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Abstract    Graph processing is a vital component of many AI and big data applications. However, due to its poor locali-

ty and complex data access patterns, graph processing is also a known performance killer of AI and big data applications.

In this work, we propose to enhance graph processing applications by leveraging fine-grained memory access patterns with

a dual-path architecture on top of existing software-based graph optimizations. We first identify that memory accesses to

the offset, edge, and state array have distinct locality and impact on performance. We then introduce the Skyway architec-

ture, which consists of two primary components: 1) a dedicated direct data path between the core and memory to transfer

state array elements efficiently, and 2) a data-type aware fine-grained memory-side row buffer hardware for both the new-

ly designed direct data path and the regular memory hierarchy data path. The proposed Skyway architecture is able to im-

prove the overall  performance by reducing the memory access  interference and improving data access  efficiency with a

minimal overhead. We evaluate Skyway on a set of diverse algorithms using large real-world graphs. On a simulated four-

core system, Skyway improves the performance by 23% on average over the best-performing graph-specialized hardware

optimizations.
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1    Introduction

Graph processing is a critical component of many

application  domains,  such  as  social  network  analy-

sis[1–3], computational biology[4, 5], and machine learn-

ing[6]. However, graph processing is also known for its

irregular  memory  access  patterns  and  poor  locality,

especially  for  large  graphs  which  contain  millions  of

vertices and edges.  Current on-chip caches can hard-

ly  store  graphs  at  such  a  scale.  In  addition,  graph

processing cannot fully benefit  from existing memory

hierarchies  due  to  poor  locality.  On  the  cache  side,

the  random  vertex  traversal,  which  usually  reads  a

sparsely  distributed  vertex  (4  bytes  or  8  bytes)  less

than  every  10  instructions[7],  causes  excessive  cache

misses. On the main memory side, the random access-

es also lead to frequent row buffer conflicts.

State-of-the-art  acceleration  techniques  for  graph

processing  mainly  focus  on  improving  temporal  and

spatial  locality.  For  example,  the  software-based  ap-
 
 

Regular Paper

This work was supported in part by the U.S. National Science Foundation under Grant Nos. CCF-2008907 and CCF-2029014,
the  Chinese  Academy  of  Sciences  Project  for  Young  Scientists  in  Basic  Research  under  Grant  No.  YSBR-029,  and  the  Chinese
Academy of Sciences Project for Youth Innovation Promotion Association.

Zou M, Zhang MZ, Wang RJ et al. Skyway: Accelerate graph applications with a dual-path architecture and fine-grained

data  management.  JOURNAL  OF  COMPUTER  SCIENCE  AND  TECHNOLOGY  39(4):  871−894  July  2024.  DOI:

10.1007/s11390-023-2939-x

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x
https://doi.org/10.1007/s11390-023-2939-x


proaches[8–14] relocate and package vertices with high-

er  access  probabilities  (hot  vertices)  in  successive

memory blocks for a given graph, making the data ac-

cesses  more  cache-friendly.  Unfortunately,  for  real-

world  graphs,  the  scale  of  hot  vertices  often  exceeds

cache capacity, limiting the benefits of software-based

optimizations.  Most  hardware-based  schemes[7, 15–22]

focus  on  improving  locality  and  reducing  memory

traffic.  For  example,  GRASP[16] and  P-OPT[15] evict

the  cachelines  in  LLC with  a  lower  reuse  possibility.

PHI[17] and GraphPulse[18] coalesce multiple state up-

dates if they target the same vertex.

Unlike  prior  work,  we  notice  that  a  poor  perfor-

mance  often  comes  from the  interference  of  different

data  access  patterns  in  graph  applications,  making

them  hard  to  benefit  from  existing  memory  hierar-

chies.

We  believe  that  current  memory  hierarchies  can

be  further  enhanced  to  accelerate  graph  processing

applications.  We have  collected  extensive  experimen-

tal  data  on  a  simulated  multi-core  system  and  ana-

lyzed the root causes of performance bottlenecks. Our

observations are summarized as follows.

• Poor Locality in Specific Data Arrays. Data ar-

rays  encoding  a  graph  have  different  memory  access

patterns and can interfere with each other in a shared

memory hierarchy.

• Low Data  Reuse  in  the  Cacheline.  Data  access

to  the  specific  array  (i.e.,  state  array)  is  random.  A

conventional  cacheline  may  not  help  and  could  be

counterproductive.

• Under-Utilized  Memory  System.  Although  the

graph applications are memory-intensive, we find that

the  memory  bandwidth  is  far  from fully  utilized  un-

der current memory hierarchies.

Based  on  the  observations  above,  we  propose  a

novel architectural support, named Skyway, to accel-

erate graph processing by improving the efficiency of

the  system  datapath.  Skyway  optimizes  both  the

cache hierarchy and main memory system through in-

tegrated  designs.  At  the  cache  side,  we  modify  the

conventional cache hierarchy to include a direct path

with  a  small  property  buffer  (PBuf),  which  supports

fine-grained  random  memory  accesses.  At  the  main

memory  side,  we  revisit  the  memory  array  and  row

buffer  design  to  include  the  duplication  row (DRow)

to mitigate row buffer conflicts. PBuf and DRow can

work together seamlessly to improve the utilization of

the overall memory system bandwidth without break-

ing  the  data  locality.  Although Skyway is  motivated

by graph applications, the key idea behind the design

that discovering multiple access patterns and process-

ing  them  separately  based  on  behaviors  can  be  ex-

tended  to  any  applications  with  distinct  access  pat-

terns. Overall, Skyway provides an opportunity to re-

duce  interference  and  data  movement  according  to

data locality.

We  evaluate  the  proposed  Skyway  using  detailed

micro-architectural  simulation  and  receive  consistent

great  performance  improvement  across  diverse  algo-

rithms  and  datasets.  Our  experimental  results  show

that Skyway improves the DRAM bandwidth utiliza-

tion by 2.13x on average and up to 5.87x in the best

case. Also, Skyway improves the performance by 29%

on average  and up to  86% in  the  best  case  over  the

baseline  without  any  optimizations.  Compared  with

the  state-of-the-art  GRASP[16],  Skyway  provides  an

average  performance  improvement  of  23%  with  a

2.19x  higher  DRAM  bandwidth  utilization.  Skyway

adds a marginal storage overhead of 2.6% to LLC and

0.02% to DRAM.

The  paper  is  organized  as  follows. Section 2 pro-

vides  background  information  on  graph  representa-

tion  and  memory  hierarchy  organization. Section 3

characterizes the methodology and the benchmark for

our  evaluation. Section 4 investigates  the  reason  of

poor  locality  and low memory bandwidth utilization,

and  then  presents  several  opportunities  to  solve  the

problem. Section 5 illustrates the scheme of the new-

ly  proposed  Skyway. Section 6 analyzes  the  perfor-

mance  results.  Finally,  we  introduce  related  work  in

Section 7 and conclude our work in Section 8. 

2    Background
 

2.1    Graph Data Layout

The  Compressed  Sparse  Row  (CSR)  format  is  a

widely  used  storage-efficient  technique  to  represent

graph  structures[7, 16, 19, 23, 24].  As Fig.1 shows,  there

are  three  arrays  used  to  encode  a  graph:  the  offset,

edge, and state. These arrays are allocated in memo-

ry at the beginning of the graph loading phase. Each

offset  entry  is  an  8-byte  pointer  pointing  to  its  first

neighbor in the edge array, which represents an edge

from  the  source  to  the  destination.  The  edge  array

maintains  all  edges  in  the  form  of  vertex  IDs,  and

edge-weighted  values  are  stored  here  as  well  for

weighted  graphs.  The  state  array  holds  the  current

state  of  each  vertex,  which  is  usually  4- or  8-byte

long.  The graph algorithm updates  state  array itera-

tively until convergence.
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Fig.1.  Example graph and its CSR representation encoding push-based approach.
 

