

Skyway: Accelerate Graph Applications with a Dual-Path
Architecture and Fine-Grained Data Management

Mo Zou1, 2 (邹　沫), Student Member, CCF, Ming-Zhe Zhang3 (张明喆), Member, CCF
Ru-Jia Wang4 (王茹嘉), Member, IEEE, Xian-He Sun4 (孙贤和), Fellow, IEEE
Xiao-Chun Ye1 (叶笑春), Member, CCF, Dong-Rui Fan1 (范东睿), Senior Member, IEEE
and Zhi-Min Tang1, 2 (唐志敏), Member, CCF

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100045, China
4 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, U.S.A.

E-mail: zoumo@ict.ac.cn; zhangmingzhe@iie.ac.cn; rwang67@iit.edu; sun@iit.edu; yexiaochun@ict.ac.cn; fandr@ict.ac.cn
tang@ict.ac.cn

Received October 28, 2022; accepted October 14, 2023.

Abstract Graph processing is a vital component of many AI and big data applications. However, due to its poor locali-

ty and complex data access patterns, graph processing is also a known performance killer of AI and big data applications.

In this work, we propose to enhance graph processing applications by leveraging fine-grained memory access patterns with

a dual-path architecture on top of existing software-based graph optimizations. We first identify that memory accesses to

the offset, edge, and state array have distinct locality and impact on performance. We then introduce the Skyway architec-

ture, which consists of two primary components: 1) a dedicated direct data path between the core and memory to transfer

state array elements efficiently, and 2) a data-type aware fine-grained memory-side row buffer hardware for both the new-

ly designed direct data path and the regular memory hierarchy data path. The proposed Skyway architecture is able to im-

prove the overall performance by reducing the memory access interference and improving data access efficiency with a

minimal overhead. We evaluate Skyway on a set of diverse algorithms using large real-world graphs. On a simulated four-

core system, Skyway improves the performance by 23% on average over the best-performing graph-specialized hardware

optimizations.

Keywords graph application, computer architecture, memory hierarchy

1 Introduction

Graph processing is a critical component of many

application domains, such as social network analy-

sis[1–3], computational biology[4, 5], and machine learn-

ing[6]. However, graph processing is also known for its

irregular memory access patterns and poor locality,

especially for large graphs which contain millions of

vertices and edges. Current on-chip caches can hard-

ly store graphs at such a scale. In addition, graph

processing cannot fully benefit from existing memory

hierarchies due to poor locality. On the cache side,

the random vertex traversal, which usually reads a

sparsely distributed vertex (4 bytes or 8 bytes) less

than every 10 instructions[7], causes excessive cache

misses. On the main memory side, the random access-

es also lead to frequent row buffer conflicts.

State-of-the-art acceleration techniques for graph

processing mainly focus on improving temporal and

spatial locality. For example, the software-based ap-

Regular Paper

This work was supported in part by the U.S. National Science Foundation under Grant Nos. CCF-2008907 and CCF-2029014,
the Chinese Academy of Sciences Project for Young Scientists in Basic Research under Grant No. YSBR-029, and the Chinese
Academy of Sciences Project for Youth Innovation Promotion Association.

Zou M, Zhang MZ, Wang RJ et al. Skyway: Accelerate graph applications with a dual-path architecture and fine-grained

data management. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(4): 871−894 July 2024. DOI:

10.1007/s11390-023-2939-x

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x

proaches[8–14] relocate and package vertices with high-

er access probabilities (hot vertices) in successive

memory blocks for a given graph, making the data ac-

cesses more cache-friendly. Unfortunately, for real-

world graphs, the scale of hot vertices often exceeds

cache capacity, limiting the benefits of software-based

optimizations. Most hardware-based schemes[7, 15–22]

focus on improving locality and reducing memory

traffic. For example, GRASP[16] and P-OPT[15] evict

the cachelines in LLC with a lower reuse possibility.

PHI[17] and GraphPulse[18] coalesce multiple state up-

dates if they target the same vertex.

Unlike prior work, we notice that a poor perfor-

mance often comes from the interference of different

data access patterns in graph applications, making

them hard to benefit from existing memory hierar-

chies.

We believe that current memory hierarchies can

be further enhanced to accelerate graph processing

applications. We have collected extensive experimen-

tal data on a simulated multi-core system and ana-

lyzed the root causes of performance bottlenecks. Our

observations are summarized as follows.

• Poor Locality in Specific Data Arrays. Data ar-

rays encoding a graph have different memory access

patterns and can interfere with each other in a shared

memory hierarchy.

• Low Data Reuse in the Cacheline. Data access

to the specific array (i.e., state array) is random. A

conventional cacheline may not help and could be

counterproductive.

• Under-Utilized Memory System. Although the

graph applications are memory-intensive, we find that

the memory bandwidth is far from fully utilized un-

der current memory hierarchies.

Based on the observations above, we propose a

novel architectural support, named Skyway, to accel-

erate graph processing by improving the efficiency of

the system datapath. Skyway optimizes both the

cache hierarchy and main memory system through in-

tegrated designs. At the cache side, we modify the

conventional cache hierarchy to include a direct path

with a small property buffer (PBuf), which supports

fine-grained random memory accesses. At the main

memory side, we revisit the memory array and row

buffer design to include the duplication row (DRow)

to mitigate row buffer conflicts. PBuf and DRow can

work together seamlessly to improve the utilization of

the overall memory system bandwidth without break-

ing the data locality. Although Skyway is motivated

by graph applications, the key idea behind the design

that discovering multiple access patterns and process-

ing them separately based on behaviors can be ex-

tended to any applications with distinct access pat-

terns. Overall, Skyway provides an opportunity to re-

duce interference and data movement according to

data locality.

We evaluate the proposed Skyway using detailed

micro-architectural simulation and receive consistent

great performance improvement across diverse algo-

rithms and datasets. Our experimental results show

that Skyway improves the DRAM bandwidth utiliza-

tion by 2.13x on average and up to 5.87x in the best

case. Also, Skyway improves the performance by 29%

on average and up to 86% in the best case over the

baseline without any optimizations. Compared with

the state-of-the-art GRASP[16], Skyway provides an

average performance improvement of 23% with a

2.19x higher DRAM bandwidth utilization. Skyway

adds a marginal storage overhead of 2.6% to LLC and

0.02% to DRAM.

The paper is organized as follows. Section 2 pro-

vides background information on graph representa-

tion and memory hierarchy organization. Section 3

characterizes the methodology and the benchmark for

our evaluation. Section 4 investigates the reason of

poor locality and low memory bandwidth utilization,

and then presents several opportunities to solve the

problem. Section 5 illustrates the scheme of the new-

ly proposed Skyway. Section 6 analyzes the perfor-

mance results. Finally, we introduce related work in

Section 7 and conclude our work in Section 8.

2 Background

2.1 Graph Data Layout

The Compressed Sparse Row (CSR) format is a

widely used storage-efficient technique to represent

graph structures[7, 16, 19, 23, 24]. As Fig.1 shows, there

are three arrays used to encode a graph: the offset,

edge, and state. These arrays are allocated in memo-

ry at the beginning of the graph loading phase. Each

offset entry is an 8-byte pointer pointing to its first

neighbor in the edge array, which represents an edge

from the source to the destination. The edge array

maintains all edges in the form of vertex IDs, and

edge-weighted values are stored here as well for

weighted graphs. The state array holds the current

state of each vertex, which is usually 4- or 8-byte

long. The graph algorithm updates state array itera-

tively until convergence.

872 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

0

1
3

2

4

5 50 3 4

41 3 5 2 4

2.1 5.30.4 3.2 1.7 2.4

Offset

Edge

State Step 2: Updating

Step 1: Neighbor-Scanning

6 7

1 1

Fig.1. Example graph and its CSR representation encoding push-based approach.

Most graph applications adopt pull- or push-based

computation models[24–27] to traverse a graph and up-

date vertex states. In pull-based models, each vertex

gathers new states from its incoming neighbors and

updates its state upon the accumulated influence. In

push-based models, one source vertex broadcasts its

new state and modifies all outgoing neighbor states,

as shown in Fig.1. In general, there are two steps in

graph applications, regardless of pull- or push-based

approaches. In step 1, the graph algorithm reads des-

tination IDs in the edge array pointed by one source

vertex. In step 2, the graph algorithm updates ele-

ments in the state array indexed by destination IDs.

In the rest of the paper, we call the first step the

neighbor-scanning phase, and the second step the up-

dating phase.

2.2 Memory Hierarchy

The modern memory hierarchy includes the cache

and main memory subsystems. Fig.2 shows a typical

dual-core system with a three-level cache hierarchy

and a connected off-chip DRAM module. The L1 and

L2 caches are private, and the LLC is shared. A

memory request from the core searches L1, L2, and

LLC and fetches data if the request is a hit. Other-

wise, the memory request needs to find the data from

the DRAM.

Internally, a DRAM module is organized hierar-

chically into channels, ranks, and banks, where each

bank is a 2D array, accessed by the assigned row ID

and column ID. Upon receiving a request from the

LLC, the memory controller decomposes the physical

address into (channel, rank, bank, row, column) and

buffers that in the read or write queue. To serve a re-

quest, the memory controller sends an activate com-

mand to an idle bank first, which loads the desired

row into the row buffer. Then a column-level com-

mand reads/writes specific data from/to the row

buffer. In an open-row policy, the row buffer main-

tains the last accessed row until further instructed. If

the following request visits the open row in the row

buffer, the bank does not need to be activated again,

which is called a bank hit. On the other hand, if a

subsequent request visits a different row within the

same bank, the memory controller sends a precharge

Core 0 Core 1

Read Queue

Write Queue

Memory Controller

R
o
w

 D
e
c
o
d
e
r

Row Buffer

Bank

Rank

Channel

L1 Cache L1 Cache

L2 Cache L2 Cache

Shared Last Level Cache

Command

Address

Data

Fig.2. Typical cache hierarchy and main memory in the dual-core system.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 873

command, closing the open row in the row buffer and

preparing for the next activate command, which is

called a bank miss. Because the memory controller ex-

ploits a series of tight timing constraints between

command executions, the DRAM access latency in a

bank miss is much longer than that in a bank hit.

Both the cache and DRAM row buffer are benefi-

cial when the application exhibits a good locality.

However, when data access patterns are irregular and

multiple data access patterns co-exist, these locality-

based hardware components may not work well to en-

hance the overall performance.

2.3 Existing Graph Processing Optimizations

Graph Reordering. Graph reordering[8–14] is a com-

monly used optimization scheme, which relies on pre-

processing graph data layout to improve the access-

ing locality without hardware modification. Accord-

ing to the skewed power-law distribution[9, 10, 13, 28, 29],

in real-world graphs, a small portion of vertices occu-

py most connections (hot vertices), while the rest of

vertices own relatively few edges (cold vertices). By

relocating the hot vertices consecutively in the memo-

ry space, most of the graph applications show better

performance since the locality of data accesses is im-

proved. However, the effectiveness of graph reorder-

ing is affected by several factors (e.g., the hot ver-

tices identification and the scale of input graphs),

which significantly increases the difficulty of perfor-

mance improvement for various algorithms and

graphs[30]. Moreover, the scale of the hot vertices has

exceeded the cache capacity for most real-world

graphs[14], which limits the efficiency of reordering.

