
DaYu: Optimizing Distributed Scientific Workflows
by Decoding Dataflow Semantics and Dynamics

Meng Tang2,1, Jaime Cernuda2, Jie Ye2, Luanzheng Guo1, Nathan R. Tallent1, Anthony Kougkas2, Xian-He Sun2,
1Pacific Northwest National Laboratory, 2Illinois Institute of Technology

Emails: mtang11, jcernudagarcia, jye@hwak.iit.edu; lenny.guo, tallent@pnnl.gov; akougkas@iit.edu, sun@iit.edu

Abstract—The combination of ever-growing scientific datasets
and distributed workflow complexity creates I/O performance
bottlenecks due to data volume, velocity, and variety. Although
the increasing use of descriptive data formats (e.g., HDF5,
netCDF) helps organize these datasets, it also introduces obscure
bottlenecks due to the need to translate high-level operations
into file addresses and then into low-level I/O operations. To
address this challenge, we introduce DaYu, a method and toolset
for analyzing (a) semantic relationships between logical datasets
and file addresses, (b) how dataset operations translate into
I/O, and (c) the combination across entire workflows. DaYu’s
analysis and visualization enable the identification of critical
bottlenecks and the reasoning about remediation. We describe
our methodology and propose optimization guidelines. Evaluation
on scientific workflows demonstrates up to a 3.7x performance
improvement in I/O time for obscure bottlenecks. The time and
storage overhead for DaYu’s time-ordered data are typically
under 0.2% of runtime and 0.25% of data volume, respectively.

I. INTRODUCTION

Scientific discovery increasingly relies on distributed scien-
tific workflows to orchestrate interconnected tasks, integrating
data processing, interpreting experimental results, conducting
theoretical analyses, and preparing for future experiments.
These workflows span disciplines such as physics, bioinfor-
matics, and material science [1][2]. Tasks within a workflow
can range from individual steps within a single application
to spanning different applications. Downstream tasks depend
on upstream tasks, creating intricate dependencies throughout
the workflow [3]. Workflow execution performance is typically
limited by I/O bottlenecks since most inter-task data exchanges
primarily rely on shared storage resources like Parallel File
Systems (PFS) [4], [5].

We focus on the challenges of I/O bottlenecks in workflows
that exchange data using increasingly popular descriptive data
formats, like Hierarchical Data Format (HDF)[6], that abstract
I/O. As shown in Figure 1, these formats (a) provide logical
data structures and operations; (b) map the logical structures
to file layouts and addresses; and (c) translate logical data
operations into low-level I/O operations for a variety of parallel
file systems. Due to the dual translation steps, each task within
the workflow can have unique data access patterns, and similar
high-level data access patterns can translate into surprisingly
divergent low-level I/O operations. Examples include unex-
pected layouts, metadata overhead, and data fragmentation.
The result can be bottlenecks that are extremely difficult to
diagnose.

1) Fragmented
2) Variable length

I/O Operations

0-1024
HDF

Datasets

File

File address

1024-1280

1280-1942

1942-2460

Storage
Backends

Luster
BeeGFS

NFS
RamDisk

etc.

Figure 1: I/O problems identified in HDF for fragmentation
and variable length.

Current I/O analysis techniques fail to offer insight into
these challenges. System-level techniques — task scheduling,
data caching, staging [7][8][9], and I/O system tuning — not
only fail to capture the full potential of most applications but
also fail to connect logical datasets to I/O. Application-specific
profilers, such as Darshan[10] and Recorder[11], focus on ana-
lyzing individual I/O operations within individual applications,
preventing (a) analysis of the datasets-to-I/O connections as
well as (b) those relationships across the workflow’s multiple
tasks. The failure is especially acute when workflow tasks use
different datasets and have varying I/O demands [12][13].

The key to efficient workflow data movement lies in gaining
in-depth insights into data access patterns and I/O character-
istics within the context of the entire workflow. To address
this challenge, we introduce DaYu,1 a data flow analysis and
optimization framework. DaYu goes beyond traditional profil-
ers by leveraging rich metadata from high-level I/O libraries
like HDF5 [14] and netCDF [15]. This rich metadata enables
DaYu to uncover (a) the semantic relationships between logical
datasets and file mappings, (b) how dataset operations translate
into I/O, and (c) the interactions across entire workflows. By
analyzing application data usage and I/O behaviors associated
with each logical dataset, DaYu can pinpoint potential bot-
tlenecks and suggest strategies for improving data movement
performance. Although we focus on HDF5, these challenges
are common across other I/O libraries and descriptive data
formats that utilize metadata and require translation from the
abstract level to low-level I/O.