Most graph applications adopt pull- or push-based

computation models[24–27] to traverse a graph and up-

date  vertex  states.  In  pull-based models,  each vertex

gathers  new  states  from  its  incoming  neighbors  and

updates  its  state  upon the  accumulated  influence.  In

push-based  models,  one  source  vertex  broadcasts  its

new  state  and  modifies  all  outgoing  neighbor  states,

as  shown in Fig.1.  In general,  there are two steps in

graph  applications,  regardless  of  pull- or  push-based

approaches. In step 1, the graph algorithm reads des-

tination IDs in the edge array pointed by one source

vertex.  In  step  2,  the  graph  algorithm  updates  ele-

ments in the state array indexed by destination IDs.

In  the  rest  of  the  paper,  we  call  the  first  step  the

neighbor-scanning phase, and the second step the up-

dating phase. 

2.2    Memory Hierarchy

The modern memory hierarchy includes the cache

and main memory subsystems. Fig.2 shows a  typical

dual-core  system  with  a  three-level  cache  hierarchy

and a connected off-chip DRAM module. The L1 and

L2  caches  are  private,  and  the  LLC  is  shared.  A

memory  request  from  the  core  searches  L1,  L2,  and

LLC and  fetches  data  if  the  request  is  a  hit.  Other-

wise, the memory request needs to find the data from

the DRAM.

Internally,  a  DRAM  module  is  organized  hierar-

chically  into  channels,  ranks,  and  banks,  where  each

bank is a 2D array, accessed by the assigned row ID

and  column  ID.  Upon  receiving  a  request  from  the

LLC, the memory controller decomposes the physical

address  into  (channel,  rank,  bank,  row,  column)  and

buffers that in the read or write queue. To serve a re-

quest,  the  memory  controller  sends  an  activate  com-

mand  to  an  idle  bank  first,  which  loads  the  desired

row  into  the  row  buffer.  Then  a  column-level  com-

mand  reads/writes  specific  data  from/to  the  row

buffer.  In  an  open-row  policy,  the  row  buffer  main-

tains the last accessed row until further instructed. If

the  following  request  visits  the  open  row  in  the  row

buffer, the bank does not need to be activated again,

which  is  called  a  bank  hit.  On  the  other  hand,  if  a

subsequent  request  visits  a  different  row  within  the

same bank,  the memory controller  sends a precharge
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Fig.2.  Typical cache hierarchy and main memory in the dual-core system.
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command, closing the open row in the row buffer and

preparing  for  the  next  activate  command,  which  is

called a bank miss. Because the memory controller ex-

ploits  a  series  of  tight  timing  constraints  between

command executions,  the  DRAM access  latency  in  a

bank miss is much longer than that in a bank hit.

Both the cache and DRAM row buffer are benefi-

cial  when  the  application  exhibits  a  good  locality.

However, when data access patterns are irregular and

multiple  data  access  patterns  co-exist,  these  locality-

based hardware components may not work well to en-

hance the overall performance. 

2.3    Existing Graph Processing Optimizations

Graph Reordering. Graph reordering[8–14] is a com-

monly used optimization scheme, which relies on pre-

processing  graph  data  layout  to  improve  the  access-

ing  locality  without  hardware  modification.  Accord-

ing to the skewed power-law distribution[9, 10, 13, 28, 29],

in real-world graphs, a small portion of vertices occu-

py  most  connections  (hot  vertices),  while  the  rest  of

vertices  own  relatively  few  edges  (cold  vertices).  By

relocating the hot vertices consecutively in the memo-

ry space,  most of  the graph applications show better

performance since the locality of data accesses is  im-

proved.  However,  the  effectiveness  of  graph  reorder-

ing  is  affected  by  several  factors  (e.g.,  the  hot  ver-

tices  identification  and  the  scale  of  input  graphs),

which  significantly  increases  the  difficulty  of  perfor-

mance  improvement  for  various  algorithms  and

graphs[30]. Moreover, the scale of the hot vertices has

exceeded  the  cache  capacity  for  most  real-world

graphs[14], which limits the efficiency of reordering.

Architectural  Optimizations  on  Graph  Locality.
GRASP[16] and P-OPT[15] are popular cache manage-

ments optimizing irregular data accesses. GRASP re-

orders the state array based on vertex degrees, which

places hot vertices at the beginning of the state array.

During  the  execution  phase,  GRASP  guarantees  the

cachelines from the hot vertices region to stay longer

in cache. P-OPT scans the CSR format to analyze the

graph  structure  and  builds  a  re-reference  matrix  for

dynamic  irregular  memory  accesses.  P-OPT  evicts

cachelines  whose  next  reuse  is  further  in  the  future.

GRASP and P-OPT reduce  cache  misses  to  improve

the  application  performance.  DepGraph[21] dispatches

different  dependency  chains  to  different  cores,  allow-

ing  efficient  asynchronous  vertex  state  updates  on

multi-core  processors.  In  this  way,  DepGraph  im-

proves  the  locality  in  private  cache.  PHI[17] coalesces

multiple  state  updates  in  cache  if  they  target  the

same vertex and applies the merged state value to the

memory controller together. GraphPulse[18] proposes a

graph-specialized accelerator to coalesce updates in a

FIFO  queue.  PHI  and  GraphPulse  exploit  temporal

locality  and  reduce  memory  traffic  through  coales-

cence.

All of these approaches try to improve the locali-

ty in graph applications. In contrast, we observe that

the different graph data arrays have distinct locality,

and  sharing  a  single  datapath  for  all  types  of  data

could  bring  significant  interference  and  performance

degradation.  Our  proposed  Skyway is  able  to  handle

complex  access  patterns  more  efficiently  with  a  spe-

cialized dual datapath design. 

3    Experimental Setup
 

3.1    Profiling Platform

We use Zsim[31], an execution-driven simulator, to

measure performance. The simulator has four Out-of-

Order  (OoO)  cores  clocked  at  4  GHz  and  an  8  MB

shared LLC. To simulate memory behaviors accurate-

ly,  we extend Zsim with DRAMsim3[32],  which simu-

lates  a  detailed  and  cycle-accurate  memory  model

supporting DDR4 protocol.  Prior  work[33] has  proved

that a larger ROB will  not benefit  graph application

performance,  and  thus  we  use  128-entry  ROB  here.

Table 1 lists  more  configuration parameters.  We fast

forward the graph loading phase and run 100 million
 

Table  1.    System Configurations

Hardware Configuration

Core Four OoO cores, 4 GHz clock frequency, 128-entry ROB, 4-wide issue width, 16 MSHRs per core

L1-I/D cache Private, 8-way 32 KB per core, 64 B cache line, 4-cycle access latency

L2 cache Private, 8-way 256 KB per core, 64 B cache line, 12-cycle access latency

LLC Shared, 32-way 8 MB, 64 B cache line, 32-cycle access latency

Memory controller 64-entry read/write queue, FR-FCFS[34] scheduling policy, Open-Page, address interleaving: rochrababgco

DRAM Four channels, 2 ranks/channel, 4 bankgroups/rank, 4 banks/bankgroup, 16 Gb DDR4-2400 x8 chips,
8 KB row buffer size[35], tRCD/tRAS/tWR 17/39/18 cycles, peak bandwidth 76.8 GB/s
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instructions to warm up cache. Then we mark the re-

gion of interest (ROI) in the code covering only pull-

and  push-based  iterations.  We  collect  status  in  ROI

for 600 million instructions across all cores. 

