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ABSTRACT
HPC systems, driven by the rise of workloads with significant data
requirements, face challenges in I/O performance. To address this,
a thorough I/O analysis is crucial to identify potential bottlenecks.
However, the multitude of metrics makes it difficult to pinpoint
the causes of low I/O performance. In this work, we analyze three
scientific workloads using three widely accepted I/O metrics.
We demonstrate that different metrics uncover different I/O
bottlenecks, highlighting the importance of considering multiple
metrics for comprehensive I/O analysis.

1 INTRODUCTION
The escalating complexity of HPC systems and applications,
particularly fueled by the rise of AI and ML workloads with
their substantial data requirements, has resulted in significant
challenges for I/O performance. The surge in data-driven tasks
has placed immense pressure on the I/O subsystems, leading
to performance issues that impede overall system efficiency.
Addressing these challenges requires a thorough I/O analysis to
uncover potential I/O bottlenecks. However, identifying these
bottlenecks is a daunting task due to the multitude of metrics that
must be considered. Metrics such as I/O bandwidth, transfer size,
metadata operation rates, and various system-level factors all play
critical roles in the overall I/O performance.

Some of the earliest studies [2, 10] concentrated on analyzing
access patterns and transfer sizes to identify I/O performance issues.
These studies highlighted significant variations in access patterns
and transfer size distributions, prompting the need to consider addi-
tional factors to accurately assess I/O performance issues. As HPC
systems expanded in scale and sophistication, their I/O operations
became more intricate and challenging to analyze manually. I/O
characterization tools (e.g. Darshan [1]) emerged as instrumental
solutions that could automatically record detailed information
about the I/O behavior of applications. This allowed studies like
UMAMI [7], TOKIO [6], and IOMiner [12] to conduct large-scale
I/O analysis using multiple metrics, such as I/O bandwidth and
metadata operation rates. The findings from these studies demon-
strate that the causes of low I/O performance in applications can be
diverse. Therefore, it becomes imperative to consider multiple met-
rics simultaneously in a comprehensive I/O analysis to effectively
capture the complex behaviors influencing overall I/O performance.
For instance, while a particular application may exhibit good I/O
bandwidth, it could still experience performance problems due to
high metadata operation rates or suboptimal transfer sizes.

In this work, we present a methodology that leverages applica-
tion I/O traces and a collection of I/O metrics to investigate the
potential benefits of using multiple metrics in identifying I/O per-
formance issues. By using multiple metrics simultaneously, this
methodology distinguishes itself by offering a comprehensive un-
derstanding of the interconnected factors that influence I/O per-
formance. We analyze three scientific workloads, each exhibiting
diverse I/O behaviors. Using widely accepted I/O performance met-
rics, namely I/O time, I/O bandwidth, and I/O operation per sec-
ond (IOPS), we evaluate the I/O performance of these workloads.
Through our evaluations, we successfully identify various perfor-
mance issues using different metrics. Moreover, we observe that
certain metrics are better suited to capture particular I/O behaviors.
Our key findings can be summarized as follows:
(1) Different metrics uncover different I/O bottlenecks.
(2) Specific I/O behaviors can only be captured by certain metrics.

2 IMPACTS OF MULTIPLE I/O METRICS
2.1 Methodology
We chose three scientific workloads with diverse I/O behaviors:
CM1 [9], HACC [3], and Montage [5]. For this work, we utilized
three time-based performance metrics to analyze the I/O perfor-
mance of the scientific workloads: I/O time, I/O bandwidth, and
IOPS. I/O time measures the time taken to perform I/O operations
on a storage system. I/O bandwidth measures the total amount
of data that can be read or written per second. IOPS represents the
number of read and write operations a storage system can perform
in a given second.

To detect I/O bottlenecks, we utilized distinct criteria tailored to
each performance metric. For I/O time, we marked records where
the time exceeded 90% of the maximum I/O time observed per
process as I/O bottlenecks. For I/O bandwidth, we marked records
where the throughput was below 10MB/s as I/O bottlenecks.
Finally, for IOPS, we marked records where the I/O operation rates
were less than 10% of the maximum IOPS observed per process
as I/O bottlenecks.

2.2 Evaluation
We run the experiments on the Lassen supercomputer at Lawrence
Livermore National Laboratory (LLNL) [4]. To capture I/O traces
with the required level of granularity for this work, we utilized
Recorder [11]. We used the Pandas [8] library as our analysis tool.