Our contributions can be summarized as follows:

1DaYu (e.g. "Yu the Great") refers to a legendary Chinese king credited
with taming floods through water control projects.

357

2024 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTER59578.2024.00038

• Dynamic cross-application dataset insights by capturing
the mapping between a datum’s logical and storage
name and address for all I/O accesses, whether sym-
bolic or not. Additionally, our method generates these
mappings across applications, forming complete data
dependence chains for all I/O accesses, whether targeting
self-describing formats (e.g., HDF5 I/O) or block formats
(e.g., POSIX I/O).

• Workflow dataset bottleneck detection using an interactive
visualizer. This visualizer presents the mapping of task
execution time and data volume within the context of the
data flow dependence graph.

• The open-source DaYu workflow performance toolset.
DaYu is lightweight and efficient, with an execution time
overhead of less than 4% on time-sensitive data traces;
and has small post-execution analysis requirements.

• Performance evaluation using benchmarks and scientific
workflows with varying I/O patterns to assess DaYu’s
time and space overhead, as well as its ability to uncover
previously unknown bottlenecks that arise from not fully
appreciating the implications of DaYu’s cross-application
mapping.

II. CHALLENGES OF DESCRIPTIVE DATA FORMATS

Modern scientific workflows heavily rely on descriptive data
formats, such as HDF5 [14], netCDF [15], and ADIOS [16],
to provide enriched metadata, unified data structures, and
high-performance I/O. However, as illustrated in Figure 1,
these formats also create obscure I/O bottlenecks due to the
need to translate high level operations into file addresses
and then into low-level I/O operations. We describe several
challenges with a focus on HDF5 as an prime example due
to its popularity, active maintenance, advanced features, and
extensive use across scientific domains [17]. The challenges
we describe, however, are generalizable to other I/O libraries.

Challenge 1: Obscured Low-Level I/O Behaviors within
HDF5. HDF5 manages data using a hierarchical model built
upon data objects. A typical HDF5 file often has a group con-
taining multiple datasets, with the option to attach attributes
to datasets for additional context. Different data objects can
exhibit different I/O behaviors. Many scientific I/O libraries
exhibit similar behavior, where data layouts and resulting I/O
patterns are determined by internal management and hidden
from the user. The challenge illustrated in Figure 1 specifically
highlights how the data content of two HDF5 datasets can
be stored in many different file regions. Understanding these
internal behaviors remains essential for performance optimiza-
tion in various scientific workflows.

Challenge 2: I/O Libraries are Agnostic about Application-
Level Data Usage. Application-level data usage can vary dras-
tically across tasks within a workflow. However, I/O libraries
are agnostic to these different data usage patterns, making
them unable to determine the optimal storage layout for
specific use cases. In particular, HDF5 offers two primary data
storage layouts: contiguous and chunked, each with distinct
I/O behaviors. Contiguous layouts are ideal when tasks use

the entirety of a fixed-length dataset, as they allow for a single
I/O operation to a continuous file region. In contrast, chunked
layouts, which divide datasets into smaller storage chunks,
offer flexibility for non-sequential I/O and opportunities for
parallelization when tasks access random or partial regions of
a dataset.

Challenge 3: Fragmentation in Data Storage. Fragmenta-
tion introduces additional and irregular data accesses, hurt-
ing performance. There are two primary causes of storage
fragmentation in HDF5: 1) chunked layout; 2) variable-length
(VL) data. In both cases, fragmentation stems from storing
index data and the actual data in separate file regions. VL
data, commonly seen in scientific sparse data, images, and
text data, exacerbates fragmentation across file regions due to
its inherent size variability. To address this, I/O libraries often
employ special storage techniques, such as storing element
lengths alongside the data or using delimiters to separate
records. Additionally, techniques like padding VL data to a
fixed size or structuring it for predictable access can improve
I/O performance, but at the cost of increased data size.

III. OVERVIEW

DaYu is a framework designed to help application and work-
flow performance analysts understand data flow behavior. It
extracts workflow data patterns and develops insights into the
behavior of data flows, providing opportunities for optimizing
application I/O. These insights also benefit application users
and I/O library developers. Its source code is available on
GitHub [18].