3.2    Applications

We  use  five  classic  graph  applications,  Breadth-

First  Search  (BFS)[36],  Betweenness  Centrality

(BC)[37],  Connected  Component  (CC)[38],  PageRank

(PR),  and  Single-Source  Shortest  Path  (SSSP)[39],

covering both push- and pull-based computation mod-

els,  from the widely used GAP[25] benchmark for  our

evaluation. Table 2 gives a detailed description of the

five applications. All applications update one state ar-

ray  except  the  BC  application,  which  requires  two

state arrays in the execution phase. To avoid two ir-

regular state array accesses in the BC application, we

merge the two arrays together and use the optimized

implementation as the baseline. For the other four ap-

plications,  we  use  the  implementation  in  the  GAP

benchmark as the baseline. 

3.3    Datasets

For  our  profiling,  we  use  seven  real-world  graph

datasets  detailed  in Table 3.  These  graph  datasets

vary  in  size  and  degree  distributions  but  all  exceed

the  LLC  capacity.  As  inputs  to  the  graph  applica-

tions,  all  graph  datasets  are  encoded  in  CSR format

and  pre-processed  by  a  state-of-the-art  reordering

technique, DBG①[10], to exploit locality. For graph ap-

plications  traversing  the  graph  dataset  in  the  push-

based model, we reorder the input based on in-degree.

For graph applications traversing the graph dataset in

the pull-based model, the input is reordered based on

out-degree.  We  combine  the  seven  real-world  graph

datasets  with  the  five  classic  applications  and  pro-

duce 35 workloads in all evaluations mentioned in this

research. 

4    Observations and Design Motivation
 

4.1    Diverse Data Access Patterns

As  introduced  in Subsection 2.1,  if  a  graph  is

stored  in  the  CSR  format,  the  memory  access  pat-

terns of various data arrays are distinct. For the edge

array, the accesses appear to exhibit a high spatial lo-

cality.  For  the  state  array,  the  accesses  are  much

more  random  and  suffer  from  poor  locality  in  the

cache hierarchy; the access pattern to the state array

is sensitive to the algorithms and graph inputs, signif-

icantly  increasing  the  difficulty  of  performance  opti-

mization. The memory requests from the offset array

are much fewer than those from the other two arrays

and do not incur significant performance overhead.

To  quantify  cache  behaviors  in  three  arrays  uti-

lized by CSR format, we analyze the requests classifi-

cation before and after cache hierarchy and cacheline

reuse rates.  Since all  graph applications exhibit simi-

lar cache behaviors on either pull- or push-based mod-

el, taking the PR application as an example, we show

the detailed statistics on all reordered graphs listed in

Table 3. We have the following key observations.

• Cache hierarchy is less effective for the state ar-

ray  accesses.  As  shown  in Fig.3,  for  most  of  the

datasets,  the  accesses  to  the  state  array  are  about

31%–40% of the total requests in the cache hierarchy.

On the other hand, 73%–88% of the total requests to

the  DRAM are  from the  state  array,  which  is  much

higher  than  any  other  data  arrays.  Two  exceptions,

Web  and  UK-2002,  show  a  cluster  feature  that  a

small portion of vertices are visited repeatedly within

a  short  time  window,  leading  to  a  better  locality  of

state array accesses.

• Cachelines from the state array have a low reuse

rate. As shown in Fig.4, for most datasets, the cache-

line  reuse  rate  of  the  state  array  is  only  around 7%,

which is much lower than the offset array (98%) and

the  edge  array  (99%).  Even  for  the  best  scenarios

(Web and UK-2002), the reuse rate of the state array
 

Table  2.    Graph Applications

Application Brief Description Model

BFS[36] Traversing a graph from one root vertex until all neighbors are accessed and returning a distance array Push

BC[37] Scoring the centrality of every vertex to find the center Push

CC[38] Labeling vertices into disjoint subsets to calculate the number of components Both

PR Ranking all vertices based on incoming neighbors until convergence or reaching the iteration limitation Pull

SSSP[39] Finding the shortest paths from one source vertex to all the other vertices in a weighted graph Push

Mo Zou et al.: Skyway: Accelerate Graph Applications with Dual-Path Architecture 875
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cachelines  is  just  around  34%,  which  is  still  low  in

terms of temporal locality.

Ideally, we want a cache hierarchy to improve the

performance  of  all  types  of  data  accesses.  However,

the  data  with  poor  locality  can  hardly  take  advan-

tage of the current cache capacity and cacheline size.

On  the  contrary,  a  multi-layer  cache  hierarchy  may

increase data accessing delay for data with poor local-

ity due to the anticipated extensive cache miss.
 

4.2    Asymmetric Locality in DRAM

Since graph applications suffer from frequent LLC

misses,  it  is  essential  to  have a  better  understanding

of the DRAM behavior under the locality influence of

graph applications.

Our evaluations find that the locality variation of

various  data  arrays  extends  to  DRAM as  well. Fig.5

shows the row buffer  hit  rates  of  the three arrays in

the  PR  application,  indicating  a  significant  locality

asymmetry  in  DRAM.  According  to Fig.5,  averaging

across all graph datasets, the bank hit rates of the off-

set, edge, and state requests are 75%, 89%, and 40%,

respectively, which illustrates that the irregular state

access  pattern  has  an  extremely  low  opportunity  of

 

Table  3.    Scale of the Graph Datasets

Graph Dataset | | ×106V  ( ) | | ×106E  ( )

Orkut② 9 327

DBpedia[40] 18 136

PLD[41] 43 623

Web[42] 51 1 930

MPI[43] 53 1 963

Twitter[2] 62 1 468

UK-2002[44] 134 261
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row buffer reuse compared with the other two arrays.

Moreover, the sparsely distributed state addresses will

also interfere and affect the locality of offset and edge

arrays.

To further understand the performance impact of

different access patterns on DRAM, we devise a set of

experiments  with  several  ideal  assumptions.  In  each

experiment, DRAM ideally serves the requests to one

array without changing the content in the row buffer.

These experiments help us to understand the interfer-

ence of data accesses on row buffer pollution.

As shown in Fig.6, the average performance incre-

ments are about 3%, 17%, and 32% when eliminating

the offset, edge, and state requests to DRAM, respec-

tively.  The  results  indicate  that  removing  state  re-

quests  improves  the  performance  the  most,  which  is

caused  by  a  combination  of  frequent  accesses  and  a

low  bank  hit  rate.  For  Web  and  UK-2002,  we  ob-

serve that removing all  edge requests gains the high-

est performance because most of the DRAM requests

fall  into  the  edge  array  in  these  two  graphs,  as  ex-

plained in Subsection 4.1.

Ideally,  the  row  buffer  in  DRAM  is  beneficial

when consecutive requests access the same row, which

avoids  the  time-costly  bank  conflicts.  However,  the

complex  access  patterns  interfere  with  each  other  in

graph  applications,  leading  to  a  huge  performance

degradation. 

4.3    Low Memory Channel Bandwidth

Utilization

Generally, a higher cache miss ratio will lead to a

higher memory bandwidth. However, due to the inef-

ficiency of cache and DRAM, we observe that memo-

ry  channel  bandwidth  utilization  of  graph  applica-

tions is low even with a high LLC MPKI (misses per

kilo instructions). The bandwidth utilization is calcu-

lated  as  the  ratio  of  requested  bytes  over  the  peak

memory  bandwidth. Fig.7 reports  the  profiling  re-

sults  and Table 4 summarizes  LLC  MPKI  on  graph

workloads. GM is the geometric mean across datasets.

As shown in Fig.7 and Table 4, the average band-

width  utilization  in  BC  (3%)  is  lower  than  that  in

other applications due to a lower MPKI (3). However,

even  with  a  high  average  MPKI (18)  across  applica-

tions  BFS,  CC,  PR,  and  SSSP,  the  average  DRAM

bandwidth  utilization  is  only  18%,  indicating  that

graph  applications  cannot  make  good  use  of  DRAM

channel bandwidth.