Architectural Optimizations on Graph Locality.
GRASP[16] and P-OPT[15] are popular cache manage-

ments optimizing irregular data accesses. GRASP re-

orders the state array based on vertex degrees, which

places hot vertices at the beginning of the state array.

During the execution phase, GRASP guarantees the

cachelines from the hot vertices region to stay longer

in cache. P-OPT scans the CSR format to analyze the

graph structure and builds a re-reference matrix for

dynamic irregular memory accesses. P-OPT evicts

cachelines whose next reuse is further in the future.

GRASP and P-OPT reduce cache misses to improve

the application performance. DepGraph[21] dispatches

different dependency chains to different cores, allow-

ing efficient asynchronous vertex state updates on

multi-core processors. In this way, DepGraph im-

proves the locality in private cache. PHI[17] coalesces

multiple state updates in cache if they target the

same vertex and applies the merged state value to the

memory controller together. GraphPulse[18] proposes a

graph-specialized accelerator to coalesce updates in a

FIFO queue. PHI and GraphPulse exploit temporal

locality and reduce memory traffic through coales-

cence.

All of these approaches try to improve the locali-

ty in graph applications. In contrast, we observe that

the different graph data arrays have distinct locality,

and sharing a single datapath for all types of data

could bring significant interference and performance

degradation. Our proposed Skyway is able to handle

complex access patterns more efficiently with a spe-

cialized dual datapath design.

3 Experimental Setup

3.1 Profiling Platform

We use Zsim[31], an execution-driven simulator, to

measure performance. The simulator has four Out-of-

Order (OoO) cores clocked at 4 GHz and an 8 MB

shared LLC. To simulate memory behaviors accurate-

ly, we extend Zsim with DRAMsim3[32], which simu-

lates a detailed and cycle-accurate memory model

supporting DDR4 protocol. Prior work[33] has proved

that a larger ROB will not benefit graph application

performance, and thus we use 128-entry ROB here.

Table 1 lists more configuration parameters. We fast

forward the graph loading phase and run 100 million

Table 1. System Configurations

Hardware Configuration

Core Four OoO cores, 4 GHz clock frequency, 128-entry ROB, 4-wide issue width, 16 MSHRs per core

L1-I/D cache Private, 8-way 32 KB per core, 64 B cache line, 4-cycle access latency

L2 cache Private, 8-way 256 KB per core, 64 B cache line, 12-cycle access latency

LLC Shared, 32-way 8 MB, 64 B cache line, 32-cycle access latency

Memory controller 64-entry read/write queue, FR-FCFS[34] scheduling policy, Open-Page, address interleaving: rochrababgco

DRAM Four channels, 2 ranks/channel, 4 bankgroups/rank, 4 banks/bankgroup, 16 Gb DDR4-2400 x8 chips,
8 KB row buffer size[35], tRCD/tRAS/tWR 17/39/18 cycles, peak bandwidth 76.8 GB/s

874 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

instructions to warm up cache. Then we mark the re-

gion of interest (ROI) in the code covering only pull-

and push-based iterations. We collect status in ROI

for 600 million instructions across all cores.

3.2 Applications

We use five classic graph applications, Breadth-

First Search (BFS)[36], Betweenness Centrality

(BC)[37], Connected Component (CC)[38], PageRank

(PR), and Single-Source Shortest Path (SSSP)[39],

covering both push- and pull-based computation mod-

els, from the widely used GAP[25] benchmark for our

evaluation. Table 2 gives a detailed description of the

five applications. All applications update one state ar-

ray except the BC application, which requires two

state arrays in the execution phase. To avoid two ir-

regular state array accesses in the BC application, we

merge the two arrays together and use the optimized

implementation as the baseline. For the other four ap-

plications, we use the implementation in the GAP

benchmark as the baseline.

3.3 Datasets

For our profiling, we use seven real-world graph

datasets detailed in Table 3. These graph datasets

vary in size and degree distributions but all exceed

the LLC capacity. As inputs to the graph applica-

tions, all graph datasets are encoded in CSR format

and pre-processed by a state-of-the-art reordering

technique, DBG①[10], to exploit locality. For graph ap-

plications traversing the graph dataset in the push-

based model, we reorder the input based on in-degree.

For graph applications traversing the graph dataset in

the pull-based model, the input is reordered based on

out-degree. We combine the seven real-world graph

datasets with the five classic applications and pro-

duce 35 workloads in all evaluations mentioned in this

research.

4 Observations and Design Motivation

4.1 Diverse Data Access Patterns

As introduced in Subsection 2.1, if a graph is

stored in the CSR format, the memory access pat-

terns of various data arrays are distinct. For the edge

array, the accesses appear to exhibit a high spatial lo-

cality. For the state array, the accesses are much

more random and suffer from poor locality in the

cache hierarchy; the access pattern to the state array

is sensitive to the algorithms and graph inputs, signif-

icantly increasing the difficulty of performance opti-

mization. The memory requests from the offset array

are much fewer than those from the other two arrays

and do not incur significant performance overhead.

To quantify cache behaviors in three arrays uti-

lized by CSR format, we analyze the requests classifi-

cation before and after cache hierarchy and cacheline

reuse rates. Since all graph applications exhibit simi-

lar cache behaviors on either pull- or push-based mod-

el, taking the PR application as an example, we show

the detailed statistics on all reordered graphs listed in

Table 3. We have the following key observations.

• Cache hierarchy is less effective for the state ar-

ray accesses. As shown in Fig.3, for most of the

datasets, the accesses to the state array are about

31%–40% of the total requests in the cache hierarchy.

On the other hand, 73%–88% of the total requests to

the DRAM are from the state array, which is much

higher than any other data arrays. Two exceptions,

Web and UK-2002, show a cluster feature that a

small portion of vertices are visited repeatedly within

a short time window, leading to a better locality of

state array accesses.

• Cachelines from the state array have a low reuse

rate. As shown in Fig.4, for most datasets, the cache-

line reuse rate of the state array is only around 7%,

which is much lower than the offset array (98%) and

the edge array (99%). Even for the best scenarios

(Web and UK-2002), the reuse rate of the state array

Table 2. Graph Applications

Application Brief Description Model

BFS[36] Traversing a graph from one root vertex until all neighbors are accessed and returning a distance array Push

BC[37] Scoring the centrality of every vertex to find the center Push

CC[38] Labeling vertices into disjoint subsets to calculate the number of components Both

PR Ranking all vertices based on incoming neighbors until convergence or reaching the iteration limitation Pull

SSSP[39] Finding the shortest paths from one source vertex to all the other vertices in a weighted graph Push

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 875

①https://github.com/faldupriyank/dbg, Jul. 2024.

https://github.com/faldupriyank/dbg

cachelines is just around 34%, which is still low in

terms of temporal locality.

Ideally, we want a cache hierarchy to improve the

performance of all types of data accesses. However,

the data with poor locality can hardly take advan-

tage of the current cache capacity and cacheline size.

On the contrary, a multi-layer cache hierarchy may

increase data accessing delay for data with poor local-

ity due to the anticipated extensive cache miss.

4.2 Asymmetric Locality in DRAM

Since graph applications suffer from frequent LLC

misses, it is essential to have a better understanding

of the DRAM behavior under the locality influence of

graph applications.

Our evaluations find that the locality variation of

various data arrays extends to DRAM as well. Fig.5

shows the row buffer hit rates of the three arrays in

the PR application, indicating a significant locality

asymmetry in DRAM. According to Fig.5, averaging

across all graph datasets, the bank hit rates of the off-

set, edge, and state requests are 75%, 89%, and 40%,

respectively, which illustrates that the irregular state

access pattern has an extremely low opportunity of

Table 3. Scale of the Graph Datasets

Graph Dataset | | ×106V () | | ×106E ()

Orkut② 9 327

DBpedia[40] 18 136

PLD[41] 43 623

Web[42] 51 1 930

MPI[43] 53 1 963

Twitter[2] 62 1 468

UK-2002[44] 134 261

0

0.2

0.4

0.6

0.8

1

D
B

p
e
d
ia
_
C

D
B

p
e
d
ia
_
D

M
P
I_

C

M
P
I_

D

P
L
D
_
C

P
L
D
_
D

T
w

it
te

r_
C

T
w

it
te

r_
D

W
e
b
_
C

W
e
b
_
D

O
rk

u
t_

C

O
rk

u
t_

D

U
K
-
2
0
0
2
_
C

U
K
-
2
0
0
2
_
D

R
e
q
u
e
st

s

B
re

a
k
d
o
w

n
 (

%
)

Offset Array Edge Array State Array Other
100

80

60

40

20

0

Fig.3. Breakdown of memory accesses to the different data arrays in the cache hierarchy (_C) and the DRAM (_D), taking PR as
an example.

0

20

40

60

80

100

DBpedia MPI PLD Twitter Web Orkut UK-2002

C
a
c
h
e
li
n
e
 R

e
u
se

R
a
te

 (
%

)

Offset Array Edge Array State Array

Fig.4. Comparison of the cacheline reuse rates for different arrays, taking PR as an example.

0

20

40

60

80

100

DBpedia MPI PLD Twitter Web Orkut UK-2002

R
o
w

 B
u
ff
e
r

H
it

R
a
te

 (
%

)

Offset Array Edge Array State Array

Fig.5. Row buffer hit rates of different arrays, taking PR as an example. Note that each rate is separately calculated as the ratio of
the hit number over the total access to the same array.

876 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

②http://snap.stanford.edu/data, Jul. 2024.

http://snap.stanford.edu/data

row buffer reuse compared with the other two arrays.

Moreover, the sparsely distributed state addresses will

also interfere and affect the locality of offset and edge

arrays.

To further understand the performance impact of

different access patterns on DRAM, we devise a set of

experiments with several ideal assumptions. In each

experiment, DRAM ideally serves the requests to one

array without changing the content in the row buffer.

These experiments help us to understand the interfer-

ence of data accesses on row buffer pollution.

As shown in Fig.6, the average performance incre-

ments are about 3%, 17%, and 32% when eliminating

the offset, edge, and state requests to DRAM, respec-

tively. The results indicate that removing state re-

quests improves the performance the most, which is

caused by a combination of frequent accesses and a

low bank hit rate. For Web and UK-2002, we ob-

serve that removing all edge requests gains the high-

est performance because most of the DRAM requests

fall into the edge array in these two graphs, as ex-

plained in Subsection 4.1.

Ideally, the row buffer in DRAM is beneficial

when consecutive requests access the same row, which

avoids the time-costly bank conflicts. However, the

complex access patterns interfere with each other in

graph applications, leading to a huge performance

degradation.

