Fall 2022 - Lecture 13 8

Instead, compute liveness info for all variables
simultaneously
• Approach: define equations that must be satisfied by any liveness

determination.
• Equations based on “obvious” constraints.

• Solve the equations by iteratively converging on a solution.
• Start with a “rough” approximation to the answer
• Refine the answer at each iteration
• Keep going until a fixed point has been reached

• This is an instance of a general framework for computing program
properties: dataflow analysis

CS 443 - Fall 2022 - Lecture 13 9

Equations for liveness analysis

• Definitions:
• use[n] : set of variables used by n

• def[n] : set of variables defined by n

• in[n] : set of variables live on entry to n

• out[n] : set of variables live on exit from n

n

in[n]

out[n]

CS 443 - Fall 2022 - Lecture 13 10

Equations for liveness analysis

• Constraints:
• in[n] ⊇ use[n]

• out[n] ⊇ in[n’] if n’ ∈ succ[n]

• in[n] ⊇ out[n] / def[n]
n2

in[n2]

out[n2]

• use[n] : set of variables used by n
• def[n] : set of variables defined by n
• in[n] : set of variables live on entry to n
• out[n] : set of variables live on exit from n

Propagate
(but not through defs) out[n1]

n1

in[n1]

CS 443 - Fall 2022 - Lecture 13 11

Iterative Dataflow Analysis

• Find a solution to those constraints by starting from a rough guess.
• Start with: in[n] = Ø and out[n] = Ø

• Idea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.
• Each iteration will add variables to the sets in[n] and out[n]

(i.e. the live variable sets will increase monotonically)

• We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above)

• in[n] = use[n] ∪ (out[n] / def[n])

• out[n] = ∪n’∈succ[n]in[n’]

CS 443 - Fall 2022 - Lecture 13 12

Full Liveness Analysis Algorithm

for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’:

for all n:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] / def[n])

end
end

• Finds a fixed point of the in and out equations.
• The algorithm is guaranteed to terminate… Why?

• Why do we start with Ø?

CS 443 - Fall 2022 - Lecture 13 13

Example Liveness Analysis
e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

e = 1;
while(x>0) {
z = e * e;
y = e * x;
x = x – 1;
if (x & 1) {

e = z;
} else {

e = y;
}

}
return x;

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in:

in:

in:

in:

in:

in:

in:in:

in:

out:

out:

out:

out:

out:

out: out:

out:

14

Example Liveness Analysis

Each iteration update:

out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])
• Iteration 1:
in[2] = x
in[3] = e
in[4] = x
in[5] = e,x
in[6] = x
in[7] = x
in[8] = z
in[9] = y

(showing only updates that make a change)

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in:

in: x

in: x

in: e,x

in: x

in: x

in: yin: z

in: e

out:

out:

out:

out:

out:

out: out:

out:

15

Example Liveness Analysis

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 2:

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,yin: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z

out[1]= x

in[1] = x

out[2] = e,x

in[2] = e,x

out[3] = e,x

in[3] = e,x

out[5] = x

out[6] = x

out[7] = z,y

in[7] = x,z,y

out[8] = x

in[8] = x,z

out[9] = x

in[9] = x,y

16

Example Liveness Analysis

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 3:
out[1]= e,x
out[6]= x,y,z
in[6]= x,y,z
out[7]= x,y,z
out[8]= e,x
out[9]= e,x

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z

17

Example Liveness Analysis

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 4:

out[5]= x,y,z
in[5]= e,x,z

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

18

Example Liveness Analysis

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 5:

out[3]= e,x,z

Done!

CS 443 - Fall 2022 - Lecture 13

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

19

Improvement: only need to update a node if
its successors changed
• Observe: the only way information propagates from one node to

another is using: out[n] := ∪n’∈succ[n]in[n’]
• This is the only rule that involves more than one node

• Idea for an improved version of the algorithm:
• Keep track of which node’s successors have changed

CS 443 - Fall 2022 - Lecture 13 20

Worklist algorithm: Use a FIFO queue of
nodes that might need to be updated
for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes
repeat until w is empty:

let n = w.pop() // pull a node off the queue
old_in = in[n] // remember old in[n]

out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])
if (old_in != in[n]): // if in[n] has changed
for all m in pred[n]: w.push(m) // add pred to worklist

end

CS 443 - Fall 2022 - Lecture 13 21

