
Uncover the Overhead and Resource Usage for Handling KV

Cache Overflow in LLM Inference

Jie Ye
1

Bogdan Nicolae
2

Anthony Kougkas
1

Xian-He Sun
1

1
Illinois Institute of Technology

2
Argonne National Laboratory

Context

Speeding up LLM and transformer inference requests is instrumental in
achieving high throughput and low latency at scale, especially when
considering the need to serve a large number of users under concurrency
At the core of each LLM inference request are two phases:

Prefill phase: the entire prompt (input tokens) is processed by the
attention mechanism in parallel, typically during a single forward pass
Decode phase: an iterative prediction of the next most likely token,
which is the appended to the prompt, and the process is repeated until
a special termination token or a maximum number of tokens is reached

Intermediate KV pairs computed by the attention layers during inference
can be cached in order to avoid recomputations and significantly speed
up the decode efficiency

Limited KV Cache Space

When running out of space on the GPU memory for the KV cache (likely
for complex inferences with many tokes that are batched together) , state
of art approaches enable two alternative strategies: (1) drop intermediate
results from the cache and recompute them later, or, (2) swap interme-
diate results to a secondary host memory cache

Challenges: the problem of how to choose between recomputations
(compute overheads) vs. swapping (I/O overheads due to GPU-host mem-
ory transfers) has not been thoroughly explored by state of art

Contributions: we quantify the overhead of these methods and analyzing
the resource utilization of the KV cache during LLM inferences to derive
new insights and observations.

Recompute vs. Swap Strategies

Figure 1: Recompute vs. Swap Strategies for Handling KV Cache overflow

Evaluation Methodology

Platform: ALCF’s Polaris. Each Node: 4×A100 GPUs with 40 GB
HBM2 on each GPU

Inference System: vLLM [1]

Model: Yarn-Llama-2-7B-64k [2] (#Layers=32, #Heads=32, Hidden
Size=4096, context length=64K);

Workloads: Synthesized workloads by generating prompts for each re-
quest using dummy data

Impact of Various Factors on Overhead

Many factors can influence the overhead of recomputing and swapping
(e.g., block size (the number of tokens in a block), the number of recom-
puted/swapped tokens, and available GPU Mem. for KV Cache)

Goal: Evaluate how different factors affect their overhead.

Figure 2: Overhead of recompute/swap by varying
block size (i.e., the number of tokens in a block)

Recompute: block size has min-
imal effect on its overhead

Swap: 1) the overhead decreases
with increasing block size; 2) more
efficient for large block sizes with
pinned memory

The overhead increases with in-
creasing the number of recom-
puted/swapped tokens

Swap has lower overhead when
more tokens are evicted in an over-
flow Figure 3: The Num. of recomputed/swapped tokens

impact on overhead

Figure 4: Overhead of recompute/swap by varying
sequence length (batch size: 16)

The overhead increases with in-
creasing the sequence length

Swap performs better than recom-
pute for long sequences (lower
overhead)

Impact of Various Factors on Overhead

Figure 5: Overhead of recompute/swap by varying avail. GPU Mem. for KV cache

Sequence (input=1500, output=1024); requests (batch size)=32; all re-
quests are issued at the same time

Overhead decreases with increasing the avail. GPU Mem. (<=40%)

Recompute/Swap get the lowest overhead when avail. GPU Mem. is 30%
or 50%

KV Cache Resource Utilization

Figure 6: KV cache usage and throughput over time when using recompute/swap strategies

Shows the average throughput and KV cache usage over time when avail.
GPU Mem. is 12%

Recompute: Throughput increases periodically over time due to the
processing of waiting and resumed requests; GPU usage decreases when
eviction happens and increases when evicted requests are resumed.

Swap: The periodically sharp increase of throughput is caused by the
processing of waiting requests (prompt phase); GPU usage decreases when
eviction happens and increases when evicted requests are resumed.

References

[1] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica,
“Efficient memory management for large language model serving with pagedattention,” in Proceedings of
the 29th Symposium on Operating Systems Principles, pp. 611–626, 2023.

[2] “Yarn-llama-2-7b-64k.” https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k, 2023.

The International Conference for High Performance Computing, Networking, Storage, and Analysis 2024 (SC24). ATLANTA, GA jye20@hawk.iit.edu

https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k
mailto:jye20@hawk.iit.edu