2.2.1 HACC. HACC is a cosmology workload that simulates
the universe’s evolution using particle-mesh techniques. It
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Figure 1: (a) Metadata contention due to
GPFS causes 90% I/O time. (b) High par-
allelism during checkpointing result in
low I/O bandwidth and IOPS.
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Figure 2: (a) Small "read"s on FITS files
lead to very low I/O bandwidth and IOPS.
(b) Slow "open"s during image generation
result in low IOPS.
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Figure 3: (a) Metadata contention causes
90% I/O time. (b) Metadata dominance
leads to low IOPS. (c) Small "write"s re-
sult in low I/O bandwidth and IOPS.

includes an isolated I/O kernel called HACCIO, representing
typical I/O workload in scientific simulations. The application
uses 16M particles as input, writes nine variables, and performs
checkpointing and restart.

The evaluation results are presented in Figure 1, where the
x-axis represents the job time in seconds and the y-axis represents
the ranks. The observations are twofold: (1) When multiple ranks
attempt to "open" simulation files concurrently on GPFS, it results
in contention within the parallel file system. This contention, result-
ing in more than 90% of the I/O time per process being consumed
by metadata operations, leads to I/O bottlenecks per I/O time
[Figure 1(a)]. (2) High parallelism during checkpointing also leads
to contention on GPFS, resulting in I/O bottlenecks per both I/O BW
and IOPS due to very low I/O bandwidth and IOPS [Figure 1(b)].

The findings demonstrate that the contention on GPFS can only
be detected using the I/O time metric and not through I/O band-
width or IOPS metrics. The reason behind this is that the latter two
metrics only account for data operations and do not take metadata
operations into consideration. Thus, it becomes evident that certain
behaviors can only be identified by employing specific metrics.

2.2.2 Montage. Montage is a mosaic engine that converts
sky-survey data from FITS files to PNG images. The collection of
FITS images is divided into multiple segments, and these segments
are processed in parallel to create PNG images. Specifically, 1024
FITS files are distributed among 32 nodes, with each node handling
one segment containing 16 FITS files.

The evaluation results are presented in Figure 2, where the
x-axis represents the job time in seconds and the y-axis represents
the ranks. The observations are twofold: (1) Small "read"s (<3KB)
on FITS files during initialization leads to I/O bottlenecks per
both I/O bandwidth and IOPS. (2) Slow "open"s during PNG image
generation causes I/O bottlenecks per IOPS.

The findings reveal that although small I/O operations, such
as small "read"s, do not consume a significant amount of the
maximum I/O time per process, they can still be detected as
bottlenecks due to very low I/O bandwidth or IOPS.

2.2.3 CM1. CM1 is an atmospheric-simulation used to model
thunderstorms and tornadoes. The simulation has separate read,
write, and compute phases. The application uses configuration files
of size 16MB to generate data and produces more than 750 files
for different simulation steps. Each step generates files totaling
approximately 128MB in size.

The evaluation results are presented in Figure 3, where the
x-axis represents the job time in seconds and the y-axis represents
the ranks. The observations are threefold: (1) During initialization,
each first rank per node simultaneously "open"s the same
configuration file, causing metadata contention. As a result, the
application spends over 90% of its I/O time in this phase, leading
to the detection of I/O bottlenecks per I/O time [Figure 3(a)]. (2)
Simulation data writes are dominated by metadata operations,
accounting for more than 80% of total I/O operations. Consequently,
this leads to very low IOPS and and is detected as I/O bottlenecks
per IOPS [Figure 3(b)]. (3) Simulation data writes dominated
by small "write"s exhibit very low I/O BW and IOPS, hence are
detected as I/O bottlenecks per both I/O BW and IOPS [Figure 3(c)].

The findings showcase that capturing I/O bottlenecks during the
application’s write phase (by rank 0) is only possible by considering
I/O bandwidth or IOPS metrics. This is because certain I/O opera-
tions consume less than 20% of the maximum I/O time per process,
making them undetectable as bottlenecks by the I/O time metric.
However, these same operations exhibit very low I/O bandwidth or
IOPS, making them noticeable as bottlenecks through those metrics.
Moreover, it is shown that although there may be overlapping I/O
bottlenecks based on I/O bandwidth and IOPS, this is not always the
case. Therefore, each metric should be independently considered.

2.3 Conclusion
In this work, we presented a comprehensive I/O analysis using
multiple metrics, namely I/O time, I/O bandwidth, and IOPS.
Through the evaluation of three diverse scientific workloads, we
demonstrated that different metrics uncover different I/O bottle-
necks. Our findings demonstrate that specific I/O behaviors, such as
contention on GPFS, can only be identified through certain metrics,
further highlighting the need for considering multiple metrics.
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