There are two reasons why these applications de-

liver such a low DRAM bandwidth utilization.  First,

all  memory  requests  follow  a  single  path  along  a

three-level  cache  hierarchy  regardless  of  their  cache

hit  rate.  The  poor-locality  data  accesses  (e.g.,  state

array  data  accesses)  cannot  benefit  from locality-ori-

ented  hardware  resources,  like  ROB  and  MSHR,

block  the  whole  execution  pipeline  during  the  cache
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Fig.6.  Performance improvements when removing the impact of one type of DRAM requests, taking PR as an example. IPC means
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Fig.7.  DRAM bandwidth utilization across various workloads.
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search  procedure,  and  still  fall  into  DRAM  most  of

the time. Second, in the DRAM, highly irregular da-

ta accesses lead to frequent bank conflicts  and inter-

fere  with  other  types  of  requests,  which  significantly

impacts the overall DRAM performance. 

4.4    Design Opportunities

Based on our observations and analysis above, we

have  identified  the  following  architectural  design  op-

portunities to accelerate graph applications.

• Various access patterns in graphs share one sin-

gle  datapath  in  the  current  memory  hierarchy.

Among them, requests to the edge array have a good

locality, while requests to the state array have a very

poor locality. Processing requests with distinct locali-

ty separately will avoid interference in both cache and

DRAM.

• On  the  cache  side,  the  data  requests  with  dis-

tinct  access  patterns  can  be  handled  separately  for

better  performance.  The  conventional  multi-layered

and 64-byte granularity cache hierarchy is suitable for

data  accesses  with  a  good  locality,  such  as  the  edge

array requests. For the requests with low locality, we

can  have  a  specialized  buffer  unit  to  store  them on-

chip,  with  a  finer  data  access  granularity,  for  exam-

ple, for the state array requests, instead of the multi-

layered cache hierarchy.  In  this  way,  random memo-

ry  requests  do  not  need  to  go  through  a  multi-lay-

ered  cache  hierarchy  and  can  access  the  DRAM  di-

rectly once missed in the small buffer.

• On the  DRAM side,  we  observe  that  when fo-

cusing on the memory space with smaller granularity

than  the  row  buffer,  accesses  to  the  hot  elements  in

the  reordered  state  array  can  still  perform  moderate

or  even  high  temporal  locality  while  their  spatial  lo-

cality  is  low.  Therefore,  providing  an  extra  buffer

space  with  fine-grained  management  support  for  the

data  may  improve  the  performance.  In  addition,  an

extra  buffer  space  supporting  edge  array  will  reduce

the interference in the row buffer caused by the irreg-

ular  accesses.  The  fine-grained  management  will  al-

low several hot elements to share one duplication row

and reduce time-costly row buffer update operations.

• By integrating our customer-designed direct da-

ta access path and the underlying cache hierarchy, we

can  accelerate  graph  processing  by  improving  the

whole  memory  efficiency,  reducing  data  access  inter-

ference, and utilizing the memory channel bandwidth.

This integrated design is not limited to graph process-

ing. It can be extended to alleviate the inefficiency of

memory systems for a wide range of applications. 

5    Skyway Architecture

We propose the Skyway architecture, which is mo-

tivated by the following two challenges. First, specif-

ic  graph  structures,  i.e.,  the  state  array,  cannot  uti-

lize multi-level cache due to poor locality. Second, fre-

quent  row  buffer  conflicts  caused  by  irregular  re-

quests further degrade the performance. To overcome

both  challenges,  Skyway  proposes  an  optional  direct

datapath from a core to main memory, which enables

fast and direct data fetch for requests with low locali-

ty.  Also,  Skyway  proposes  to  add  extra  buffers  in

DRAM to support fine-grained duplications, which re-

duces  the  row  buffer  misses  and  time-costly  DRAM

updates. Skyway improves the system performance in

two ways: 1) providing a highly efficient datapath for

poor-locality  accesses  and 2)  minimizing the  interfer-

ence between different access patterns. 

5.1    Skyway Overview

Fig.8 presents the overall architecture of Skyway.

There are three architecture components added to the

direct datapath.

• Property  Buffer (PBuf).  PBuf  sits  between the

cores and main memory, shared by all  cores.  It  tem-

porarily  stores  state  data  on-chip  only  (see Subsec-

tion 5.3).

• Duplication  Row (DRow).  DRow is  a  group  of

extra  buffers  attached  to  the  row  buffer  in  each

DRAM bank. It backs up specific data from the row

buffer  when  being  triggered  (see Subsection 5.4).  Es-

pecially,  the  DRow is  managed  in  the  granularity  of

segment (i.e., 1 KB) to enhance the performance.

• Duplication Row Monitor (DRowM). DRowM is

a  small  table  maintained  in  the  memory  controller,

which  tracks  the  information  of  the  segments  in

DRow for each bank (see Subsection 5.4).

 

Table  4.    MPKI in Various Workloads Including Seven Real-
World Graph Datasets and Five Graph Applications

Graph Dataset BFS BC CC PR SSSP

DBpedia 16 3 17 41 21

MPI 20 3 28 60 20

PLD 35 5 19 64 28

Twitter 53 3 16 39 19

Web 8 2 4 14 12

Orkut 15 3 11 27 17

UK-2002 8 1 6 14 10

GM 18 3 12 32 17
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Additionally,  Skyway  makes  minor  modifications

in the core and memory controller. In the core, pairs

of  address  registers  are  initialized  to  guide  datapath

selection logic (see Subsection 5.2). Besides, each core

contains a new port and selectively sends the memo-

ry requests to the L1 cache or the PBuf. The memo-

ry controller  also  needs  to  support  returning data to

two on-chip buffers (LLC or PBuf).  The fine-grained

direct datapath is shown in Fig.8 with the purple line. 

5.2    Datapath Selection

As  described  in Subsection 5.1,  Skyway  enables

the core to send memory access requests to either the

L1  cache  or  the  PBuf.  To  support  such  a  feature,

Skyway uses six 64-bit registers to track the start and

end addresses of the three arrays and one 64-bit regis-

ter  to  record  the  end  address  of  hot  vertices  in  the

state array③.  These registers are initialized when the

application allocates memory space for a graph.

To classify a memory request, Skyway adds three

fields to a normal memory request as shown in Fig.9.
  

Original Request Array Type Hot Bit Vertex ID

2 Bits 1 Bit 64 Bits

Fig.9.  Extended memory request format in Skyway.
 

• Array Type, which indicates the type of access-

ing array;

• Hot Bit, which indicates whether the target ele-

ment is a hot vertex (for state array access only);

• Vertex  ID,  which  indicates  the  ID of  accessing

vertex (for state array access only).

For  each  memory  request  to  be  issued,  the  core

classifies it as the offset, edge, state or other type by

comparing the request address with address registers,

and fills the Array Type field. Especially, for the state

type access, the core also calculates the target vertex

ID and fills the Vertex ID field as follows:
 

vertexID =
Addrrequest − Addrstate_start

Sizestate_element
,

Addrrequest Addrstate_start

Sizestate_element

where  is the request address,  is

the start address of the state array, and 

is the size of one state array element, which is usual-

ly  4-byte  or  8-byte.  If  the  request  address  is  within

the range of hot vertices, its Hot Bit is set to 1. Then

the  core  sends  state  type  requests  to  PBuf  and  the

other types of requests to the L1 cache as normal. 

5.3    Property Buffer

PBuf  is  a  shared  hardware  component  motivated

by the fact that the three-level cache hierarchy is in-

efficient for irregular state requests.  In general,  PBuf

improves  application  performance  in  two  ways:  1)  it

provides a single-level cache structure and allows the

requests with irregular access patterns to arrive at the

memory  controller  quickly;  2)  it  manages  the  entries

in the granularity of state array element to hold more

elements and allow more accurate updates. 