4.3 Low Memory Channel Bandwidth

Utilization

Generally, a higher cache miss ratio will lead to a

higher memory bandwidth. However, due to the inef-

ficiency of cache and DRAM, we observe that memo-

ry channel bandwidth utilization of graph applica-

tions is low even with a high LLC MPKI (misses per

kilo instructions). The bandwidth utilization is calcu-

lated as the ratio of requested bytes over the peak

memory bandwidth. Fig.7 reports the profiling re-

sults and Table 4 summarizes LLC MPKI on graph

workloads. GM is the geometric mean across datasets.

As shown in Fig.7 and Table 4, the average band-

width utilization in BC (3%) is lower than that in

other applications due to a lower MPKI (3). However,

even with a high average MPKI (18) across applica-

tions BFS, CC, PR, and SSSP, the average DRAM

bandwidth utilization is only 18%, indicating that

graph applications cannot make good use of DRAM

channel bandwidth.

There are two reasons why these applications de-

liver such a low DRAM bandwidth utilization. First,

all memory requests follow a single path along a

three-level cache hierarchy regardless of their cache

hit rate. The poor-locality data accesses (e.g., state

array data accesses) cannot benefit from locality-ori-

ented hardware resources, like ROB and MSHR,

block the whole execution pipeline during the cache

0

20

40

60

80

100

DBpedia MPI PLD Twitter Web Orkut UK-2002IP
C

 I
m

p
ro

v
e
m

e
n
t

(%
) No Offset Request No Edge Request No State Request

Fig.6. Performance improvements when removing the impact of one type of DRAM requests, taking PR as an example. IPC means
instruction per cycle.

0

10

20

30

40

50

60

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

BFS BC CC PR SSSP

D
R

A
M

 B
a
n
d
w

id
th

U
ti
li
z
a
ti
o
n
 (

%
)

Fig.7. DRAM bandwidth utilization across various workloads.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 877

search procedure, and still fall into DRAM most of

the time. Second, in the DRAM, highly irregular da-

ta accesses lead to frequent bank conflicts and inter-

fere with other types of requests, which significantly

impacts the overall DRAM performance.

4.4 Design Opportunities

Based on our observations and analysis above, we

have identified the following architectural design op-

portunities to accelerate graph applications.

• Various access patterns in graphs share one sin-

gle datapath in the current memory hierarchy.

Among them, requests to the edge array have a good

locality, while requests to the state array have a very

poor locality. Processing requests with distinct locali-

ty separately will avoid interference in both cache and

DRAM.

• On the cache side, the data requests with dis-

tinct access patterns can be handled separately for

better performance. The conventional multi-layered

and 64-byte granularity cache hierarchy is suitable for

data accesses with a good locality, such as the edge

array requests. For the requests with low locality, we

can have a specialized buffer unit to store them on-

chip, with a finer data access granularity, for exam-

ple, for the state array requests, instead of the multi-

layered cache hierarchy. In this way, random memo-

ry requests do not need to go through a multi-lay-

ered cache hierarchy and can access the DRAM di-

rectly once missed in the small buffer.

• On the DRAM side, we observe that when fo-

cusing on the memory space with smaller granularity

than the row buffer, accesses to the hot elements in

the reordered state array can still perform moderate

or even high temporal locality while their spatial lo-

cality is low. Therefore, providing an extra buffer

space with fine-grained management support for the

data may improve the performance. In addition, an

extra buffer space supporting edge array will reduce

the interference in the row buffer caused by the irreg-

ular accesses. The fine-grained management will al-

low several hot elements to share one duplication row

and reduce time-costly row buffer update operations.

• By integrating our customer-designed direct da-

ta access path and the underlying cache hierarchy, we

can accelerate graph processing by improving the

whole memory efficiency, reducing data access inter-

ference, and utilizing the memory channel bandwidth.

This integrated design is not limited to graph process-

ing. It can be extended to alleviate the inefficiency of

memory systems for a wide range of applications.

5 Skyway Architecture

We propose the Skyway architecture, which is mo-

tivated by the following two challenges. First, specif-

ic graph structures, i.e., the state array, cannot uti-

lize multi-level cache due to poor locality. Second, fre-

quent row buffer conflicts caused by irregular re-

quests further degrade the performance. To overcome

both challenges, Skyway proposes an optional direct

datapath from a core to main memory, which enables

fast and direct data fetch for requests with low locali-

ty. Also, Skyway proposes to add extra buffers in

DRAM to support fine-grained duplications, which re-

duces the row buffer misses and time-costly DRAM

updates. Skyway improves the system performance in

two ways: 1) providing a highly efficient datapath for

poor-locality accesses and 2) minimizing the interfer-

ence between different access patterns.

5.1 Skyway Overview

Fig.8 presents the overall architecture of Skyway.

There are three architecture components added to the

direct datapath.

• Property Buffer (PBuf). PBuf sits between the

cores and main memory, shared by all cores. It tem-

porarily stores state data on-chip only (see Subsec-

tion 5.3).

• Duplication Row (DRow). DRow is a group of

extra buffers attached to the row buffer in each

DRAM bank. It backs up specific data from the row

buffer when being triggered (see Subsection 5.4). Es-

pecially, the DRow is managed in the granularity of

segment (i.e., 1 KB) to enhance the performance.

• Duplication Row Monitor (DRowM). DRowM is

a small table maintained in the memory controller,

which tracks the information of the segments in

DRow for each bank (see Subsection 5.4).

Table 4. MPKI in Various Workloads Including Seven Real-
World Graph Datasets and Five Graph Applications

Graph Dataset BFS BC CC PR SSSP

DBpedia 16 3 17 41 21

MPI 20 3 28 60 20

PLD 35 5 19 64 28

Twitter 53 3 16 39 19

Web 8 2 4 14 12

Orkut 15 3 11 27 17

UK-2002 8 1 6 14 10

GM 18 3 12 32 17

878 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

Additionally, Skyway makes minor modifications

in the core and memory controller. In the core, pairs

of address registers are initialized to guide datapath

selection logic (see Subsection 5.2). Besides, each core

contains a new port and selectively sends the memo-

ry requests to the L1 cache or the PBuf. The memo-

ry controller also needs to support returning data to

two on-chip buffers (LLC or PBuf). The fine-grained

direct datapath is shown in Fig.8 with the purple line.

5.2 Datapath Selection

As described in Subsection 5.1, Skyway enables

the core to send memory access requests to either the

L1 cache or the PBuf. To support such a feature,

Skyway uses six 64-bit registers to track the start and

end addresses of the three arrays and one 64-bit regis-

ter to record the end address of hot vertices in the

state array③. These registers are initialized when the

application allocates memory space for a graph.

To classify a memory request, Skyway adds three

fields to a normal memory request as shown in Fig.9.

Original Request Array Type Hot Bit Vertex ID

2 Bits 1 Bit 64 Bits

Fig.9. Extended memory request format in Skyway.

• Array Type, which indicates the type of access-

ing array;

• Hot Bit, which indicates whether the target ele-

ment is a hot vertex (for state array access only);

• Vertex ID, which indicates the ID of accessing

vertex (for state array access only).

For each memory request to be issued, the core

classifies it as the offset, edge, state or other type by

comparing the request address with address registers,

and fills the Array Type field. Especially, for the state

type access, the core also calculates the target vertex

ID and fills the Vertex ID field as follows:

vertexID =
Addrrequest − Addrstate_start

Sizestate_element
,

Addrrequest Addrstate_start

Sizestate_element

where is the request address, is

the start address of the state array, and

is the size of one state array element, which is usual-

ly 4-byte or 8-byte. If the request address is within

the range of hot vertices, its Hot Bit is set to 1. Then

the core sends state type requests to PBuf and the

other types of requests to the L1 cache as normal.

5.3 Property Buffer

PBuf is a shared hardware component motivated

by the fact that the three-level cache hierarchy is in-

efficient for irregular state requests. In general, PBuf

improves application performance in two ways: 1) it

provides a single-level cache structure and allows the

requests with irregular access patterns to arrive at the

memory controller quickly; 2) it manages the entries

in the granularity of state array element to hold more

elements and allow more accurate updates.

5.3.1 Hardware Design

As shown in Fig.10, PBuf consists of the follow-

Core 0

L1 Cache L1 Cache

L2 Cache

Core 1

L2 Cache

Core 2

L1 Cache

L2 Cache

Core 3

L1 Cache

L2 Cache

Shared Last Level Cache

Memory Controller

DRAM

Shared Property Buffer

Direct Datapath

Duplication Row Monitor

Duplication Row

Address Registers

Datapath Selection

Fig.8. Overview of Skyway hardware structure integrated with a four-core system. The Skyway components are shown in color.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 879

③In this work, the total hot vertices occupy no more than the size of LLC; therefore, the end address of hot vertex states is
8 MB + the start address of the state array.

ing three components.

• Property Data Cache (ProCache). Just like a

small-sized cache, ProCache is managed in a set-asso-

ciative way and divided into two arrays: 1) tag array,

which stores the vertex ID, dirty and valid bits, plus

position bits (see Subsection 5.3.3); 2) data array,

which stores state array elements.

• Backup Cacheline Buffer (LineBuf). LineBuf is a

buffer that stores a small number of cachelines from

the memory controller (16 cachelines per core in our

work). Since ProCache uses fine-grained space man-

agement and may generate a large number of re-

quests to the DRAM, LineBuf provides a lightweight

second-hit-chance for ProCache to find the data.

• Granularity Match (GraMatch). GraMatch mat-

ches the different request granularities between

LineBuf and ProCache. When reading data from

LineBuf, GraMatch checks the requested state array

elements in the LineBuf entries. Once hit in LineBuf,

GraMatch selects and loads the fine-grained state ar-

ray data to ProCache. When evicting a ProCache en-

try, GraMatch generates the write-back memory ad-

dress based on the vertex ID of the evicted data.

5.3.2 Workflow

Fig.11 summarizes the workflow of PBuf. In gen-

eral, when receiving a request, PBuf first checks if the

request can be served by ProCache with the vertex

ID in the request. For a missed request, PBuf search-

es LineBuf, seeking a second-hit-chance. Finally, the

request missed in LineBuf will be sent to DRAM.

Conduct the Access

in ProCache

ProCache Entry

Initialization

Y

Y

Y

Y

N

N

N

N

A PBuf Access

Hit in ProCache?

Replacement in ProCache?

ProCache Entry Eviction

Hit in LineBuf?

Replacement in LineBuf?

LineBuf Entry Eviction

LineBuf Entry Initialization

Fig.11. Property buffer workflow.

The above procedure includes the following four

main operations (marked with the blue boxes in

Fig.11).

Addrrequest
Addrstate_start Sizestate_element ×

• ProCache Entry Eviction. ProCache evicts an

entry if there is no free entry for initialization. To this

end, ProCache conducts the following operations. 1)

ProCache chooses the LRU entry in the located set to

make room for the new entry. 2) ProCache writes

back the evicted entry if the dirty bit is set. In this

case, GraMatch first calculates the cacheline address

using the simple arithmetic as =

(+ VertexID) << 6. In

order to reduce expensive DRAM write operations,

PBuf first tries to write the corresponding cacheline

back to LineBuf. Once failed, the write-back request

will be sent to the memory controller. 3) ProCache in-

validates the evicted entry, setting the valid bit to 0.