The DaYu framework comprises three primary components:
1) Data Semantic Mapper, which maps semantic datasets to

I/O statistics, capturing essential data flow insights for
analysis. (section IV).

2) Workflow Analyzer, which groups I/O statistics by high-
level data semantics and visualizes the combination as
semantic dataflow graphs, to provide insights into holistic
data dependence for I/O accesses (section V).

3) Data Flow Diagnostics, which explores three real-world
scientific workflows from distinct domains, generating
visualizations of dataflow and I/O semantics, revealing
potential I/O improvement opportunities, and which is
empowered with optimizations suggested by DaYu’s in-
sights (section VI).

A. Guiding Datasets and Workflow I/O Optimization

Guided by DaYu’s diagnostic insights, performance analysts
can employ the following guidelines to optimize workflow I/O.

1) Customized Caching: To address Challenges 1, 2, and
3, DaYu unveils connections between high-level semantics
and low-level I/O (e.g., POSIX), uncovering insights into
data reuse. This suggests prioritizing frequently used data in
the fastest available storage or in memory with data buffer
middleware like Hermes [19] to reduce storage data accesses
and latency. This applies to both intra- and inter-task data
reuse.

358

2) Partial File Access: To address Challenges 1, 2, and 3,
DaYu enables identification of opportunities for partial data
access within HDF5 files. This is particularly valuable for
cases like VL data, where only a subset of the data is required.
Using middleware I/O techniques like Hermes [19], we can
reduce unnecessary data movement by only accessing specific
file segments. Selective caching is crucial when resources are
limited, as it saves bandwidth, memory usage, and I/O.

3) Customized Prefetching: To address Challenge 1, DaYu
reveals low-level I/O behaviors across tasks. We can leverage
that to develop customized prefetching for optimized data
locality and latency with the following guidelines. Notably,
the customized prefetching guidelines (see below) are generic
and can be applied to any workflows.

• When DaYu anticipates a task’s data requirements, data
prefetching can be employed. This could involve placing
the data on faster storage (SSDs) or in memory (Her-
mes [19]) for improved data access.

• When the network is congested, determining the optimal
prefetching timing is important to reduce latency.

• When data is shared by multiple tasks across different
compute nodes, staging it to node-local storage reduces
data access latency. Additionally, this also reduces the
concurrency per file, alleviating I/O contention.

4) HDF5 Data Format Optimization: To address Chal-
lenges 2 and 3, DaYu reveals the I/O behaviors associated
with different data layouts. Using the following guidelines,
we can determine the most efficient data layout.

• Small, Fixed-Length Data: To reduce the number of I/O
operations by reading the entire dataset at once, select
contiguous layout.

• Large, Fixed-Length Data: 1) Select contiguous layout to
optimize for sequential access; 2) Select chunked layout
to optimize for random or parallel access.

• Variable-Length Data: For any data size, Select chunked
layout to leverage metadata for efficient random file I/O
access.

IV. CONNECTING DATASETS WITH I/O

To gain in-depth workflow data flow insights, the Data
Semantic Mapper connects the high-level semantics of data
interactions ("what") with their underlying I/O behaviors
("how"). Currently, there is a lack of profiling tools to interface
with HDF5, collect both high-level data accesses and low-
level I/O operations, and to map between them. Capturing and
connecting both high-level and low-level details is crucial to
painting a comprehensive picture of workflow data interactions
between tasks and I/O performance. To bridge this gap, we
created the DaYu tool to demonstrate our methodology for
connecting HDF5 and netCDF high-level data semantics with
low-level I/O behaviors.

Profiling: To bridge this gap, DaYu implemented a profiling
tool that leverages HDF5 APIs to monitor data access patterns
and I/O operations at runtime. DaYu implements a two-layer
external HDF5 plugin through the existing APIs, namely the

Data Semantic MapperSystem
Hardware Info

Workflow
Runtime

Task 1 Task 1

Task 2

Task 3

Workflow
Analyzer

VOL

Access
Tracker

Characteristic
Mapper

Input
Parser

VFD

Access
Tracker

Characteristic
Mapper

Input
Parser

Figure 2: Data Semantic Mapper High-Level Design.

Virtual Object Layer (VOL) [20] and the Virtual File Driver
(VFD) [21]. As illustrated in the high-level design of the Data
Semantic Mapper (Figure 2), each of the two layers has three
main components: (1) Input Parser; (2) Access Tracker; and
(3) Characteristic Mapper.

