A variable is “live” when its value is needed

```c
int f(int x) {
    int a = x + 2;                // x is live
    int b = a * a;                // a and x are live
    int c = b + x;                // b and x are live
    return c;                     // c is live
}
```
Liveness \neq Scope

```c
int f(int x) {
    int a = x + 2;  // x is live
    int b = a * a;  // a and x are live
    int c = b + x;  // b and x are live
    return c;       // c is live
}
```

- Scopes of a, b, c, x overlap, Live ranges of a, b, c don’t.
- Why is this useful?
 - a, b, c can all be in the same register!
We analyze liveness by looking at CFGs (at different granularities)

Basic block CFG

"Exploded" CFG

Fall-through edges

in-edges

out-edges
Liveness is associated with *edges*

- **Example:** \(a = b + 1 \)

- **Compiles to:**
Liveness analysis is based on uses and definitions

• For a node/statement s define:
 • use[s] : set of variables used (i.e. read) by s
 • def[s] : set of variables defined (i.e. written) by s

• Examples:
 • a = b + c use[s] = {b,c} def[s] = {a}
 • a = a + 1 use[s] = {a} def[s] = {a}
Liveness, formally

A variable v is *live* on edge e if:

There is

- a node n in the CFG such that $\text{use}[n]$ contains v, *and*
- a directed path from e to n such that for every statement s' on the path, $\text{def}[s']$ does not contain v
A simple inefficient algorithm

• “A variable v is live on an edge e if there is a node n in the CFG using it and a directed path from e to n passing through no def of v.”

• Algorithm:
 • For each variable v...
 • Try all paths from each use of v, tracing backwards through the control-flow graph until either v is defined or a previously visited node has been reached.
 • Mark the variable v live across each edge traversed.

\[\text{O(number of edges} \times \text{number of var uses)} \]
Instead, compute liveness info for all variables simultaneously

• Approach: define *equations* that must be satisfied by any liveness determination.
 • Equations based on “obvious” constraints.

• Solve the equations by iteratively converging on a solution.
 • Start with a “rough” approximation to the answer
 • Refine the answer at each iteration
 • Keep going until a *fixed point* has been reached

• This is an instance of a general framework for computing program properties: dataflow analysis
Equations for liveness analysis

- **Definitions:**
 - `use[n]` : set of variables used by n
 - `def[n]` : set of variables defined by n
 - `in[n]` : set of variables live on entry to n
 - `out[n]` : set of variables live on exit from n
Equations for liveness analysis

- use[n] : set of variables used by n
- def[n] : set of variables defined by n
- in[n] : set of variables live on entry to n
- out[n] : set of variables live on exit from n

Constraints:
- in[n] ⋇ use[n]
- out[n] ⋇ in[n’] if n’ ∈ succ[n]
- in[n] ⋇ out[n] / def[n]

Propagate (but not through defs)
Iterative Dataflow Analysis

• Find a solution to those constraints by starting from a rough guess.
 • Start with: \(\text{in}[n] = \emptyset \) and \(\text{out}[n] = \emptyset \)

• Idea: iteratively re-compute \(\text{in}[n] \) and \(\text{out}[n] \) where forced to by the constraints.
 • Each iteration will add variables to the sets \(\text{in}[n] \) and \(\text{out}[n] \)
 (i.e. the live variable sets will increase monotonically)

• We stop when \(\text{in}[n] \) and \(\text{out}[n] \) satisfy these equations:
 (which are derived from the constraints above)
 • \(\text{in}[n] = \text{use}[n] \cup (\text{out}[n] / \text{def}[n]) \)
 • \(\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
Full Liveness Analysis Algorithm

for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’:
 for all n:
 out[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
 in[n] := \text{use}[n] \cup (\text{out}[n] / \text{def}[n])
 end
end

• Finds a fixed point of the in and out equations.
 • The algorithm is guaranteed to terminate... Why?
• Why do we start with Ø?
Example Liveness Analysis

e = 1;
while(x>0) {
 z = e * e;
 y = e * x;
 x = x - 1;
 if (x & 1) {
 e = z;
 } else {
 e = y;
 }
}
return x;
Example Liveness Analysis

Each iteration update:
\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
\[
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- Iteration 1:
 \[
 \text{in}[2] = x \\
 \text{in}[3] = e \\
 \text{in}[4] = x \\
 \text{in}[5] = e,x \\
 \text{in}[6] = x \\
 \text{in}[7] = x \\
 \text{in}[8] = z \\
 \text{in}[9] = y
 \]
 (showing only updates that make a change)
Example Liveness Analysis

Each iteration update:

\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

• Iteration 2:

 \begin{align*}
 \text{out}[1] &= x & \text{out}[6] &= x \\
 \text{in}[1] &= x & \text{out}[7] &= z,y \\
 \text{out}[2] &= e,x & \text{in}[7] &= x,z,y \\
 \text{in}[2] &= e,x & \text{out}[8] &= x \\
 \text{out}[3] &= e,x & \text{in}[8] &= x,z \\
 \text{in}[3] &= e,x & \text{out}[9] &= x \\
 \text{out}[5] &= x & \text{in}[9] &= x,y
 \end{align*}
Example Liveness Analysis

Each iteration update:
\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

- Iteration 3:
 \[\text{out}[1] = e, x \]
 \[\text{out}[6] = x, y, z \]
 \[\text{in}[6] = x, y, z \]
 \[\text{out}[7] = x, y, z \]
 \[\text{out}[8] = e, x \]
 \[\text{out}[9] = e, x \]
Example Liveness Analysis

Each iteration update:

\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]

\[
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- Iteration 4:

\[
\text{out}[5] = x,y,z
\]

\[
\text{in}[5] = e,x,z
\]
Example Liveness Analysis

Each iteration update:
\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
\[
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

• Iteration 5:
\[
\text{out}[3] = e, x, z
\]

Done!
Improvement: only need to update a node if its successors changed

• Observe: the only way information propagates from one node to another is using: \(\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
 • This is the only rule that involves more than one node

• Idea for an improved version of the algorithm:
 • Keep track of which node’s successors have changed
Worklist algorithm: Use a FIFO queue of nodes that might need to be updated

for all \(n \), \(\text{in}[n] := \emptyset \), \(\text{out}[n] := \emptyset \)
\(w = \text{new queue with all nodes} \)
repeat until \(w \) is empty:

let \(n = \text{w.pop}() \) // pull a node off the queue
old_in = \(\text{in}[n] \) // remember old \(\text{in}[n] \)
\(\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
in[n] := \(\text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \)
if (old_in \(!=\) in[n]): // if in[n] has changed
 for all \(m \) in \(\text{pred}[n] \): \(\text{w.push}(m) \) // add pred to worklist
end