• LineBuf Entry Eviction. LineBuf evicts the LRU

entry when there is no available entry. For a dirty

cacheline, LineBuf generates a memory write request

and sends it to the memory controller; otherwise, the

Granularity Match

Core

… …

Tag Array Data Array

Position Valid Dirty Vertex ID State Array Data

2 Bits 1 Bit 1 Bit 64 Bits 32 Bits

Property Data Cache Entry Format

Property Data Cache

Memory Controller

Valid Dirty Address Line Data

1 Bit 1 Bit 64 Bits 512 Bits

Backup Cacheline Buffer Entry Format

Backup Cacheline Buffer

Fig.10. Property buffer hardware design.

880 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

data in the evicting entry is directly dropped.

• LineBuf Entry Initialization. When initializing a

new entry, LineBuf sets its dirty bit to 0 and its valid

bit to 1, and then loads cacheline from DRAM.

• ProCache Entry Initialization. To initialize a

new entry, ProCache first sets its dirty bit to 0 and

its valid bit to 1. Then, ProCache selectively loads

the required data from the LineBuf entry through

GraMatch.

5.3.3 Large-Size State Array Element Support

In the evaluated application BC, two state arrays

store different state values for each vertex. We merge

the two arrays into one to exploit better access locali-

ty. In this case, the state array element size is larger

(i.e., 16 bytes) than in other applications (usually

8 bytes). To accommodate large-size state elements,

ProCache uses multiple continuous entries within one

set to record one large state array element. As shown

in Fig.10, each ProCache tag entry contains a 2-bit

position field to record the relative position in a state

array element. When receiving a request for a large-

size element, ProCache selects all entries that match

the requested vertex ID as a response. Then Pro-

Cache forwards these entries to the core one by one in

the order based on the position field. For ProCache

replacement, all entries with the same vertex ID will

be evicted and loaded together. In the current ver-

sion, we employ a 2-bit field to support the 16-byte

array element. However, this mechanism enables

PBuf to be extended to any larger access granularity.

In extreme cases, PBuf may use a 4-bit field to sup-

port a 64-byte cacheline. In that case, PBuf is ac-

cessed as a normal cache.

5.4 Duplication Row and Monitor

As discussed in Subsection 4.2, various access pat-

terns co-exist in graph applications and may cause se-

rious performance interference at the row buffer. In

the meantime, we also observe that locality in the

memory blocks with small granularity does exist,

which can be utilized for better performance. To re-

duce the interference and exploit the locality, we pro-

pose Duplication Row (DRow), a specialized opti-

mization scheme to manage the row buffer for graph

applications. The key idea of DRow is to preserve the

data with moderate locality in an extra buffer space

with fine-grained data management support. In this

way, data accesses with moderate locality can benefit

from the interference reduction. Note that DRow does

not modify DRAM management. Data transmissions

between disk and DRAM are as usual when required

data is not found in DRAM.

Compared with prior DRAM optimizations[35, 45, 46],

our scheme detects the unique features in graph appli-

cations without any historical records or future pre-

dictions. With the help of several registers, we clarify

accesses accurately and process them separately. We

will give a more detailed discussion in Section 7.

In our design, we select the hot state array ele-

ments and the edge array elements to be preserved in

DRow. There are two reasons for choosing the two

data types for DRow. First, according to skewed pow-

er-law distribution, hot vertices occupy most connec-

tions and exhibit high reuse probability in smaller

granularity memory blocks, indicating that maintain-

ing hot state array elements in DRow leads to more

DRow hit opportunities. Second, duplication of the

edge array helps to prevent data from being flushed

by other irregular accesses and provides a better lo-

cality. Overall, DRow reduces the time-costly row

buffer update operations and allows the DRAM to

serve more requests with a shortened latency. We

choose the duplication granularity based on the sensi-

tivity study given in Subsection 6.8. We believe that

the performance could be enhanced further through

an adaptive granularity selection process in DRow,

which is left to future work.

5.4.1 Hardware Design

As shown in Fig.12, DRow allocates extra buffers

in each bank affiliated with the row buffer. In our de-

sign, DRow has the same width with conventional

rows (i.e., 8 KB) but each row is segmented (i.e.,

1 KB) to improve DRow utilization. To track which

segments are currently duplicated in DRow, the mem-

ory controller maintains a DRowM vector for each

bank. Each entry in the DRowM has a row tag to

identify the duplication source row, a segment tag to

record segment ID, a dirty bit, and a valid bit. There

are four DRows in each bank, and each DRow con-

tains up to eight segments, requiring 32 DRowM en-

tries for each bank in the memory controller.

5.4.2 Workflow

Fig.13 summarizes the workflow of DRow. First,

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 881

the memory controller reads the appended fields of

each request and identifies requests to the hot state

array elements and edge array elements. These identi-

fied requests are called trigger requests. For a trigger

request, DRowM checks the contained records to see

if the requested data is a hit in the DRow. If it is, the

Read Queue

DRow Monitor

Write Queue

Row Segment Dirty Valid

Bank 0

Bank 1

Memory Controller

14 Bits 3 Bits 1 Bit 1 Bit

Command/Address

Data

R
o
w

 D
e
c
o
d
e
r

…

Bank 0

Bank 1

A
d
d
re

ss

Channel

Row Buffer

DRow

Fig.12. Duplication row hardware design. The added components are shown in color.

Row Buffer Hit?

To Offset Array or

Other Data?

To Cold State

Array Element?

Update Row Buffer

Write Access?

Conduct the DRAM Access in
DRow

A DRAM Access Request

Conduct the DRAM Access

Update Row Buffer

Dirty Segment?

Write Back Dirty Segment to

the DRAM Array

1. Set the Row, Segment Field

2. Dirty = 0

3. Valid = 1

 A DRow Monitor Eviction Request

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

DRow Monitor Hit?

Replace a DRow
Monitor Entry?

Evict a DRow Monitor Entry

Initialize a DRow Monitor Entry

Copy the Segement from Row
Buffer to DRow

Choose the LRU DRow
Monitor Entry

Invalid the DRow
Monitor Entry

Set the Dirty Bit to 1 in the
Chosen DRow Monitor Entry

Fig.13. Duplication row workflow.

882 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

request is done at DRow. Otherwise, DRowM first

conducts the command to DRAM, waiting for the re-

quested row to be loaded into the row buffer. Then

memory controller copies the target segment from the

row buffer to DRow and records the information of

the segment in the newly allocated DRowM entry,

waiting for the next access. For a DRow write, the

dirty bit in the corresponding DRowM entry will be

set to 1. For a non-trigger request, DRAM processes

it following the conventional workflow.

Copying a Row Buffer Segment to DRow. To effi-

ciently copy a segment from the row buffer to DRow,

we introduce Target-copy (T-copy), a new DRAM

command with duplication source and destination

knowledge. The T-copy command refers to CROW[35],

working with the following procedures: 1) the memo-

ry controller sends the source segment ID in the row

buffer and the destination segment ID in DRow to

DRAM with the issued T-copy command; 2) DRAM

selects the source segment in the row buffer, then

reads the segment and writes it to the destination

segment in DRow. The process of reading and copy-

ing the segment is just like a regular read from the

row buffer. At the end of the T-copy command proce-

dure, both the row buffer and DRow hold a duplica-

tion of the target segment.

Evicting a DRow Segment. If DRowM is full, a

DRowM eviction request will be conducted before new

entry allocation. To fulfill such a function, we imple-

ment the Target-precharge (T-pre) command. T-pre

is similar to the regular precharge command and ex-

tended for holding the source segment ID in DRow

and the target row, and the target segment ID in the

DRAM array. When evicting a dirty DRowM entry,

the memory controller sends the T-pre command to

DRAM. Then DRAM activates the target row and

latches the bitlines of the target segment. After this,

the data in the source segment is written to the tar-

get row. Finally, the DRowM entry is invalidated and

free to be allocated.

5.5 Implementation Overhead

We estimate the additional overhead for Skyway

with the configuration as shown in Table 5.

Overall, the proposed Skyway requires additional

141.5 KB on-chip storage and extra 4 MB for DRow

at the DRAM side. We use CACTI 6.5[47] to evaluate

the area overhead. The results show that PBuf adds

only 2.6% of the area consumed by the 8 MB LLC

and DRow introduces only 0.02% additional area

overhead of a 16 GB DRAM. The storage cost of Sky-

way is minimum compared with its performance im-

provement.

6 Evaluation

In order to evaluate the effectiveness of Skyway,

we first show the experimental results of PBuf,

DRow, and Skyway individually for better compari-

son. We compare our design with existing state-of-

the-art hardware optimizations[16, 48] and cache by-

passing schemes[49, 50]. The baseline is without any op-

timizations. The evaluation metrics include perfor-

mance and bandwidth utilization. Then, we quantita-

tively analyze how Skyway effectively improves the

performance. At last, we provide a series of sensitivi-

ty studies of different Skyway design choices.

6.1 Evaluation Setup

The simulation platform, graph applications, and

datasets used in the evaluation are introduced in Sec-

tion 3. Besides, Table 5 gives the detailed configura-

tions of Skyway. Note that in our experiments, we as-

sume that the first 8 MB data in the state array, with

the same capacity as the LLC, is the hot vertices[16].

We evaluate Skyway and compare it with the

state-of-the-art schemes described below.

• DRRIP④[48] focuses on SPEC benchmarks, which

initializes re-reference bits of cachelines based on Set

Table 5. Skyway Configurations and Hardware Overhead

Hardware Configuration Overhead

PBuf ProCache: 32 KB per core, shared, 4-way associated, 4 B-entry, 4-cycle latency; 132 KB

LineBuf: 1 KB per core, shared, 1-way associated, 64 B-entry, 2-cycle latency

DRow 8 KB per extra buffer, eight segments in one buffer, four buffers per bank,
tCCD five cycles, LRU replacement policy

4 MB

DRowM 32 entries per bank, 19 bits per entry 9.5 KB

Register One 64-bit register to record the end address of hot vertices in state array, 56 B

six 64-bit registers to record array address range (start and end)

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 883

④https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl, Jul. 2023.

https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl
https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl
https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl

Dueling and chooses the best replacement policy for

different benchmarks.

• GRASP⑤[16] is proposed for graph applications,

which classifies cachelines into hot and cold regions

based on vertex degrees and guarantees hot cache-

lines to stay longer in cache.

• Core -DRAM, L1-DRAM, and L2-DRAM[49, 50]

are three idealized cache bypass schemes without any

buffer and looking up latency in the bypass path. The

bypass path is used to forward state array data ac-

cesses to DRAM from Core, L1, and L2, respectively.

• Double-L1 doubles the L1 capacity in the base-

line (i.e., 64 KB L1, which is the sum of L1 and

PBuf). Double-L1 classifies that the performance of

Skyway is not from additional hardware resources.