The HDF5 plug-ins allow real-time monitoring of various
time-sensitive profiles at high-level (VOL profiler) and low-
level (VFD profiler), summerized in Table I and Table II
respectively.

Input Parser: This component reads the user-provided con-
figuration and parameters for initialization. For example, the
location to store the recorded statistics, the page size to record,
the number of I/O operations to skip, and whether to turn
on/off I/O tracing. This flexibility allows users to adjust the
data collection granularity, reducing storage overhead based
on their analysis needs. The workflow launcher or application
must inform DaYu of the current task.

Access Tracker: Data access information is collected at two
levels.

The HDF5 data object level is referred to as high level,
characterized by data captured through the VOL profiler. DaYu
data object profiles measure key characteristics, including data
type, shape, and access patterns. In particular, we record the
data object name, associating it with the specific file and the
current task.

HDF5 generates I/O in its lower layer, characterized by
data captured through the VFD profiler. DaYu’s I/O profiles
measure key characteristics, including I/O operations, timing
information, and file statistics. We record the I/O operations,
associating them with the specific file and the current task.

All these statistics are collected as entries in a hash table
in the duration of the task.

Characteristic (VOL-VFD) Mapper: Due to HDF5’s in-
ternal management, the mapping between data access and I/O
operations is obscured. This hides behaviors like a single data
object access that triggers multiple, dispersed I/O operations
due to factors such as chunked layout or variable-length data.
Specifically, the VOL profiler is unaware of the logical file
address accessible through the VFD profiler. To address this
challenge, DaYu establishes a mapping between high-level
data objects and their corresponding low-level I/O operations.

359

Parameter Description Goal
1. Task Name The current task name
2. File Name List of filenames interacted by the task Create file-task relationship

3. Object Name The data object acessed by task Map I/O operations to Data Object
4. Object Lifetime List of lifetimes: Tobjectrelease − Tobjectaquired. Maintain temporal relationships
5. Object Description Data object details (shape, type, size, etc) Enrich data object semantics
6. Object Access Data object read/write by the task Record application memory/object utilization

Table I: VOL Profiler Object-Level Semantics

Parameter Description Goal
1. Task Name The current task name Create file-task relationship
2. File Name The file name the task is accessing Create file-task relationship
3. File Lifetime Access time Tclose − Topen for the given file Map I/O operations to the task
4. File Statistics Traditional metrics (size, count, sequential, etc) Capture access pattern to different regions
5. I/O Operations The I/O operation count and the file address region The low level (e.g. POSIX) I/O behavior
6. Access Type Flag indicating metada vs data operations Capture the file region acessed
7. Data Object The data object name acessed by the task and file Map I/O operations to Data Object

Table II: VFD Profiler File-Level Semantics

The mapping is achieved by establishing a connection
between DaYu’s VOL and VFD profilers. This connection
associates data objects with their corresponding I/O operations.
Unfortunately, due to HDF5’s abstraction layer, achieving
direct internal communication between the VOL and VFD
layers is inherently difficult. We enable the mapping by
utilizing shared memory between the two layers, allowing
DaYu to communicate the current data object to the lower-
level profiler when recording I/O. With this mapping, DaYu
reveals the distinct I/O behaviors of individual data objects.
These behaviors are then formulated as I/O statistics grouped
by data objects/layouts.

We can further categorize I/O operations into metadata and
raw data operations based on data access types (parameter 6 in
Table II). This categorization reveals the distinct I/O behaviors
exhibited by each type: 1) Metadata I/O often involve smaller
file regions and I/O sizes; 2) Raw data I/O can exhibit more
diverse behaviors.

V. CONNECTING DATASETS ACROSS WORKFLOWS

To optimize workflow performance, we must connect data
accesses to workflow tasks in ways that expose I/O issues
and reveal potential optimizations. Raw I/O traces generated
by traditional profilers lack methods to incorporate workflow
data movement, semantics, and dependencies, all of which are
critical for revealing bottlenecks and insights. To bridge this
gap, DaYu’s Workflow Analyzer connects data-to-task into a
workflow graph and decorates the graph with data semantics
and I/O statistics.

To avoid overly complex graphs, the Workflow Analyzer
generates two types of graphs: one for a complete overview,
and another for deeper semantic analysis.