5.3.1    Hardware Design

As  shown  in Fig.10,  PBuf  consists  of  the  follow-
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Fig.8.  Overview of Skyway hardware structure integrated with a four-core system. The Skyway components are shown in color.
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③In this work, the total hot vertices occupy no more than the size of LLC; therefore,  the end address of hot vertex states is
8 MB + the start address of the state array.



ing three components.

• Property  Data  Cache (ProCache).  Just  like  a

small-sized cache, ProCache is managed in a set-asso-

ciative way and divided into two arrays: 1) tag array,

which stores the vertex ID, dirty and valid bits, plus

position  bits  (see Subsection 5.3.3);  2)  data  array,

which stores state array elements.

• Backup Cacheline Buffer (LineBuf). LineBuf is a

buffer  that  stores  a  small  number  of  cachelines  from

the memory controller  (16  cachelines  per  core  in  our

work).  Since  ProCache  uses  fine-grained  space  man-

agement  and  may  generate  a  large  number  of  re-

quests to the DRAM, LineBuf provides a lightweight

second-hit-chance for ProCache to find the data.

• Granularity Match (GraMatch). GraMatch mat-

ches  the  different  request  granularities  between

LineBuf  and  ProCache.  When  reading  data  from

LineBuf,  GraMatch  checks  the  requested  state  array

elements in the LineBuf entries. Once hit in LineBuf,

GraMatch selects and loads the fine-grained state ar-

ray data to ProCache. When evicting a ProCache en-

try,  GraMatch  generates  the  write-back  memory  ad-

dress based on the vertex ID of the evicted data. 

5.3.2    Workflow

Fig.11 summarizes the workflow of  PBuf.  In gen-

eral, when receiving a request, PBuf first checks if the

request  can  be  served  by  ProCache  with  the  vertex

ID in the request. For a missed request, PBuf search-

es  LineBuf,  seeking  a  second-hit-chance.  Finally,  the

request missed in LineBuf will be sent to DRAM.
  

Conduct the Access

in ProCache 

ProCache Entry 

Initialization

Y

Y

Y

Y

N

N

N

N

A PBuf Access

Hit in ProCache?

Replacement in ProCache?

ProCache Entry Eviction

Hit in LineBuf?

Replacement in LineBuf?

LineBuf Entry Eviction

LineBuf Entry Initialization

Fig.11.  Property buffer workflow.
 

The  above  procedure  includes  the  following  four

main  operations  (marked  with  the  blue  boxes  in

Fig.11).

Addrrequest
Addrstate_start Sizestate_element ×

• ProCache  Entry  Eviction.  ProCache  evicts  an

entry if there is no free entry for initialization. To this

end,  ProCache  conducts  the  following  operations.  1)

ProCache chooses the LRU entry in the located set to

make  room  for  the  new  entry.  2)  ProCache  writes

back  the  evicted  entry  if  the  dirty  bit  is  set.  In  this

case,  GraMatch  first  calculates  the  cacheline  address

using  the  simple  arithmetic  as  =

(  +   VertexID) << 6.  In

order  to  reduce  expensive  DRAM  write  operations,

PBuf  first  tries  to  write  the  corresponding  cacheline

back  to  LineBuf.  Once  failed,  the  write-back  request

will be sent to the memory controller. 3) ProCache in-

validates the evicted entry, setting the valid bit to 0.

• LineBuf Entry Eviction. LineBuf evicts the LRU

entry  when  there  is  no  available  entry.  For  a  dirty

cacheline,  LineBuf  generates  a  memory write  request

and sends it to the memory controller; otherwise, the

 

Granularity Match

Core

… …

Tag Array Data Array

Position Valid Dirty Vertex ID State Array Data

2 Bits 1 Bit 1 Bit 64 Bits 32 Bits

Property Data Cache Entry Format

Property Data Cache

Memory Controller

Valid Dirty Address Line Data

1 Bit 1 Bit 64 Bits 512 Bits

Backup Cacheline Buffer Entry Format

Backup Cacheline Buffer 

Fig.10.  Property buffer hardware design.
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data in the evicting entry is directly dropped.

• LineBuf Entry Initialization. When initializing a

new entry, LineBuf sets its dirty bit to 0 and its valid

bit to 1, and then loads cacheline from DRAM.

• ProCache  Entry  Initialization.  To  initialize  a

new entry,  ProCache first  sets  its  dirty  bit  to  0  and

its  valid  bit  to  1.  Then,  ProCache  selectively  loads

the  required  data  from  the  LineBuf  entry  through

GraMatch. 

5.3.3    Large-Size State Array Element Support

In the evaluated application BC, two state arrays

store different state values for each vertex. We merge

the two arrays into one to exploit better access locali-

ty. In this case, the state array element size is larger

(i.e.,  16  bytes)  than  in  other  applications  (usually

8  bytes).  To  accommodate  large-size  state  elements,

ProCache uses multiple continuous entries within one

set to record one large state array element. As shown

in Fig.10,  each  ProCache  tag  entry  contains  a  2-bit

position field to record the relative position in a state

array  element.  When receiving  a  request  for  a  large-

size  element,  ProCache selects  all  entries  that  match

the  requested  vertex  ID  as  a  response.  Then  Pro-

Cache forwards these entries to the core one by one in

the  order  based  on  the  position  field.  For  ProCache

replacement, all  entries with the same vertex ID will

be  evicted  and  loaded  together.  In  the  current  ver-

sion,  we  employ  a  2-bit  field  to  support  the  16-byte

array  element.  However,  this  mechanism  enables

PBuf to be extended to any larger access granularity.

In extreme cases,  PBuf may use a 4-bit  field to sup-

port  a  64-byte  cacheline.  In  that  case,  PBuf  is  ac-

cessed as a normal cache. 

5.4    Duplication Row and Monitor

As discussed in Subsection 4.2, various access pat-

terns co-exist in graph applications and may cause se-

rious  performance  interference  at  the  row  buffer.  In

the  meantime,  we  also  observe  that  locality  in  the

memory  blocks  with  small  granularity  does  exist,

which  can  be  utilized  for  better  performance.  To  re-

duce the interference and exploit the locality, we pro-

pose  Duplication  Row  (DRow),  a  specialized  opti-

mization scheme to manage the row buffer for graph

applications. The key idea of DRow is to preserve the

data  with  moderate  locality  in  an  extra  buffer  space

with  fine-grained  data  management  support.  In  this

way, data accesses with moderate locality can benefit

from the interference reduction. Note that DRow does

not  modify  DRAM management.  Data  transmissions

between disk and DRAM are as usual when required

data is not found in DRAM.

Compared with prior DRAM optimizations[35, 45, 46],

our scheme detects the unique features in graph appli-

cations  without  any  historical  records  or  future  pre-

dictions. With the help of several registers, we clarify

accesses  accurately  and  process  them separately.  We

will give a more detailed discussion in Section 7.

In  our  design,  we  select  the  hot  state  array  ele-

ments and the edge array elements to be preserved in

DRow.  There  are  two  reasons  for  choosing  the  two

data types for DRow. First, according to skewed pow-

er-law distribution,  hot vertices occupy most connec-

tions  and  exhibit  high  reuse  probability  in  smaller

granularity memory blocks, indicating that maintain-

ing  hot  state  array  elements  in  DRow leads  to  more

DRow  hit  opportunities.  Second,  duplication  of  the

edge  array  helps  to  prevent  data  from being  flushed

by  other  irregular  accesses  and  provides  a  better  lo-

cality.  Overall,  DRow  reduces  the  time-costly  row

buffer  update  operations  and  allows  the  DRAM  to

serve  more  requests  with  a  shortened  latency.  We

choose the duplication granularity based on the sensi-

tivity study given in Subsection 6.8.  We believe that

the  performance  could  be  enhanced  further  through

an  adaptive  granularity  selection  process  in  DRow,

which is left to future work. 