6.2 Performance

We use the instructions per cycle (IPC) to denote

the system performance. Fig.14 summarizes the nor-

malized performance improvement of DRRIP,

GRASP, Core-DRAM, L1-DRAM, L2-DRAM, Dou-

ble-L1, PBuf, DRow, and Skyway over the baseline.

As shown in Fig.14, using PBuf alone outper-

forms the baseline with speedups for BFS, BC, CC,

PR, and SSSP of 17.6%, 13.4%, 15.6%, 3.7%, and

36.9%, respectively, averaging across all graph

datasets. Overall, PBuf yields 17% average speedup

and up to 78% in the best case on SSSP-PLD (for

convenience, we abbreviate the specific workload as

application-dataset in the rest of the paper) over the

-70

-50

-30

-10

10

30

50

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

P
e
rf

o
rm

a
n
c
e

Im
p
ro

v
e
m

e
n
t

(%
)

-80

-20
-40
-60

20
0

40
60

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

P
e
rf

o
rm

a
n
c
e

Im
p
ro

v
e
m

e
n
t

(%
)

-70
-50
-30
-10

10
30
50
70
90

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

P
e
rf

o
rm

a
n
c
e

Im
p
ro

v
e
m

e
n
t

(%
)

-70

-20

30

80

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

P
e
rf

o
rm

a
n
c
e

Im
p
ro

v
e
m

e
n
t

(%
)

-90

-60

-30

0

30

60

90

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

P
e
rf

o
rm

a
n
c
e

Im
p
ro

v
e
m

e
n
t

(%
)

GRASP Property Buffer DRow Skyway

Core-DRAM L1-DRAM DRRIPL2-DRAM Double-L1

(b)(a)

(c) (d)

(e)

Fig.14. Performance improvements of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP over the baseline.

884 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

⑤https://github.com/faldupriyank/grasp, Jul. 2024.

https://github.com/faldupriyank/grasp

baseline. These improvements come from the more ef-

ficient direct datapath working on irregular requests.

Also, using DRow alone provides an average speedup

of 8.4% for BFS, 2.3% for BC, 5.2% for CC, 9.8% for

PR, and 6.1% for SSSP. Among all the 35 workloads,

DRow yields 5.7% speedup on average and up to 15%

in the best case (on PR-Orkut) over the baseline. Fi-

nally, Skyway with integrated PBuf and DRow

achieves the performance improvement of 32% for

BFS, 16% for BC, 24% for CC, 23% for PR, and 52%

for SSSP. Benefiting from the two optimizations, Sky-

way yields an average speedup of 29% and up to 86%

over the baseline. As for prior techniques, DRRIP on-

ly slightly improves performance by 2%, and GRASP

yields an average speedup of 5% over the baseline. In

comparison, without buffers in the direct path, Core-

DRAM, L1-DRAM, and L2-DRAM yield an average

speedup of –59%, –20%, and –7%, respectively, over

the baseline on the reordered datasets. On average,

Double-L1 only improves the performance by 2.8%

over the baseline. Because the state array accesses in

graph applications are very irregular, simply increas-

ing cache capacity is not an effective optimization.

6.3 Bandwidth Utilization

Fig.15 presents the normalized DRAM bandwidth

utilization of different schemes. Compared with the

baseline, PBuf improves the bandwidth utilization by

1.91x on average. Besides, DRow helps to improve the

bandwidth by 7.8% on average and up to 17% in the

best case (on BFS-Orkut). Finally, Skyway achieves

the improvement of bandwidth utilization by 2.13x on

average and up to 5.87x in the application PR with

the dataset Orkut.

The reasons for the improvement of bandwidth

utilization can be summarized as follows.

• PBuf reduces the latency for the requests to ar-

U
K
-
2
0
0
2

0.5
1.0
1.5
2.0
2.5
3.0
3.5

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

G
MD

R
A

M
 B

a
n
d
w

id
th

U
ti
li
z
a
ti
o
n
 (

x
)

0.5
1.5
2.5
3.5
4.5
5.5
6.5

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MD

R
A

M
 B

a
n
d
w

id
th

U
ti
li
z
a
ti
o
n
 (

x
)

U
K
-
2
0
0
2

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

G
MD
R

A
M

 B
a
n
d
w

id
th

U
ti
li
z
a
ti
o
n
 (

x
)

0.5

1.5

2.5

3.5

4.5

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MD

R
A

M
 B

a
n
d
w

id
th

U
ti
li
z
a
ti
o
n
 (

x
)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
D

B
p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MD

R
A

M
 B

a
n
d
w

id
th

U
ti
li
z
a
ti
o
n
 (

x
)

GRASP Property Buffer DRow SkywayDRRIP

(b)(a)

(c) (d)

(e)

Fig.15. DRAM bandwidth utilization of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP over the baseline.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 885

rive at the memory controller. For the requests to the

state array with low locality, PBuf has optimized the

datapath with less hierarchies and fine-grained buffer

management. For the other requests, the efficiency of

the cache hierarchy is improved without the infer-

ence of low locality data accesses.

• DRow helps to minimize the impact of irregular

access patterns in DRAM. With DRow, DRAM di-

rectly serves accesses to the hot state array elements

and edge array elements without updating the row

buffer, which allows DRAM to serve more requests

within a shortened time interval.

Among prior techniques, DRRIP fails to learn

reuse patterns in graph applications, and GRASP is

only efficient for high-skewed graphs. We find that

GRASP receives the highest performance improve-

ment on the high-skewed graphs but is less effective

on the low-skewed graphs. Table 6 shows the vertex

percentage and corresponding edge percentage on two

datasets. For example, in the dataset DBpedia, 46%

of the vertices occupy 99% of the total edges, while in

the dataset Orkut, only 23% of the vertices occupy

99% of the total edges. The higher the skew, the low-

er the vertex percentage. Therefore Orkut is high-

skewed and DBpedia is low-skewed. Our evaluation

indicates that GRASP yields only 3.7% speedup on

the low-skewed DBpedia graph. On the contrary, Sky-

way accelerates the graph applications by 38.4% on

the graph dataset DBpedia. Because GRASP classi-

fies the state array into several regions based on ver-

tex degrees, the scale of the hot region may exceed

cache capacity on low-skewed graphs, which limits

the accelerating ability. Unlike GRASP, on the cache

side, Skyway classifies data accesses based on which

array they belong to. Skyway is not based on the

skew feature and works well even on low-skewed

graphs. Furthermore, both DRRIP and GRASP pro-

cess requests with different locality following a uni-

fied strategy. Application performance is degraded by

the interfered access patterns, which lowers the

DRAM bandwidth utilization.

In summary, the efficiency of Skyway comes from

the ingenious combination of hardware optimization

and software framework execution characteristics. We

find that multiple data access patterns exist in graph

applications. However, the current multi-level cache

hierarchy and row buffer design work well only for

regular data accesses. Inspired by this key observa-

tion, we believe that “divide and conquer” is a

promising hardware optimization. Moreover, such an

optimization reduces cache pollution because irregu-

lar data will not be stored in cache. As a result, Sky-

way improves the bandwidth utilization and the per-

formance of graph applications.

6.4 Impact of Dual-Path on the Memory

Controller

Cache bypassing techniques, as well as PBuf de-

sign in Skyway, increase the temporal density of

memory requests arriving at the memory controller.

Therefore, we show how these techniques affect the

memory traffic and performance.

Fig.16 presents the memory traffic of Core-

DRAM, L1-DRAM, L2-DRAM, and PBuf over the

baseline. On average, PBuf produces 1.29x, 1.64x,

1.43x, 1.59x, and 1.31x data traffic from the memory

controller to DRAM for BFS, BC, CC, PR, and

SSSP, respectively, over the baseline. However, the

other three cache bypassing techniques are not effec-

tive, with an average memory traffic of 9.45x, 2.39x,

and 2.06x, respectively, over the baseline. The three

cache bypassing managements produce too many

DRAM accesses. They are unable to find a trade-off

between faster DRAM accesses and more DRAM ac-

cesses, failing to limit memory traffic in a tolerable

area and thus hurting the performance. In contrast,

PBuf benefits from the fine-granularity organization

and independence from cache hierarchy, resulting in

fewer DRAM accesses even compared with L2-

DRAM.

Additionally, we further analyze the dynamic oc-

cupancy of the DRAM request queue in PBuf. As

shown in Fig.17, taking dataset DBpedia as an exam-

ple, the dynamic occupancies of both read and write

queues are under 10 across all the five applications,

which is far below the common queue capacity (i.e.,

64-entry in our configuration) and will not cause the

read or write drain. Therefore, we can summarize that

the increment of memory requests caused by the pro-

Table 6. Power-Law Distribution of DBpedia and Orkut

Edge Percentage (%) Vertex Percentage (%)

DBpedia Orkut

70 7 5

75 9 6

80 11 7

85 13 8

90 16 11

95 21 15

99 46 23

886 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

posed PBuf will not hurt the system performance.

6.5 Row Buffer Conflicts Reduction with

DRow

DRow design benefits the application from two as-

pects. First, it protects the accesses with moderate or

even high temporal locality, avoiding them being in-

terrupted in the row buffer by irregular accesses. Sec-

ond, it imports a fast datapath to return buffered ac-

cesses. Overall, DRow reduces row buffer conflicts sig-

nificantly. As Fig.18 shows, on average, DRow re-

duces row buffer conflicts by 15% over the baseline

and up to 58% in the application PR with dataset

Orkut.

6.6 Limitations of Skyway

In our evaluation, DRow always improves the per-

formance. The exception happens in PBuf. We find

that PBuf cannot accelerate graph applications when

the input graphs show a good community feature[10]

(i.e., Web and UK-2002). In such graphs, state array

data accesses perform a good locality and utilize mul-

ti-layer cache hierarchy efficiently. Unfortunately,

PBuf cannot leverage multi-layer cache hierarchy and

decreases the performance in some scenarios (e.g.,

CC-Web). As a result, although DRow speeds up the

execution in all scenarios, Skyway degrades the per-

formance over the baseline in specific cases because of

PBuf. We leave the study of classifying the graph in-

puts based on their community feature and exploit-

ing PBuf adaptively for future work.

6.7 Sensitivity of ProCache and LineBuf

Capacity

Fig.19(a) shows the PBuf performance with 8 KB,

16 KB, 32 KB, 64 KB, and 128 KB ProCache per

0

10

20

30

40

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MM

e
m

o
ry

 T
ra

ff
ic

 (
x
)

0
2
4
6
8

10
12
14

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MM

e
m

o
ry

 T
ra

ff
ic

 (
x
)

0

2

4

6

8

10

12

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MM

e
m

o
ry

 T
ra

ff
ic

 (
x
)

0

2

4

6

8

10

12

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MM

e
m

o
ry

 T
ra

ff
ic

 (
x
)

0
10
20
30
40
50
60
70
80

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
MM

e
m

o
ry

 T
ra

ff
ic

 (
x
)

PBufCore-DRAM L1-DRAM L2-DRAM

(b)(a)

(c) (d)

(e)

Fig.16. Memory traffic of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP over the baseline.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 887

Baseline PBuf

0

1

2

3

4

5

O
c
c
u
p
a
n
c
y

0 5 10 15 20

Cycle (103)

0 5 10 15 20

Cycle (103)

0

1

2

3

O
c
c
u
p
a
n
c
y

0 5 10 15 20

Cycle (103)

0

1

2

3

4

5

O
c
c
u
p
a
n
c
y

0 5 10 15 20

Cycle (103)

1

3

5

7

O
c
c
u
p
a
n
c
y

0 5 10 15 20

Cycle (103)

0

2

4

6

8

O
c
c
u
p
a
n
c
y

(b)

(a)

(c)

(d)

(e)

Fig.17. Run-time request queue occupancy of PBuf and the baseline of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP.

