CS443: Compiler Construction

Lecture 13: Liveness Analysis
Stefan Muller
Based on material by Steve Zdancewic

A variable is "live" when its value is needed

```
int f(int x) {
    int a = x + 2;
    int b = a * a;
    int c = b + x;
    return c;
}
```


Liveness =/= Scope

```
int f(int x) {
    int a = x + 2;
    int b = a * a;
    int c = b + x;
    return c;
}
```

- Scopes of a, b, c, x overlap, Live ranges of a, b, c don't.
- Why is this useful?
- a, b, c can all be in the same register!

We analyze liveness by looking at CFGs (at different granularities)

Basic block CFG

Liveness is associated with edges

- Example: $\mathrm{a}=\mathrm{b}+1$
- Compiles to:

Liveness analysis is based on uses and definitions

- For a node/statement s define:
- use[s] : set of variables used (i.e. read) by s
- def[s] : set of variables defined (i.e. written) by s
- Examples:
- $a=b+c$
use $[s]=\{b, c\}$
$\operatorname{def}[s]=\{a\}$
- $a=a+1$
use[s] = \{a\}
$\operatorname{def}[s]=\{a\}$

Liveness, formally

- A variable v is live on edge e if:

There is

- a node n in the CFG such that use[n] contains v , and
- a directed path from e to n such that for every statement s' on the path, def[s'] does not contain v

A simple inefficient algorithm

- "A variable v is live on an edge e if there is a node n in the CFG using it and a directed path from e to n passing through no def of $v . "$
- Algorithm:
- For each variable v...
- Try all paths from each use of v , tracing backwards through the control-flow graph until either v is defined or a previously visited node has been reached.
- Mark the variable v live across each edge traversed.

Instead, compute liveness info for all variables simultaneously

- Approach: define equations that must be satisfied by any liveness determination.
- Equations based on "obvious" constraints.
- Solve the equations by iteratively converging on a solution.
- Start with a "rough" approximation to the answer
- Refine the answer at each iteration
- Keep going until a fixed point has been reached
- This is an instance of a general framework for computing program properties: dataflow analysis

Equations for liveness analysis

- Definitions:
- use[n] : set of variables used by n
- def[n] : set of variables defined by n
- in[n] : set of variables live on entry to n
- out[n] : set of variables live on exit from n

Equations for liveness analysis

- use[n] : set of variables used by n
- def[n] : set of variables defined by n
- in[n] : set of variables live on entry to n
- out[n] : set of variables live on exit from n
- Constraints:
- in[n] \supseteq use[n]
- out[n] \supseteq in[n'] if $n^{\prime} \in \operatorname{succ}[n]$
- in[n] \supseteq out[$n] / \operatorname{def}[n]$

Iterative Dataflow Analysis

- Find a solution to those constraints by starting from a rough guess.
- Start with: in $[\mathrm{n}]=\varnothing$ and out $[\mathrm{n}]=\varnothing$ N
- Idea: iteratively re-compute in[n] and out[n] where forced to by the constraints.
- Each iteration will add variables to the sets in[n] and out[n] (i.e. the live variable sets will increase monotonically)
- We stop when in[n] and out[n] satisfy these equations: (which are derived from the constraints above)
- in[n] = use[n] \cup (out[n] / def[n])
- out[n] $=U_{n^{\prime} \in \operatorname{succ}[n]} \operatorname{in}\left[n^{\prime}\right]$

Full Liveness Analysis Algorithm

for all n, in $[\mathrm{n}]:=\varnothing$, out $[\mathrm{n}]:=\varnothing$ repeat until no change in 'in' and 'out':
for all n :

$$
\operatorname{out}[n]:=U_{n^{\prime} \in \operatorname{suc}[n]} \operatorname{in}\left[n^{\prime}\right]
$$

$$
\text { in }[n]:=\text { use[n] } \cup \text { (out }[n] / \operatorname{def}[n])
$$

end
end

- Finds a fixed point of the in and out equations.
- The algorithm is guaranteed to terminate... Why?
- Why do we start with \varnothing ?