5.4.1    Hardware Design

As shown in Fig.12, DRow allocates extra buffers

in each bank affiliated with the row buffer. In our de-

sign,  DRow  has  the  same  width  with  conventional

rows  (i.e.,  8  KB)  but  each  row  is  segmented  (i.e.,

1  KB) to  improve DRow utilization.  To track which

segments are currently duplicated in DRow, the mem-

ory  controller  maintains  a  DRowM  vector  for  each

bank.  Each  entry  in  the  DRowM  has  a  row  tag  to

identify the duplication source row, a segment tag to

record segment ID, a dirty bit, and a valid bit. There

are  four  DRows  in  each  bank,  and  each  DRow  con-

tains up to eight segments, requiring 32 DRowM en-

tries for each bank in the memory controller. 

5.4.2    Workflow

Fig.13 summarizes  the  workflow  of  DRow.  First,
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the  memory  controller  reads  the  appended  fields  of

each  request  and  identifies  requests  to  the  hot  state

array elements and edge array elements. These identi-

fied requests are called trigger requests. For a trigger

request,  DRowM checks the contained records to see

if the requested data is a hit in the DRow. If it is, the
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Fig.12.  Duplication row hardware design. The added components are shown in color.
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request  is  done  at  DRow.  Otherwise,  DRowM  first

conducts the command to DRAM, waiting for the re-

quested  row  to  be  loaded  into  the  row  buffer.  Then

memory controller copies the target segment from the

row  buffer  to  DRow  and  records  the  information  of

the  segment  in  the  newly  allocated  DRowM  entry,

waiting  for  the  next  access.  For  a  DRow  write,  the

dirty  bit  in  the  corresponding  DRowM entry  will  be

set  to 1.  For a non-trigger request,  DRAM processes

it following the conventional workflow.

Copying a Row Buffer Segment to DRow. To effi-

ciently copy a segment from the row buffer to DRow,

we  introduce  Target-copy  (T-copy),  a  new  DRAM

command  with  duplication  source  and  destination

knowledge. The T-copy command refers to CROW[35],

working with the following procedures: 1) the memo-

ry controller sends the source segment ID in the row

buffer  and  the  destination  segment  ID  in  DRow  to

DRAM with the issued T-copy command;  2)  DRAM

selects  the  source  segment  in  the  row  buffer,  then

reads  the  segment  and  writes  it  to  the  destination

segment  in  DRow.  The process  of  reading  and copy-

ing  the  segment  is  just  like  a  regular  read  from  the

row buffer. At the end of the T-copy command proce-

dure, both the row buffer and DRow hold a duplica-

tion of the target segment.

Evicting  a  DRow  Segment. If  DRowM  is  full,  a

DRowM eviction request will be conducted before new

entry allocation. To fulfill such a function, we imple-

ment  the  Target-precharge  (T-pre)  command.  T-pre

is  similar  to the regular  precharge command and ex-

tended  for  holding  the  source  segment  ID  in  DRow

and the target row, and the target segment ID in the

DRAM array.  When  evicting  a  dirty  DRowM entry,

the  memory  controller  sends  the  T-pre  command  to

DRAM.  Then  DRAM  activates  the  target  row  and

latches the bitlines of  the target segment.  After this,

the data in the source segment is written to the tar-

get row. Finally, the DRowM entry is invalidated and

free to be allocated. 

5.5    Implementation Overhead

We estimate  the  additional  overhead  for  Skyway

with the configuration as shown in Table 5.

Overall,  the  proposed  Skyway  requires  additional

141.5 KB on-chip storage and extra 4 MB for DRow

at the DRAM side. We use CACTI 6.5[47] to evaluate

the  area  overhead.  The results  show that  PBuf  adds

only  2.6%  of  the  area  consumed  by  the  8  MB  LLC

and  DRow  introduces  only  0.02%  additional  area

overhead of a 16 GB DRAM. The storage cost of Sky-

way  is  minimum compared  with  its  performance  im-

provement. 

6    Evaluation

In  order  to  evaluate  the  effectiveness  of  Skyway,

we  first  show  the  experimental  results  of  PBuf,

DRow,  and  Skyway  individually  for  better  compari-

son.  We  compare  our  design  with  existing  state-of-

the-art  hardware  optimizations[16, 48] and  cache  by-

passing schemes[49, 50]. The baseline is without any op-

timizations.  The  evaluation  metrics  include  perfor-

mance and bandwidth utilization. Then, we quantita-

tively  analyze  how  Skyway  effectively  improves  the

performance. At last, we provide a series of sensitivi-

ty studies of different Skyway design choices. 

6.1    Evaluation Setup

The  simulation  platform,  graph  applications,  and

datasets used in the evaluation are introduced in Sec-

tion 3.  Besides, Table 5 gives  the  detailed  configura-

tions of Skyway. Note that in our experiments, we as-

sume that the first 8 MB data in the state array, with

the same capacity as the LLC, is the hot vertices[16].

We  evaluate  Skyway  and  compare  it  with  the

state-of-the-art schemes described below.

• DRRIP④[48] focuses on SPEC benchmarks, which

initializes  re-reference bits  of  cachelines based on Set
 

Table  5.    Skyway Configurations and Hardware Overhead

Hardware Configuration Overhead

PBuf ProCache: 32 KB per core, shared, 4-way associated, 4 B-entry, 4-cycle latency; 132 KB

LineBuf: 1 KB per core, shared, 1-way associated, 64 B-entry, 2-cycle latency

DRow 8 KB per extra buffer, eight segments in one buffer, four buffers per bank,
tCCD five cycles, LRU replacement policy

4 MB

DRowM 32 entries per bank, 19 bits per entry 9.5 KB

Register One 64-bit register to record the end address of hot vertices in state array, 56 B

six 64-bit registers to record array address range (start and end)
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④https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl, Jul. 2023.

https://github.com/ChampSim/ChampSim/blob/master/replacement/drrip.llc_repl
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Dueling  and  chooses  the  best  replacement  policy  for

different benchmarks.

• GRASP⑤[16] is  proposed for graph applications,

which  classifies  cachelines  into  hot  and  cold  regions

based  on  vertex  degrees  and  guarantees  hot  cache-

lines to stay longer in cache.

• Core -DRAM,  L1-DRAM,  and  L2-DRAM[49, 50]

are three idealized cache bypass schemes without any

buffer and looking up latency in the bypass path. The

bypass  path  is  used  to  forward  state  array  data  ac-

cesses to DRAM from Core, L1, and L2, respectively.

• Double-L1 doubles the L1 capacity in the base-

line  (i.e.,  64  KB  L1,  which  is  the  sum  of  L1  and

PBuf).  Double-L1  classifies  that  the  performance  of

Skyway is not from additional hardware resources. 

6.2    Performance

We use the instructions per cycle (IPC) to denote

the  system  performance. Fig.14 summarizes  the  nor-

malized  performance  improvement  of  DRRIP,

GRASP,  Core-DRAM,  L1-DRAM,  L2-DRAM,  Dou-

ble-L1, PBuf, DRow, and Skyway over the baseline.

As  shown  in Fig.14,  using  PBuf  alone  outper-

forms  the  baseline  with  speedups  for  BFS,  BC,  CC,

PR,  and  SSSP  of  17.6%,  13.4%,  15.6%,  3.7%,  and

36.9%,  respectively,  averaging  across  all  graph

datasets.  Overall,  PBuf  yields  17%  average  speedup

and  up  to  78%  in  the  best  case  on  SSSP-PLD  (for

convenience,  we  abbreviate  the  specific  workload  as

application-dataset in the rest of the paper) over the
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Fig.14.  Performance improvements of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP over the baseline.
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⑤https://github.com/faldupriyank/grasp, Jul. 2024.

https://github.com/faldupriyank/grasp


baseline. These improvements come from the more ef-

ficient  direct  datapath working on irregular  requests.