0
10
20
30
40
50
60

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

D
B

p
e
d
ia

M
P
I

P
L
D

T
w

it
te

r

W
e
b

O
rk

u
t

U
K
-
2
0
0
2

G
M

BFS BC CC PR SSSP

B
a
n
k
 C

o
n
fl
ic

ts

R
e
d
u
c
ti
o
n
 (

%
)

Fig.18. Bank conflicts reduction of DRow over the baseline.

888 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

core. We observe that doubling ProCache capacity

from 16 KB to 32 KB and 32 KB to 64 KB brings ap-

plication speedups of 2% and 0.8%, respectively. To

achieve a balance between hardware overhead and

performance improvement, we use 32 KB ProCache

per core in our evaluation.

We also measure the performance sensitivity to

LineBuf capacity. Fig.19(b) shows the average

speedups when varying LineBuf cachelines. We no-

tice that using more backup cachelines slightly out-

performs fewer backup cachelines, mainly because the

irregular state access pattern makes cacheline less effi-

cient. We choose 16 backup cachelines to save extra

hardware overhead and allow applications to exploit

locality.

6.8 Sensitivity of DRow Capacity and

Segment Size

To check the effectiveness of the DRow capacity,

we vary the setting from 1 row to 16 rows and com-

pare the system performance. As shown in Fig.20(a),

a larger DRow always gains a better performance by

providing more hit opportunities. However, the per-

formance increment is not multiplied with a double

capacity. On average, application speedups are from

6.2% (4 rows) to 8.3% (8 rows) and then to 10% (16

rows). To balance the performance and storage over-

head, we implement four rows per bank.

The segment count refers to the number of seg-

ments in one DRow row and determines the granular-

ity of DRow. As shown in Fig.20(b), as we vary the

segment counts from 1 (8 KB per segment) to 32

(256 B per segment), a larger segment is beneficial

when multiple access addresses are adjacent. Howev-

er, a smaller segment size is more appropriate for da-

ta with low spatial locality but with a better reuse

rate. It is hard to find a perfect segment size that out-

performs all the other sizes across all workloads be-

cause the access pattern is application- and graph-de-

pendent. We choose the 1 KB segment in our evalua-

tions since it receives the best performance in most

applications.

7 Related Work

Data Duplication in DRAM. Duplicon Cache[46] re-

serves a specialized space in each bank and maintains

an accessing counter for each row to determine which

row should be duplicated. However, since how to de-

termine the threshold of its counter is indefinite, it is

difficult to gain steady performance improvement in

0.9

1.0

1.1

1.2

1.3

1.4

BFS BC CC PR SSSP

S
p
e
e
d
u
p
 (

x
)

0.9

1.0

1.1

1.2

1.3

1.4

BFS BC CC PR SSSP

S
p
e
e
d
u
p
 (

x
)

1 Line 8 Lines 16 Lines

32 Lines 64 Lines

8 KB 16 KB 32 KB

64 KB 128 KB

(b)(a)

Fig.19. Performance improvements for different (a) ProCache capacities and (b) LineBuf capacities.

0.90

0.95

1.00

1.05

1.10

1.15

BFS BC CC PR SSSP

S
p
e
e
d
u
p
 (

x
)

1 Segment 4 Segments 8 Segments

16 Segments 32 Segments

0.90

0.95

1.00

1.05

1.10

1.15

1.20

BFS BC CC PR SSSP

S
p
e
e
d
u
p
 (

x
)

1 Row 2 Rows 4 Rows

8 Rows 16 Rows

(b)(a)

Fig.20. Performance improvements for different (a) DRow numbers and (b) segments in each row.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 889

practice, especially in graph applications with com-

plex access patterns. CROW[35] reserves a space with-

in each bank and copies data from the row buffer

when a row buffer miss occurs in the granularity of

segments. FIGARO[45] extends CROW to duplicate

data in finer granularity. Both CROW and FIGARO

ignore the fact that bank conflicts occurred by differ-

ent memory requests have different influences on the

overall performance. Unlike prior work[35, 45, 46], Sky-

way utilizes the information of different access pat-

terns for various key data structures in graph applica-

tions to direct the data duplication, which simplifies

the accurate identification of the duplication.

Cache Bypassing. Adaptive Cache Bypassing[49],

Annex Cache[51], LMP[52], and Random Sampling Fil-

tered Cache[53] utilize a predictor to determine

whether a memory access should bypass the cache.

AMB[54], RHP and RTP[55], and LRF[50] track the his-

tory access information for cache blocks, skipping spe-

cific cache layers or bypassing memory requests to

DRAM based on the recorded knowledge. Our pro-

posed Skyway outperforms the prior work in three

ways. First, Skyway directly utilizes the special mem-

ory access characteristics of graph applications ac-

cording to simplified address comparison, and deter-

mines whether to use the direct datapath, which is

accurate compared with prior prediction-based

schemes and avoids the unnecessary history tracking

latency. Second, prior work[49, 51–53] focuses on select-

ing a specific path but ignores the reuse within cache-

lines. Our direct datapath is organized in fine-grained

data management, which improves the hardware re-

source utilization for serving the irregular access pat-

tern in graph applications. Finally, we not only opti-

mize cache design but also extend the key idea to

DRAM.

GPU-Based Graph Processing. GPUs are popular

accelerators for graph processing. However, as the

graph size grows, the performance of graph process-

ing is limited by available device memory capacity.

Grus[56] reduces page faults through a clever unified-

memory management scheme (e.g., reducing memory

footprint and prefetching graph data). Moreover,

Grus reduces expensive atomic operations through

low-cost write operations. Skywalker[57] proposes a

novel graph sampling and random walk algorithm to

eliminate the capacity gap between input graphs and

GPU capacity. Subway[58] generates a subgraph in al-

most every iteration to minimize data movements be-

tween CPU and GPU. Unlike these optimizations, we

focus on CPUs. The main bottleneck we solve is the

inefficiency of the multi-layer cache hierarchy and the

row buffer design on graph applications.

8 Conclusions

This paper showed that a graph can be represent-

ed in three data arrays, while only memory requests

to the state array exhibit irregular access patterns.

The current memory hierarchy is far from fully uti-

lized for graph applications due to random and unpre-

dictable memory accesses. To accelerate graph appli-

cations, this paper presented Skyway, a data-aware

hardware architecture with 1) a fine-grained direct

datapath from core to main memory, opening a fast

path for irregular requests, and 2) a memory-side row

buffer hardware, preserving selected data segments

before flushing them back. In doing so, Skyway pro-

cesses memory requests efficiently by mitigating the

memory access interference. On a set of graph work-

loads, Skyway improves application performance by

29% on average and up to 86% over the baseline

without any hardware optimizations. Skyway also

outperforms GRASP and DRRIP, which are the ex-

isting state-of-the-art hardware optimizations. While

Skyway is motivated by graph processing, the key

idea behind the design can be extended to accelerate

any applications with multiple access patterns.

Conflict of Interest Xian-He Sun is an asso-

ciate editor for Journal of Computer Science and

Technology and was not involved in the editorial re-

view of this article. All authors declare that there are

no other competing interests.

References

 Fan W F. Graph pattern matching revised for social net-

work analysis. In Proc. the 15th International Conference

on Database Theory, Mar. 2012, pp.8–21. DOI: 10.1145/

2274576.2274578.

[1]

 Kwak H, Lee C, Park H, Moon S. What is Twitter, a so-

cial network or a news media? In Proc. the 19th Interna-

tional Conference on World Wide Web, Apr. 2010,

pp.591–600. DOI: 10.1145/1772690.1772751.

[2]

 Tang L, Liu H. Graph mining applications to social net-

work analysis. In Managing and Mining Graph Data, Ag-

garwal C C, Wang H X (eds.), Springer, 2010, pp.487–
513. DOI: 10.1007/978-1-4419-6045-0_16.

[3]

 Caetano T S, McAuley J J, Cheng L, Le Q V, Smola A J.

Learning graph matching. IEEE Trans. Pattern Analysis

and Machine Intelligence, 2009, 31(6): 1048–1058. DOI:

10.1109/TPAMI.2009.28.

[4]

890 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1007/978-1-4419-6045-0_16
https://doi.org/10.1109/TPAMI.2009.28

 Navlakha S, Schatz M C, Kingsford C. Revealing biologi-

cal modules via graph summarization. Journal of Compu-

tational Biology, 2009, 16(2): 253–264. DOI: 10.1089/cmb.

2008.11TT.

[5]

 Han S, Liu X Y, Mao H Z, Pu J, Pedram A, Horowitz M

A, Dally W J. EIE: Efficient inference engine on com-

pressed deep neural network. ACM SIGARCH Computer

Architecture News, 2016, 44(3): 243–254. DOI: 10.1145/

3007787.3001163.

[6]

 Mukkara A, Beckmann N, Abeydeera M, Ma X S,

Sanchez D. Exploiting locality in graph analytics through

hardware-accelerated traversal scheduling. In Proc. the

51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2018. DOI: 10.1109/MICRO.2018.

00010.

[7]

 Arai J, Shiokawa H, Yamamuro T, Onizuka M, Iwamura

S. Rabbit order: Just-in-time parallel reordering for fast

graph analysis. In Proc. the 2016 IEEE International Par-

allel and Distributed Processing Symposium, May 2016,

pp.22–31. DOI: 10.1109/IPDPS.2016.110.

[8]

 Balaji V, Lucia B. When is graph reordering an optimiza-

tion? Studying the effect of lightweight graph reordering

across applications and input graphs. In Proc. the 2018

IEEE International Symposium on Workload Characteri-

zation, Sept. 30–Oct. 2, 2018, pp.203–214. DOI: 10.1109/

IISWC.2018.8573478.

[9]

 Faldu P, Diamond J, Grot B. A closer look at lightweight

graph reordering. In Proc. the 2019 IEEE International

Symposium on Workload Characterization, Nov. 2019.

DOI: 10.1109/IISWC47752.2019.9041948.

[10]

 Lakhotia K, Singapura S, Kannan R, Prasanna V. Re-

CALL: Reordered cache aware locality based graph pro-

cessing. In Proc. the 24th International Conference on

High Performance Computing, Dec. 2017, pp.273–282.
DOI: 10.1109/HiPC.2017.00039.

