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I. EXTENDED ABSTRACT

Pre-training of LLMs and transformers is known to take
weeks if not months even of powerful HPC systems. For
this reason, a large part of related work studies how to scale
pre-training. However, inferences are an equally important
problem: once pre-trained, the model needs to serve a large
number of inferences submitted under concurrency by multiple
users. Thus, speeding up each inference request is instrumental
in achieving high throughput and latency at scale.

At the core of each LLM inference request are two phases:
(1) a prefill phase, during which the entire prompt is processed
by the attention mechanism in parallel, typically during a
single forward pass; (2) a decode phase that involves an
iterative prediction of the next most likely token, which is
the appended to the prompt and the process is repeated until a
special termination token ((<EOS>)) or a maximum predefined
number of tokens is reached.

To avoid redundant recomputation in each decode iteration,
a Key-Value (KV) cache is used to store previously computed
keys (K) and values (V), speeding up token generation. GPU
memory is primarily consumed by model weights and KV
cache during LLM inference serving. While model weights use
a fixed amount of memory, KV cache memory grows linearly
with context length and batch sizes due to the auto-regressive
nature of LLMs. Consequently, KV cache memory can easily
exceed the GPU memory limits of a single instance. To handle
KV cache overflow, state of art LLM inference systems (such
as vLLM [1]) often use to alternative strategies, recomputation
or swap to host memory, each with its own advantages and
disadvantages.

Contribution: given the limited studies on the nature of
recomputations vs. swapping, we characterize their behavior.
To this end, we study the overheads and resource utilization
under several configurations that involve different cache block
sizes and inference request sizes. Then, we identify interesting
patterns and correlations that can be exploited by future work
to improve the latency and throughput of inference requests.

II. RECOMPUTE VS. SWAP STRATEGIES

Figure 1 describes how recompute/swap functions in LLM
inference with limited GPU memory.

Fig. 1. Recompute vs. Swap Strategies for handling the KV cache overflow

Recompute: When GPU memory is insufficient, a set
of lower-priority running inference requests are selected and
their KV cache is discarded. Upon resumption later, their KV
cache is recomputed rather than retrieved from GPU memory.

Swap: This method leverages host memory. When GPU
memory is insufficient, the selected lower-priority inference
requests have their KV cache moved to host memory. Upon
resumption later, their KV cache is reloaded back to GPU
memory before continuing.

III. STUDY OF RECOMPUTE AND SWAP OVERHEAD IN
HANDLING KV CACHE OVERFLOW AND RESOURCE USAGE

A. Experimental Setup
All the experiments on the ALCF’s Polaris platform.

Each node has 4×A100 GPUs with 40 GB HBM2 on
each, and 1×512 GB DDR4 RAM. LLM inferences were
conducted with vLLM 0.4.2 [2] on a single GPU. We use
the Yarn-Llama-2-7B-64k [3] model since it is built on a
popular LLM architecture, fits on a single GPU, and supports
long contexts. Our experiments employ synthetic workloads
because inference accuracy is not our focus.

B. Analyze the influence of different factors on the overhead
of Recompute and Swap strategies

Various factors can influence the recompute and swap
overhead, including block size, the number of recomput-
ed/swapped tokens in an overflow operation, sequence length,
and the available GPU memory for KV cache. This subsection
explores the effects of these factors on their overhead.



(a) Overhead of recompute/swap by
varying the block size

(b) Impact of the number of recom-
puted/swapped tokens in an overflow

Fig. 2. Impact of block size and the number of recomputed/swapped tokens
in an overflow on the recompute and swap overhead time (running with 2
inference requests)

(a) Overhead of recompute/swap by
varying the sequence length of a re-
quest (requests=16)

(b) Overhead of recompute/swap by
varying available GPU memory for
KV cache (requests=32)

Fig. 3. Impact of sequence length and available GPU memory for KV cache
on the recompute and swap overhead time

Block Size: Block size refers to the number of tokens
held in a block. We evaluated both pinned memory and
pageable memory for swapping. As shown in figure 2(a):
(1) block size has minimal effect on recomputation since it
depends only on the number of recomputed tokens; (2) swap
overhead decreases with larger block sizes, as smaller blocks
trigger more small data movements; (3) swap performs better
for the large block size with pinned memory.

Num. of evicted tokens in an overflow: As figure 2(b)
shows: (1) overhead increases with increasing the number of
recomputed/swapped tokens due to higher computation and
data movement; (2) Swap has lower overhead when more
tokens are evicted in an overflow.

Sequence Length: Figure 3(a) demonstrates that: (1)
overhead of recompute and swap increases with longer
sequences; (2) swap performs better than recompute for long
sequences (lower overhead).

Available GPU Memory for KV Cache: We test the
impact of available GPU memory for KV cache by issuing 32
requests to vLLM, each with 1500 prompt tokens and gener-
ating 1024 tokens. Figure 3(b) shows: (1) overhead decreases
as available GPU memory increases up to 40%; (2) the lowest
overhead occurs when available GPU memory is 30% or 50%.

C. Resource Utilization During LLM inference

This experiment describes the KV cache utilization and
throughput over time with 12% available GPU memory. Fig-
ure 4 shows: (1) with recompute strategy, the throughput peri-
odically spikes due to processing waiting and resumed requests
(red solid line), while GPU KV cache utilization fluctuates
(decreasing and then increasing) due to eviction/completion
and processing of these requests (brown dotted line); (2)
with swapping, throughput also periodically increases with the
processing of waiting requests, and GPU KV cache utilization

Fig. 4. KV cache usage and throughput over time when using recompute/swap
strategies

similarly fluctuates, with CPU KV cache increasing as GPU
cache decreases due to data movement.

IV. CONCLUSIONS

This study explores the impact of various factors on
recompute and swap overhead during KV cache overflow
and resource utilization. Initial results show: 1) swap is
more efficient with large block sizes and long sequences;
2) vLLM’s scheduling strategy batches only pure prefill
or decode requests in one forward pass, causing variations
in throughput and KV cache usage. Future work will
investigate KV cache I/O patterns to gain insights and
identify management bottlenecks.
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