Also, using DRow alone provides an average speedup

of 8.4% for BFS, 2.3% for BC, 5.2% for CC, 9.8% for

PR, and 6.1% for SSSP. Among all the 35 workloads,

DRow yields 5.7% speedup on average and up to 15%

in the best case (on PR-Orkut) over the baseline. Fi-

nally,  Skyway  with  integrated  PBuf  and  DRow

achieves  the  performance  improvement  of  32%  for

BFS, 16% for BC, 24% for CC, 23% for PR, and 52%

for SSSP. Benefiting from the two optimizations, Sky-

way yields an average speedup of 29% and up to 86%

over the baseline. As for prior techniques, DRRIP on-

ly slightly improves performance by 2%, and GRASP

yields an average speedup of 5% over the baseline. In

comparison, without buffers in the direct path, Core-

DRAM,  L1-DRAM,  and  L2-DRAM yield  an  average

speedup  of –59%, –20%,  and –7%,  respectively,  over

the  baseline  on  the  reordered  datasets.  On  average,

Double-L1  only  improves  the  performance  by  2.8%

over the baseline. Because the state array accesses in

graph applications  are  very  irregular,  simply  increas-

ing cache capacity is not an effective optimization.
 

6.3    Bandwidth Utilization

Fig.15 presents the normalized DRAM bandwidth

utilization  of  different  schemes.  Compared  with  the

baseline, PBuf improves the bandwidth utilization by

1.91x on average. Besides, DRow helps to improve the

bandwidth by 7.8% on average and up to 17% in the

best  case  (on  BFS-Orkut).  Finally,  Skyway  achieves

the improvement of bandwidth utilization by 2.13x on

average  and  up  to  5.87x  in  the  application  PR with

the dataset Orkut.

The  reasons  for  the  improvement  of  bandwidth

utilization can be summarized as follows.

• PBuf reduces the latency for the requests to ar-
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Fig.15.  DRAM bandwidth utilization of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP over the baseline.
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rive at the memory controller. For the requests to the

state array with low locality, PBuf has optimized the

datapath with less hierarchies and fine-grained buffer

management. For the other requests, the efficiency of

the  cache  hierarchy  is  improved  without  the  infer-

ence of low locality data accesses.

• DRow helps to minimize the impact of irregular

access  patterns  in  DRAM.  With  DRow,  DRAM  di-

rectly serves accesses to the hot state array elements

and  edge  array  elements  without  updating  the  row

buffer,  which  allows  DRAM  to  serve  more  requests

within a shortened time interval.

Among  prior  techniques,  DRRIP  fails  to  learn

reuse  patterns  in  graph  applications,  and  GRASP  is

only  efficient  for  high-skewed  graphs.  We  find  that

GRASP  receives  the  highest  performance  improve-

ment  on  the  high-skewed  graphs  but  is  less  effective

on  the  low-skewed  graphs. Table 6 shows  the  vertex

percentage and corresponding edge percentage on two

datasets.  For  example,  in  the  dataset  DBpedia,  46%

of the vertices occupy 99% of the total edges, while in

the  dataset  Orkut,  only  23%  of  the  vertices  occupy

99% of the total edges. The higher the skew, the low-

er  the  vertex  percentage.  Therefore  Orkut  is  high-

skewed  and  DBpedia  is  low-skewed.  Our  evaluation

indicates  that  GRASP  yields  only  3.7%  speedup  on

the low-skewed DBpedia graph. On the contrary, Sky-

way  accelerates  the  graph  applications  by  38.4%  on

the  graph  dataset  DBpedia.  Because  GRASP  classi-

fies the state array into several regions based on ver-

tex  degrees,  the  scale  of  the  hot  region  may  exceed

cache  capacity  on  low-skewed  graphs,  which  limits

the accelerating ability. Unlike GRASP, on the cache

side,  Skyway  classifies  data  accesses  based  on  which

array  they  belong  to.  Skyway  is  not  based  on  the

skew  feature  and  works  well  even  on  low-skewed

graphs.  Furthermore,  both DRRIP and GRASP pro-

cess  requests  with  different  locality  following  a  uni-

fied strategy. Application performance is degraded by

the  interfered  access  patterns,  which  lowers  the

DRAM bandwidth utilization.

In summary, the efficiency of Skyway comes from

the  ingenious  combination  of  hardware  optimization

and software framework execution characteristics. We

find that multiple data access patterns exist in graph

applications.  However,  the  current  multi-level  cache

hierarchy  and  row  buffer  design  work  well  only  for

regular  data  accesses.  Inspired  by  this  key  observa-

tion,  we  believe  that “divide  and  conquer” is  a

promising  hardware  optimization.  Moreover,  such  an

optimization  reduces  cache  pollution  because  irregu-

lar data will not be stored in cache. As a result, Sky-

way improves the bandwidth utilization and the per-

formance of graph applications. 

6.4    Impact  of  Dual-Path  on  the  Memory

Controller

Cache  bypassing  techniques,  as  well  as  PBuf  de-

sign  in  Skyway,  increase  the  temporal  density  of

memory  requests  arriving  at  the  memory  controller.

Therefore,  we  show  how  these  techniques  affect  the

memory traffic and performance.

Fig.16 presents  the  memory  traffic  of  Core-

DRAM,  L1-DRAM,  L2-DRAM,  and  PBuf  over  the

baseline.  On  average,  PBuf  produces  1.29x,  1.64x,

1.43x, 1.59x, and 1.31x data traffic from the memory

controller  to  DRAM  for  BFS,  BC,  CC,  PR,  and

SSSP,  respectively,  over  the  baseline.  However,  the

other three cache bypassing techniques are not effec-

tive,  with an average memory traffic  of  9.45x,  2.39x,

and  2.06x,  respectively,  over  the  baseline.  The  three

cache  bypassing  managements  produce  too  many

DRAM accesses.  They  are  unable  to  find  a  trade-off

between faster DRAM accesses and more DRAM ac-

cesses,  failing  to  limit  memory  traffic  in  a  tolerable

area  and  thus  hurting  the  performance.  In  contrast,

PBuf  benefits  from  the  fine-granularity  organization

and  independence  from  cache  hierarchy,  resulting  in

fewer  DRAM  accesses  even  compared  with  L2-

DRAM.

Additionally,  we  further  analyze  the  dynamic  oc-

cupancy  of  the  DRAM  request  queue  in  PBuf.  As

shown in Fig.17, taking dataset DBpedia as an exam-

ple,  the  dynamic occupancies  of  both read and write

queues  are  under  10  across  all  the  five  applications,

which  is  far  below  the  common  queue  capacity  (i.e.,

64-entry in our configuration) and will  not cause the

read or write drain. Therefore, we can summarize that

the increment of memory requests caused by the pro-

 

Table  6.    Power-Law Distribution of DBpedia and Orkut

Edge Percentage (%) Vertex Percentage (%)

DBpedia Orkut

70 7 5

75 9 6

80 11 7

85 13 8

90 16 11

95 21 15

99 46 23
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posed PBuf will not hurt the system performance.
 

6.5    Row  Buffer  Conflicts  Reduction  with

DRow

DRow design benefits the application from two as-

pects. First, it protects the accesses with moderate or

even  high  temporal  locality,  avoiding  them being  in-

terrupted in the row buffer by irregular accesses. Sec-

ond, it imports a fast datapath to return buffered ac-

cesses. Overall, DRow reduces row buffer conflicts sig-

nificantly.  As Fig.18 shows,  on  average,  DRow  re-

duces  row  buffer  conflicts  by  15%  over  the  baseline

and  up  to  58%  in  the  application  PR  with  dataset

Orkut.
 