[11]

 Wei H, Yu J X, Lu C, Lin X M. Speedup graph process-

ing by graph ordering. In Proc. the 2016 International

Conference on Management of Data, Jun. 2016, pp.1813–
1828. DOI: 10.1145/2882903.2915220.

[12]

 Zhang Y M, Kiriansky V, Mendis C, Amarasinghe S, Za-

haria M. Making caches work for graph analytics. In Proc.

the 2017 IEEE International Conference on Big Data,

Dec. 2017, pp.293–302. DOI: 10.1109/BigData.2017.8257

937.

[13]

 Zou M, Zhang M Z, Wang R J, Sun X H, Ye X C, Fan D

R, Tang Z M. Accelerating graph processing with

lightweight learning-based data reordering. IEEE Com-

puter Architecture Letters, 2022, 21(1): 5–8. DOI: 10.1109/

LCA.2022.3151087.

[14]

 Balaji V, Crago N, Jaleel A, Lucia B. P-OPT: Practical

optimal cache replacement for graph analytics. In Proc.

the 2021 IEEE International Symposium on High-Perfor-

mance Computer Architecture, Feb. 27–/Mar. 3, 2021,

pp.668–681. DOI: 10.1109/HPCA51647.2021.00062.

[15]

 Faldu P, Diamond J, Grot B. Domain-specialized cache

management for graph analytics. In Proc. the 2020 IEEE

International Symposium on High Performance Comput-

er Architecture, Feb. 2020, pp.234–248. DOI: 10.1109/HP-

[16]

CA47549.2020.00028.

 Mukkara A, Beckmann N, Sanchez D. PHI: Architectural

support for synchronization- and bandwidth-efficient com-

mutative scatter updates. In Proc. the 52nd Annual

IEEE/ACM International Symposium on Microarchitec-

ture, Oct. 2019, pp.1009–1022. DOI: 10.1145/3352460.3358

254.

[17]

 Rahman S, Abu-Ghazaleh N, Gupta R. GraphPulse: An

event-driven hardware accelerator for asynchronous graph

processing. In Proc. the 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Oct. 2020,

pp.908–921. DOI: 10.1109/MICRO50266.2020.00078.

[18]

 Yan M Y, Hu X, Li S C, Basak A, Li H, Ma X, Akgun I,

Feng Y J, Gu P, Deng L, Ye X C, Zhang Z M, Fan D R,

Xie Y. Alleviating irregularity in graph analytics accelera-

tion: A hardware/software co-design approach. In Proc.

the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, Oct. 2019, pp.615–628. DOI: 10.1145/

3352460.3358318.

[19]

 Zhang D, Ma X Y, Thomson M, Chiou D. Minnow:

Lightweight offload engines for worklist management and

worklist-directed prefetching. ACM SIGPLAN Notices,

2018, 53(2): 593–607. DOI: 10.1145/3296957.3173197.

[20]

 Zhang Y, Liao X F, Jin H, He L G, He B S, Liu H K, Gu

L. DepGraph: A dependency-driven accelerator for effi-

cient iterative graph processing. In Proc. the 2021 IEEE

International Symposium on High-Performance Comput-

er Architecture, Feb. 27–Mar. 3, 2021, pp.371–384. DOI:

10.1109/HPCA51647.2021.00039.

[21]

 Zou M, Yan M Y, Li W M, Tang Z M, Ye X C, Fan D R.

GEM: Execution-aware cache management for graph ana-

lytics. In Proc. the 22nd International Conference on Al-

gorithms and Architectures for Parallel Processing, Oct.

2022, pp.273–292. DOI: 10.1007/978-3-031-22677-9_15.

[22]

 Maass S, Min C, Kashyap S, Kang W, Kumar M, Kim T.

Mosaic: Processing a trillion-edge graph on a single ma-

chine. In Proc. the 12th European Conference on Com-

puter Systems, Apr. 2017, pp.527–543. DOI: 10.1145/3064

176.3064191.

[23]

 Shun J L, Blelloch G E. Ligra: A lightweight graph pro-

cessing framework for shared memory. In Proc. the 18th

ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Feb. 2013, pp.135–146. DOI: 10.

1145/2442516.2442530.

[24]

 Beamer S, Asanović K, Patterson D. The GAP bench-

mark suite. arXiv: 1508.03619, 2015. https://doi.org/10.

48550/arXiv.1508.03619, Jan. 2024.

[25]

 Kyrola A, Blelloch G, Guestrin C. GraphChi: Large-scale

graph computation on just a PC. In Proc. the 10th

USENIX Symposium on Operating Systems Design and

Implementation, Oct. 2012, pp.31–46.

[26]

 Sundaram N, Satish N, Patwary M M A, Dulloor S R,

Vadlamudi S G, Das D, Dubey P. GraphMat: High per-

formance graph analytics made productive. Proceedings of

the VLDB Endowment, 2015, 8(11): 1214–1225. DOI: 10.

14778/2809974.2809983.

[27]

 Faloutsos M, Faloutsos P, Faloutsos C. On power-law re-

lationships of the Internet topology. In The Structure and

[28]

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 891

https://doi.org/10.1089/cmb.2008.11TT
https://doi.org/10.1089/cmb.2008.11TT
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC47752.2019.9041948
https://doi.org/10.1109/HiPC.2017.00039
https://doi.org/10.1145/2882903.2915220
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1109/BigData.2017.8257937
https://doi.org/10.1109/LCA.2022.3151087
https://doi.org/10.1109/LCA.2022.3151087
https://doi.org/10.1109/HPCA51647.2021.00062
https://doi.org/10.1109/HPCA47549.2020.00028
https://doi.org/10.1109/HPCA47549.2020.00028
https://doi.org/10.1109/HPCA47549.2020.00028
https://doi.org/10.1145/3352460.3358254
https://doi.org/10.1145/3352460.3358254
https://doi.org/10.1109/MICRO50266.2020.00078
https://doi.org/10.1145/3352460.3358318
https://doi.org/10.1145/3352460.3358318
https://doi.org/10.1145/3296957.3173197
https://doi.org/10.1109/HPCA51647.2021.00039
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1007/978-3-031-22677-9_15
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.48550/arXiv.1508.03619
https://doi.org/10.48550/arXiv.1508.03619
https://doi.org/10.14778/2809974.2809983
https://doi.org/10.14778/2809974.2809983

Dynamics of Networks, Newman M, Barabási A L, Watts

D J (eds.), Princeton University Press, 2006, pp.195–206.
DOI: 10.1515/9781400841356.195.

 Gonzalez J E, Low Y, Gu H J, Bickson D, Guestrin C.

PowerGraph: Distributed graph-parallel computation on

natural graphs. In Proc. the 10th USENIX Symposium on

Operating Systems Design and Implementation, Oct.

2012, pp.17–30.

[29]

 Jiang L, Chen L S, Qiu J. Performance characterization

of multi-threaded graph processing applications on many-

integrated-core architecture. In Proc. the 2018 IEEE In-

ternational Symposium on Performance Analysis of Sys-

tems and Software, Apr. 2018, pp.199–208. DOI: 10.1109/

ISPASS.2018.00033.

[30]

 Sanchez D, Kozyrakis C. ZSim: Fast and accurate mi-

croarchitectural simulation of thousand-core systems.

ACM SIGARCH Computer Architecture News, 2013,

41(3): 475–486. DOI: 10.1145/2508148.2485963.

[31]

 Li S, Yang Z Y, Reddy D, Srivastava A, Jacob B.

DRAMsim3: A cycle-accurate, thermal-capable DRAM

simulator. IEEE Computer Architecture Letters, 2020,

19(2): 106–109. DOI: 10.1109/LCA.2020.2973991.

[32]

 Basak A, Li S C, Hu X, Oh S M, Xie X F, Zhao L, Jiang

X W, Xie Y. Analysis and optimization of the memory hi-

erarchy for graph processing workloads. In Proc. the 2019

IEEE International Symposium on High Performance

Computer Architecture, Feb. 2019, pp.373–386. DOI: 10.

1109/HPCA.2019.00051.

[33]

 Rixner S, Dally W J, Kapasi U J, Mattson P, Owens J D.

Memory access scheduling. ACM SIGARCH Computer

Architecture News, 2000, 28(2): 128–138. DOI: 10.1145/

342001.339668.

[34]

 Hassan H, Patel M, Kim J S, Yaglikci A G, Vijaykumar

N, Ghiasi N M, Ghose S, Mutlu O. CROW: A low-cost

substrate for improving DRAM performance, energy effi-

ciency, and reliability. In Proc. the 46th International

Symposium on Computer Architecture, Jun. 2019, pp.129–
142. DOI: 10.1145/3307650.3322231.

[35]

 Beamer S, Asanovic K, Patterson D. Direction-optimiz-

ing breadth-first search. In Proc. the 2012 International

Conference on High Performance Computing, Networking,

Storage and Analysis, Nov. 2012. DOI: 10.1109/SC.2012.

50.

[36]

 Madduri K, Ediger D, Jiang K, Bader D A, Chavarria-

Miranda D. A faster parallel algorithm and efficient mul-

tithreaded implementations for evaluating betweenness

centrality on massive datasets. In Proc. the 2009 IEEE

International Symposium on Parallel & Distributed Pro-

cessing, May 2009. DOI: 10.1109/IPDPS.2009.5161100.

[37]

 Sutton M, Ben-Nun T, Barak A. Optimizing parallel

graph connectivity computation via subgraph sampling.

In Proc. the 2018 IEEE International Parallel and Dis-

tributed Processing Symposium, May 2018, pp.12–21.
DOI: 10.1109/IPDPS.2018.00012.

[38]

 Zhang Y M, Brahmakshatriya A, Chen X Y, Dhulipala L,

Kamil S, Amarasinghe S, Shun J. Optimizing ordered

graph algorithms with Graphit. In Proc. the 18th

ACM/IEEE International Symposium on Code Genera-

[39]

tion and Optimization, Feb. 2020, pp.158–170. DOI: 10.

1145/3368826.3377909.

 Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R,

Ives Z. DBpedia: A nucleus for a web of open data. In

Proc. the 6th International Semantic Web Conference on

the Semantic Web, Nov. 2007, pp.722–735. DOI: 10.1007/

978-3-540-76298-0_52.

[40]

 Lehmberg O, Meusel R, Bizer C. Graph structure in the

web: Aggregated by pay-level domain. In Proc. the 2014

ACM Conference on Web Science, Jun. 2014, pp.119–128.
DOI: 10.1145/2615569.2615674.

[41]

 Kunegis J. KONECT: The Koblenz network collection. In

Proc. the 22nd International Conference on World Wide

Web, May 2013, pp.1343–1350. DOI: 10.1145/2487788.2488

173.

[42]

 Cha M, Haddadi H, Benevenuto F, Gummadi K. Measur-

ing user influence in Twitter: The million follower fallacy.

In Proc. the 2010 International AAAI Conference on Web

and Social Media, May 2010, pp.10–17. DOI: 10.1609/

icwsm.v4i1.14033.