File-Task Graphs (FTGs): This graph depicts interactions
between data files and tasks, with files and tasks represented as
nodes, and directed edges signifying read or write operations.

Connecting the task and file nodes reveals several key profiles
of the workflow:

• Task and file dependencies;
• Task I/O operations, time ordered file access, and execu-

tion timing;
• I/O datum production and consumption across tasks.

FTGs are constructed based on the execution order of tasks.
The parameters collected in Table II allow us to construct a
task and file dependency graph, forming the foundation for
an FTG. Notably, while current FTG construction requires
manual input for task ordering, future DaYu versions will au-
tomate this process by integrating with workflow management
tools. The edges between connected nodes then include the
collected data access information. An example FTG of the
PyFLEXTRKR workflow is shown in Figure 4.

Semantic Dataflow Graphs (SDGs): This graph build upon
FTGs by introducing a HDF5 data object layer between files
and tasks. This provides insights into the semantic data within
the workflow, revealing how data objects interact with files
and tasks. SDGs can be further enhanced with nodes rep-
resenting logical file addresses/regions (an capability offered
by the Workflow Analyzer) to show where a dataset’s content
distributes within the file. Connecting the file, data, and task
nodes reveals additional key profiles of the workflow:

• Task and data object dependencies, access ordering;
• Data object usage across different tasks;
• Data object and file relationships;
• Data object mapping to file and to different file regions.

Finally, the SDG graph is enriched with data access statistics
(access count, data volume, bandwidth), which differentiates
between data and metadata accesses.

An example of enhanced SDG is shown in Figure 3. Fig-
ure 3 depicts a single-task workflow using blue file nodes and
red task nodes. The data flow (from left to right) shows data-
related nodes (datasets, addresses, files) appearing after task

360

A
cc

es
s

or
de

r.
W

id
th

 p
ro

po
rti

on
al

 to
 d

at
a

vo
lu

m
e.

Execution time.

Files

Tasks

Datasets

Edges
(darker higher
bandwidth)

Figure 3: An example SDG. The nodes are arranged vertically
by event start time (top to bottom) and horizontally by event
end time (left to right). Dataset nodes (dataset_1, dataset_2)
represent data objects that contains actual data, while addr
nodes indicate specific file address regions.

nodes for write operations. Dataset nodes (yellow) precede
the task node, and lighter blue nodes indicate file address
regions within the darker blue file node. For clarity, the
Workflow Analyzer divides addresses into regions based on a
customized page size (e.g., [0−4096) for 4096 pages; each is
one byte). Edge color denotes I/O bandwidth (lighter is lower
bandwidth), and node/edge width represents data volume. Ad-
ditionally, both the FTG and SDG edges contain detailed data
access statistics (interactable in the HTML format), allowing
differentiation between HDF5 metadata and raw data accesses.

Adjusting Resolution: When SDGs become complex due
to workflows with numerous tasks and parallel execution, the
Workflow Analyzer enhances readability by presenting a less
complex graph. It allows users to group and aggregate nodes
by time, space, task, or location dimensions, either during the
analysis step or within the interactive HTML format graph.

VI. DATA FLOW DIAGNOSTIC

This section analyzes the visualized I/O patterns of three
scientific workflows: PyFLEXTRKR, ARLDM, and DDMD.
Using real-world workflow graphs and profiles generated by
DaYu Workflow Analyzer, we uncover unique insights and
identify unknown bottlenecks.

A. Storm Tracking

1) Workflow Overview: The storm tracking scientific work-
flow involves two distinct phases. The first phase simulates
the turbulent flow using specialized models like large eddy
simulations (LES). The second phase focuses on data analysis
using feature tracking software. For this study, we focus on
the analysis phase, utilizing the advanced PyFLEXTRKR soft-
ware [22]. PyFLEXTRKR offers diverse feature-tracking algo-
rithms for various spatial and temporal scales of atmospheric
sensor data, enabling in-depth analysis of storm development.

In a workflow, stages represent logical groupings of tasks
designed to achieve distinct milestones within a larger process.
PyFLEXTRKR’s workflow comprises nine sequential stages,
where tasks within each stage can be executed in parallel
across distributed computing environments. A master work-
flow manager orchestrates task deployment, scheduling, and
execution. Functionally, the PyFLEXTRKR workflow divides
into two parts. Initial stages focus on feature identification and

mapping, archiving results; latter stages emphasize analysis,
requiring frequent, complex interactions with large datasets.
PyFLEXTRKR’s complex data dependencies and irregular,
repetitive access patterns, common in feature-based image
analysis and cluster-based anomaly detection, make it an ideal
case study for exploring common practice scientific workflow
I/O behavior.