6.6    Limitations of Skyway

In our evaluation, DRow always improves the per-

formance.  The  exception  happens  in  PBuf.  We  find

that PBuf cannot accelerate graph applications when

the  input  graphs  show  a  good  community  feature[10]

(i.e., Web and UK-2002). In such graphs, state array

data accesses perform a good locality and utilize mul-

ti-layer  cache  hierarchy  efficiently.  Unfortunately,

PBuf cannot leverage multi-layer cache hierarchy and

decreases  the  performance  in  some  scenarios  (e.g.,

CC-Web). As a result, although DRow speeds up the

execution  in  all  scenarios,  Skyway  degrades  the  per-

formance over the baseline in specific cases because of

PBuf. We leave the study of classifying the graph in-

puts  based  on  their  community  feature  and  exploit-

ing PBuf adaptively for future work. 

6.7    Sensitivity of ProCache and LineBuf

Capacity

Fig.19(a) shows the PBuf performance with 8 KB,

16  KB,  32  KB,  64  KB,  and  128  KB  ProCache  per
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Fig.16.  Memory traffic of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP over the baseline.
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Fig.17.  Run-time request queue occupancy of PBuf and the baseline of (a) BFS, (b) BC, (c) CC, (d) PR, and (e) SSSP.
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Fig.18.  Bank conflicts reduction of DRow over the baseline.
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core.  We  observe  that  doubling  ProCache  capacity

from 16 KB to 32 KB and 32 KB to 64 KB brings ap-

plication  speedups  of  2%  and  0.8%,  respectively.  To

achieve  a  balance  between  hardware  overhead  and

performance  improvement,  we  use  32  KB  ProCache

per core in our evaluation.

We  also  measure  the  performance  sensitivity  to

LineBuf  capacity. Fig.19(b)  shows  the  average

speedups  when  varying  LineBuf  cachelines.  We  no-

tice  that  using  more  backup  cachelines  slightly  out-

performs fewer backup cachelines, mainly because the

irregular state access pattern makes cacheline less effi-

cient.  We choose  16  backup  cachelines  to  save  extra

hardware  overhead  and  allow  applications  to  exploit

locality. 

6.8    Sensitivity of DRow Capacity and

Segment Size

To check the effectiveness of  the DRow capacity,

we vary the setting from 1 row to 16 rows and com-

pare the system performance. As shown in Fig.20(a),

a larger DRow always gains a better performance by

providing  more  hit  opportunities.  However,  the  per-

formance  increment  is  not  multiplied  with  a  double

capacity.  On  average,  application  speedups  are  from

6.2% (4 rows) to 8.3% (8 rows) and then to 10% (16

rows). To balance the performance and storage over-

head, we implement four rows per bank.

The  segment  count  refers  to  the  number  of  seg-

ments in one DRow row and determines the granular-

ity of  DRow. As shown in Fig.20(b),  as  we vary the

segment  counts  from  1  (8  KB  per  segment)  to  32

(256  B  per  segment),  a  larger  segment  is  beneficial

when multiple  access  addresses  are  adjacent.  Howev-

er, a smaller segment size is more appropriate for da-

ta  with  low  spatial  locality  but  with  a  better  reuse

rate. It is hard to find a perfect segment size that out-

performs  all  the  other  sizes  across  all  workloads  be-

cause the access pattern is application- and graph-de-

pendent. We choose the 1 KB segment in our evalua-

tions  since  it  receives  the  best  performance  in  most

applications. 

7    Related Work

Data Duplication in DRAM. Duplicon Cache[46] re-

serves a specialized space in each bank and maintains

an accessing counter for each row to determine which

row should be duplicated. However, since how to de-

termine the threshold of its counter is indefinite, it is

difficult  to  gain  steady  performance  improvement  in
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practice,  especially  in  graph  applications  with  com-

plex access patterns. CROW[35] reserves a space with-

in  each  bank  and  copies  data  from  the  row  buffer

when  a  row  buffer  miss  occurs  in  the  granularity  of

segments.  FIGARO[45] extends  CROW  to  duplicate

data in finer granularity. Both CROW and FIGARO

ignore the fact that bank conflicts occurred by differ-

ent memory requests have different influences on the

overall  performance.  Unlike  prior  work[35, 45, 46],  Sky-

way  utilizes  the  information  of  different  access  pat-

terns for various key data structures in graph applica-

tions  to  direct  the  data  duplication,  which  simplifies

the accurate identification of the duplication.

Cache  Bypassing.  Adaptive  Cache  Bypassing[49],

Annex Cache[51],  LMP[52],  and Random Sampling Fil-

tered  Cache[53] utilize  a  predictor  to  determine

whether  a  memory  access  should  bypass  the  cache.

AMB[54], RHP and RTP[55], and LRF[50] track the his-

tory access information for cache blocks, skipping spe-

cific  cache  layers  or  bypassing  memory  requests  to

DRAM  based  on  the  recorded  knowledge.  Our  pro-

posed  Skyway  outperforms  the  prior  work  in  three

ways. First, Skyway directly utilizes the special mem-

ory  access  characteristics  of  graph  applications  ac-

cording  to  simplified  address  comparison,  and  deter-

mines  whether  to  use  the  direct  datapath,  which  is

accurate  compared  with  prior  prediction-based

schemes  and  avoids  the  unnecessary  history  tracking

latency.  Second,  prior  work[49, 51–53] focuses  on select-

ing a specific path but ignores the reuse within cache-

lines. Our direct datapath is organized in fine-grained

data  management,  which  improves  the  hardware  re-

source utilization for serving the irregular access pat-

tern in graph applications. Finally, we not only opti-

mize  cache  design  but  also  extend  the  key  idea  to

DRAM.

GPU-Based Graph Processing.  GPUs are popular

accelerators  for  graph  processing.  However,  as  the

graph  size  grows,  the  performance  of  graph  process-

ing  is  limited  by  available  device  memory  capacity.

Grus[56] reduces  page  faults  through  a  clever  unified-

memory management  scheme (e.g.,  reducing memory

footprint  and  prefetching  graph  data).  Moreover,

Grus  reduces  expensive  atomic  operations  through

low-cost  write  operations.  Skywalker[57] proposes  a

novel  graph sampling and random walk algorithm to

eliminate the capacity gap between input graphs and

GPU capacity. Subway[58] generates a subgraph in al-

most every iteration to minimize data movements be-

tween CPU and GPU. Unlike these optimizations, we

focus on CPUs.  The main bottleneck we solve is  the

inefficiency of the multi-layer cache hierarchy and the

row buffer design on graph applications. 

8    Conclusions

This paper showed that a graph can be represent-

ed  in  three  data  arrays,  while  only  memory  requests

to  the  state  array  exhibit  irregular  access  patterns.

The  current  memory  hierarchy  is  far  from  fully  uti-

lized for graph applications due to random and unpre-

dictable  memory accesses.  To accelerate graph appli-

cations,  this  paper  presented  Skyway,  a  data-aware

hardware  architecture  with  1)  a  fine-grained  direct

datapath  from core  to  main  memory,  opening  a  fast

path for irregular requests, and 2) a memory-side row

buffer  hardware,  preserving  selected  data  segments

before  flushing  them back.  In  doing  so,  Skyway pro-

cesses  memory  requests  efficiently  by  mitigating  the

memory access interference.  On a set of  graph work-

loads,  Skyway  improves  application  performance  by

29%  on  average  and  up  to  86%  over  the  baseline

without  any  hardware  optimizations.  Skyway  also

outperforms  GRASP  and  DRRIP,  which  are  the  ex-

isting  state-of-the-art  hardware  optimizations.  While

Skyway  is  motivated  by  graph  processing,  the  key

idea behind the design can be extended to accelerate

any applications with multiple access patterns. 
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