[43]

 Davis T A, Hu Y F. The university of Florida sparse ma-

trix collection. ACM Trans. Mathematical Software, 2011,

38(1): Article No. 1. DOI: 10.1145/2049662.2049663.

[44]

 Wang Y H, Orosa L, Peng X J, Guo Y, Ghose S, Patel

M, Kim J S, Luna J G, Sadrosadati M, Ghiasi N M, Mut-

lu O. FIGARO: Improving system performance via fine-

grained In-DRAM data relocation and caching. In Proc.

the 53rd Annual IEEE/ACM International Symposium on

Microarchitecture, Oct. 2020, pp.313–328. DOI: 10.1109/

MICRO50266.2020.00036.

[45]

 Lin B, Healy M B, Miftakhutdinov R, Emma P G, Patt

Y. Duplicon cache: Mitigating off-chip memory bank and

bank group conflicts via data duplication. In Proc. the

51st Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2018, pp.285–297. DOI: 10.1109/MI-

CRO.2018.00031.

[46]

 Muralimanohar N, Balasubramonian R, Jouppi N P. Op-

timizing NUCA organizations and wiring alternatives for

large caches with CACTI 6.0. In Proc. the 40th Annual

IEEE/ACM International Symposium on Microarchitec-

ture, Dec. 2007, pp.3–14. DOI: 10.1109/MICRO.2007.33.

[47]

 Jaleel A, Theobald K B, Steely S C, Emer J. High perfor-

mance cache replacement using re-reference interval pre-

diction (RRIP). In Proc. the 37th International Sympo-

sium on Computer Architecture, Jun. 2010, pp.60–71.
DOI: 10.1145/1815961.1815971.

[48]

 Gupta S, Gao H L, Zhou H Y. Adaptive cache bypassing

for inclusive last level caches. In Proc. the 27th Interna-

tional Symposium on Parallel and Distributed Processing,

May 2013, pp.1243–1253. DOI: 10.1109/IPDPS.2013.16.

[49]

 Xiang L X, Chen T Z, Shi Q S, Hu W. Less reused filter:

Improving L2 cache performance via filtering less reused

lines. In Proc. the 23rd International Conference on Su-

percomputing, Jun. 2009, pp.68–79. DOI: 10.1145/1542275.

1542290.

[50]

 John L K, Subramanian A. Design and performance eval-

uation of a cache assist to implement selective caching. In

Proc. the 1997 International Conference on Computer De-

[51]

892 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

https://doi.org/10.1515/9781400841356.195
https://doi.org/10.1109/ISPASS.2018.00033
https://doi.org/10.1109/ISPASS.2018.00033
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/HPCA.2019.00051
https://doi.org/10.1109/HPCA.2019.00051
https://doi.org/10.1145/342001.339668
https://doi.org/10.1145/342001.339668
https://doi.org/10.1145/3307650.3322231
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/IPDPS.2009.5161100
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/2615569.2615674
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1609/icwsm.v4i1.14033
https://doi.org/10.1609/icwsm.v4i1.14033
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/MICRO50266.2020.00036
https://doi.org/10.1109/MICRO50266.2020.00036
https://doi.org/10.1109/MICRO.2018.00031
https://doi.org/10.1109/MICRO.2018.00031
https://doi.org/10.1109/MICRO.2018.00031
https://doi.org/10.1109/MICRO.2007.33
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1109/IPDPS.2013.16
https://doi.org/10.1145/1542275.1542290
https://doi.org/10.1145/1542275.1542290

sign VLSI in Computers and Processors, Oct. 1997,

pp.510–518. DOI: 10.1109/ICCD.1997.628916.

 Malkowski K, Link G, Raghavan P, Irwin M J. Load miss

prediction-exploiting power performance trade-offs. In

Proc. the 2007 IEEE International Parallel and Distribut-

ed Processing Symposium, Mar. 2007. DOI: 10.1109/

IPDPS.2007.370536.

[52]

 Etsion Y, Feitelson D G. Exploiting core working sets to

filter the L1 cache with random sampling. IEEE Trans.

Computers, 2012, 61(11): 1535–1550. DOI: 10.1109/TC.

2011.197.

[53]

 Collins J D, Tullsen D M. Hardware identification of

cache conflict misses. In Proc. the 32nd Annual

ACM/IEEE International Symposium on Microarchitec-

ture, Nov. 1999, pp.126–135. DOI: 10.1109/MICRO.1999.

809450.

[54]

 Jalminger J, Stenstrom P. A novel approach to cache

block reuse predictions. In Proc. the 2003 International

Conference on Parallel Processing, Oct. 2003, pp.294–302.

DOI: 10.1109/ICPP.2003.1240592.

[55]

 Wang P Y, Wang J, Li C, Wang J Z, Zhu H J, Guo M Y.

Grus: Toward unified-memory-efficient high-performance

graph processing on GPU. ACM Trans. Architecture and

Code Optimization, 2021, 18(2): Article No. 22. DOI: 10.

1145/3444844.

[56]

 Wang P Y, Li C, Wang J, Wang T L, Zhang L, Leng J

W, Chen Q, Guo M Y. Skywalker: Efficient alias-method-

based graph sampling and random walk on GPUs. In

Proc. the 30th International Conference on Parallel Archi-

tectures and Compilation Techniques, Sept. 2021, pp.304–

317. DOI: 10.1109/PACT52795.2021.00029.

[57]

 Sabet A H N, Zhao Z J, Gupta R. Subway: Minimizing

data transfer during out-of-GPU-memory graph process-

ing. In Proc. the 15th European Conference on Computer

Systems, Apr. 2020, Article No. 12. DOI: 10.1145/3342195.

3387537.

[58]

Mo Zou received her Bachelor's de-

gree in software engineering from

Shandong University, Jinan, in 2017,

and her Ph.D. degree in computer ar-

chitecture from University of Chinese

Academy of Sciences, Beijing, in 2023.

She is now a postdoc researcher in In-

stitute of Computing Technology, Chinese Academy of

Sciences, Beijing. Her research interests include comput-

er architecture and memory system, especially on do-

main-specific hardware optimization.

Ming-Zhe Zhang is currently an as-

sociate professor at the State Key

Laboratory of Information Security,

Institute of Information Engineering,

Chinese Academy of Sciences, Beijing.

His research interests include NVM,

memory-centric architecture, and do-

main specific accelerators.

Ru-Jia Wang received her Bache-

lor's degree in automation from Zhe-

jiang University, Hangzhou, in 2013,

and her M.S. and Ph.D. degrees in

electrical and computer engineering

from the University of Pittsburgh,

Pittsburgh, in 2015 and 2018, respec-

tively. She is now an assistant professor in computer sci-

ence at the Illinois Institute of Technology, Chicago. Her

research interests are in the broader computer architec-

ture and systems area, including scalable, secure, reli-

able, and high-performance memory systems and archi-

tectures.

Xian-He Sun is a University Distin-

guished Professor and the Ron

Hochsprung Endowed Chair of the De-

partment of Computer Science at the

Illinois Institute of Technology (Illi-

nois Tech), Chicago. Dr. Sun is an

IEEE Fellow and is known for his

memory-bounded speedup model, also called Sun-Ni's

Law, for scalable computing. His research interests in-

clude high-performance computing, memory and I/O

systems, and performance evaluation and optimization.

Dr. Sun is the Editor-in-Chief of IEEE Transactions on

Parallel and Distributed Systems. Dr. Sun received the

Golden Core Award from IEEE CS Society in 2017, the

Overseas Outstanding Contributions Award from CCF

in 2018. More information about Dr. Sun can be found

at his website: www.cs.iit.edu/~scs/sun.

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 893

https://doi.org/10.1109/ICCD.1997.628916
https://doi.org/10.1109/IPDPS.2007.370536
https://doi.org/10.1109/IPDPS.2007.370536
https://doi.org/10.1109/TC.2011.197
https://doi.org/10.1109/TC.2011.197
https://doi.org/10.1109/MICRO.1999.809450
https://doi.org/10.1109/MICRO.1999.809450
https://doi.org/10.1109/ICPP.2003.1240592
https://doi.org/10.1145/3444844
https://doi.org/10.1145/3444844
https://doi.org/10.1109/PACT52795.2021.00029
https://doi.org/10.1145/3342195.3387537
https://doi.org/10.1145/3342195.3387537
www.cs.iit.edu/~scs/sun
www.cs.iit.edu/~scs/sun
www.cs.iit.edu/~scs/sun

Xiao-Chun Ye received his Ph.D.

degree in computer architecture from

the Institute of Computing Technolo-

gy, Chinese Academy of Sciences

(CAS), Beijing, in 2010. Currently he

is a professor and the director of the

High-Throughput Computer Research

Center in Institute of Computing Technology, CAS, Bei-

jing. His main research interests include many-core pro-

cessor architecture and graph accelerator.

Dong-Rui Fan received his Ph.D.

degree in computer architecture from

Institute of Computing Technology,

Chinese Academy of Sciences (CAS),

Beijing, in 2005. He is currently a pro-

fessor and Ph.D. supervisor in Insti-

tute of Computing Technology, CAS,

Beijing. His main research interests include high-

throughput computer architecture and high perfor-

mance computer architecture.

Zhi-Min Tang received his B.S. de-

gree from the Department of Comput-

er Science, Nanjing University, Nan-

jing, in 1985, and his Ph.D. degree

from Institute of Computing Technol-

ogy, Chinese Academy of Sciences

(CAS), Beijing, in 1990, both in com-

puter science. He is currently a professor in Institute of

Computing Technology, CAS, Beijing. His research in-

terests include high performance computer architecture,

parallel processing, and VLSI design.

894 J. Comput. Sci. & Technol., July 2024, Vol.39, No.4

	1 Introduction
	2 Background
	2.1 Graph Data Layout
	2.2 Memory Hierarchy
	2.3 Existing Graph Processing Optimizations

	3 Experimental Setup
	3.1 Profiling Platform
	3.2 Applications
	3.3 Datasets

	4 Observations and Design Motivation
	4.1 Diverse Data Access Patterns
	4.2 Asymmetric Locality in DRAM
	4.3 Low Memory Channel Bandwidth Utilization
	4.4 Design Opportunities

	5 Skyway Architecture
	5.1 Skyway Overview
	5.2 Datapath Selection
	5.3 Property Buffer
	5.3.1 Hardware Design
	5.3.2 Workflow
	5.3.3 Large-Size State Array Element Support

	5.4 Duplication Row and Monitor
	5.4.1 Hardware Design
	5.4.2 Workflow

	5.5 Implementation Overhead

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Performance
	6.3 Bandwidth Utilization
	6.4 Impact of Dual-Path on the Memory Controller
	6.5 Row Buffer Conflicts Reduction with DRow
	6.6 Limitations of Skyway
	6.7 Sensitivity of ProCache and LineBuf Capacity
	6.8 Sensitivity of DRow Capacity and Segment Size

	7 Related Work
	8 Conclusions
	Conflict of Interest
	References