2) Observations: Figure 4 shows the FTG of the nine-stage
PyFLEXTRKR pipeline, illustrating the first three observa-
tions. Figure 5 provides a detailed SDG focused on stage-9,
which exemplifies the fourth observation. In Figure 4, stages
are ordered from left to right, visually representing the task
execution sequence. Thus, run_idfeature is considered a stage-
1 task, and run_speed a stage-9 task.

• Data reuse: The stage-3 task exhibits write-after-read
data access. Stage-1 task output is used by multiple
downstream tasks in stages 2, 3, 4, 6, and 8.

• Time-dependent inputs: Observe that the stage-6 task’s
input files are only required in the middle of the workflow,
right before the task.

• Disposable data: Once processed, initial input files (for
stage-1 task) and outputs from tasks with only one
outgoing edge (marked in blue) become non-critical for
further workflow steps.

• Data scattering: Figure 5 exposes an I/O bottleneck in
stage-9: many small datasets (less than 500 bytes) within
a file. This causes frequent metadata access, generating
excessive small I/O requests.

3) Optimizations: For each observation above, we can
employ the below optimizations respectively suggested by
DaYu’s optimization guidelines (Section III-A).

• Customized caching: We can cache the targeted data
in the fastest access tier (e.g., memory or node local
storage).

• Customized prefetching: Delaying data prefetch until be-
fore it is needed can reduce network congestion overhead,
particularly when resource is limited.

• Data Stage-out: Offload files to slower storage, freeing
space for data essential to later tasks.

• Data Format Optimization: For small and fixed-length
data, we can reduce I/O operation by compacting them
into one large dataset.

B. Molecular simulation with Deep Learning

1) Workflow Overview: DeepDriveMD (DDMD) is a sci-
entific workflow for protein folding that integrates simulation,
machine learning (ML) training, and inference in a single
pipeline [23]. This hybrid approach reflects the expanding use
of ML analysis across scientific domains, such as materials
science [24] and climate modeling [25].

DDMD employs an iterative process with four distinct
stages: simulation, aggregation, training, and inference. Each
iteration leverages insights from the previous one to guide
subsequent experiment configuration. A single DDMD iter-
ation follows a 4-stage pipeline: OpenMM simulation (12
parallel tasks), aggregation, training, and inference (each with

361

files tasks edges (darker color higher bandwidth)data reused edges
1

2

1 3 4 5 6 7 8 92

Figure 4: PyFLEXTRKR Workflow FTG. (1) Circle 1 highlights the write-after-read pattern of task run_gettracks (stage-3).
(2) Circle 2 identifies input files that are not accessed at the start of the workflow. (3) Orange edges shows the data node with
more than two out-going edge, which means data reuse. Red circles denote stage numbers.

files

tasks

datasets

File metadata

edges (darker color higher bandwidth)

1

2

Figure 5: Pyflextrkr Stage-9 SDG. Both (1) and (2) shows
many small datasets exists in each file, the number of edges
here present the actual number of datasets in all files, which
is not bounded and can become large.

1 task). In the OpenMM stage, each task generates HDF5
files containing four datasets (contact_map, point_cloud, fnc,
rmsd). Simulation and ML analysis integration is becoming
prevalent in scientific workflows [26], and DeepDriveMD
exemplifies the I/O patterns of such workflows, which often
exhibit diverse data access characteristics – a common feature
in HPC simulation-analysis-visualization workflows [27], [28].

2) Observations: Figure 6 shows the FTG of the full
DDMD workflow for the first 3 observations. Figure 7 shows
the SDG of the aggregate and training stage for the 4th
observation.

• Read-only access: The aggregate and inference stages
read all simulated data, and accessing these files sequen-
tially.

• Data reuse: The training task shows read-after-write
pattern on specific embedding files (numbers 5 and 10).

• None-data dependent tasks: We see training and inference
stages have no HDF5 data dependency as they show
independent input and output files.

• Partial file access: From Figure 7 we observe the ag-
gregate task consolidates four datasets and file metadata

from simulated data into a single file, but doesn’t modify
the underlying data. Interestingly, the subsequent training
stage only uses three of these datasets, excluding the
largest dataset contact_map. This suggests that a sig-
nificant portion of data processed during aggregation is
ultimately unused in training.