Example Liveness Analysis 4
e = 1;

```
while(x>0) {
    z = e * e;
    y = e * x;
    x = x - 1;
    if (x & 1) {
        e = z;
    } else {
        e = y;
    }
}
return x;
```


Example Liveness Analysis

Each iteration update:
out[$n]:=U_{n^{\prime} \in \operatorname{succ}[n]}$ in[$\left.n^{\prime}\right]$
in[n] := use[n] U (out[n] - def[n])

- Iteration 1:
in[2] $=x$
$\operatorname{in}[3]=e$
in[4] $=x$
$\operatorname{in}[5]=e, x$
$\operatorname{in}[6]=x$
in[7] $=x$
in[8] $=z$
in[9] = y
(showing only updates that make a change)

Example Liveness Analysis

Each iteration update:

out $\left.[n]:=\bigcup_{n^{\prime} \in \operatorname{succ}[n]}\right]^{\mathrm{n}}\left[\mathrm{n}^{\prime}\right]$
in[n] := use[n] \cup (out[n] - def[n])

- Iteration 2:

$$
\begin{aligned}
& \text { out[1]=x out[6] =x } \\
& \operatorname{in}[1]=x \quad \operatorname{out}[7]=z, y \\
& \text { out[2] = } \mathrm{e}, \mathrm{x} \quad \operatorname{in}[7]=x, z, y \\
& \text { in[2] }=e, x \quad \text { out[8] }=x \\
& \text { out[3] }=e, x \quad \text { in[8] }=x, z \\
& \text { in[3] = e, } x \quad \text { out[9] }=x \\
& \text { out[5] }=x \quad \operatorname{in}[9]=x, y
\end{aligned}
$$

Example Liveness Analysis

Each iteration update:
out[n] := $\bigcup_{n^{\prime} \in \text { succ } n|n|}$ in $\left[n^{\prime}\right]$
in $[n]:=$ use[n] \cup (out[n] - def[n])

- Iteration 3:

$$
\begin{aligned}
& \text { out[1]= e, } x \\
& \text { out[6]= } x, y, z \\
& \operatorname{in}[6]=x, y, z \\
& \operatorname{out}[7]=x, y, z \\
& \text { out[8]= e,x } \\
& \text { out[9]= e, }
\end{aligned}
$$

Example Liveness Analysis

Each iteration update:
out $[n]$:= $\bigcup_{n^{\prime} \in s u c c[n]}$ in $\left[n^{\prime}\right]$
in[n] := use[n] \cup (out[n] - def[n])

- Iteration 4:
out[5] $=x, y, z$ in[5] $=e, x, z$

Example Liveness Analysis

Each iteration update:
out[n] := $\bigcup_{n^{\prime} \in \operatorname{succ}[n]} \operatorname{in}\left[n^{\prime}\right]$
in[n] := use[n] \cup (out[n] - def[n])

- Iteration 5: out[3]= e,x,z

Done!

Improvement: only need to update a node if its successors changed

- Observe: the only way information propagates from one node to another is using: out $[n]:=\cup_{n^{\prime} \in s u c c[n]} \mathrm{in}\left[\mathrm{n}^{\prime}\right]$
- This is the only rule that involves more than one node
- Idea for an improved version of the algorithm:
- Keep track of which node's successors have changed

Worklist algorithm: Use a FIFO queue of nodes that might need to be updated

for all n, in[n] := \varnothing, out[$n]:=\varnothing$
$w=$ new queue with all nodes repeat until w is empty:

```
let n = w.pop()
    old_in = in[n]
    out[n] := U Un'\insucc[n] in[n']
    in[n] := use[n] U (out[n] - def[n])
    if (old_in != in[n]):
    for all m in pred[n]: w.push(m)
    // pull a node off the queue
    // remember old in[n]
    // if in[n] has changed
    // add pred to worklist
end
```