• Metadata overhead: Although the graph doesn’t show data
semantics details, our analysis reveals that all datasets
involved in the workflow are of HDF5 chunked layout.
However, the chunked layout becomes inefficient for the
workflow’s small file sizes. Chunking HDF5 files into
small fragments adds metadata overhead and incurs extra
I/O operations.

3) Optimizations: Below are the optimizations suggested
by DaYu’s guidelines for each observations respectively.

• Customized prefetching: To improve data locality,
prefetch the simulated data to the fastest storage tier close
to the aggregation and inference tasks. Schedule these
tasks on the same compute resource. Since the input files
are accessed sequentially, implement a rolling stage-in
strategy for efficient data movement.

• Customized caching: Cache the specific training task files
to reduce access latency.

• Task Parallelization: We can parallelize training and
inference tasks without data dependencies. In DDMD,
inference relies on the training-generated model, a de-
pendency DaYu’s HDF5 layer focus doesn’t fully capture.
Despite the model dependency between iterations, there
are optimization opportunities due to data independence
within each iteration. A pre-trained model enables parallel
inference and training in the current iteration, with the
inference stage subsequently using the previous iteration’s
trained model.

• Partial File Access: We can selectively access the used
datasets in the aggregate stage and leave out the unused
dataset to reduce data movement.

• Data Format Optimization: Change the fragmented chun-
ked dataset to contiguous data layout to reduce I/O
operation.

362

files tasks edges (darker higher bandwidth)data reused edges

1

3

2

1 3 42

Figure 6: The DeepDriveMD workflow FTG depicts a 4-stage pipeline. Red circles denote stage numbers. (1) Both the aggregate
task (Circle 1) and inference task (Circle 3) access all simulated data. (2) In contrast, the training task (Circle 2) primarily
reads from the "aggregated" output and accesses only one simulated data file. (3) Notably, the graph reveals no direct data
dependency between the training and inference tasks.

2
1

files

tasks

datasets

File metadata

data reused edges

edges (darker color higher bandwidth)

Figure 7: The DeepDriveMD partial workflow SDG shows
dataset usage between the aggregate and training tasks. (1)
Among the datasets, the contact_map (Circle 1) has the largest
volume. (2) The training task accesses aggregated data but
does not directly utilize the contact_map. Instead, as shown in
Circle 2, the contact_map is read from simulation output. (3)
The pop-up (highlighted in orange) indicates that the training
task only accesses the contact_map’s metadata, not its data
content.

C. Image Synthesis

1) Workflow Overview: Advanced diffusion models like
DALL·E and Stable Diffusion have revolutionized machine
learning with their ability to generate images from text descrip-
tions. Building upon these advancements, the Auto-Regressive
Latent Diffusion Model (ARLDM) incorporates historical con-
text and multimodal conditions for enhanced understanding
and image synthesis capabilities [29]. The ARLDM workflow
consists of three stages: First, the data preparation stage, where
image and text data are prepared and stored in HDF5 format
(with images in separate datasets). Next, the training stage,
where the model reads image datasets from HDF5 for training.
Finally, inference is performed on datasets.

ARLDM uses a 1D array of variable-length data for image
and text storage. We chose this workload due to the prevalence
of variable-length sequences in NLP models and the similar

1

(a) Contiguous Datasets SDG.

2 Files

Tasks

Datasets

File metadata

Edges
(darker higher
bandwidth)

(b) Chunked Datasets SDG.

Figure 8: Figures (a) and (b) depict the SDG of the stage-1
task arldm_saveh5 within the ARLDM workflow. (1) Box 1
highlights the fragmentation of datasets across different logical
file address regions. This fragmentation is consistent between
both figures. (2) Box 2 in (b) highlights the file metadata
region, a distinctive feature of chunked dataset layouts.

management and performance issues shared by sparse data,
common in scientific programming [30].

2) Observation: Figure 3 depicts the first stage of the
workflow, in which a data preparation task arldm_saveh on the
leftmost node writes to a file flinstone_out.h5 on the rightmost
node. The later stages are omitted due to similar analysis. The
yellow nodes are HDF5 datasets, while the lighter blue nodes
represent file address regions, connecting to the darker blue file
node. In ARLDM, file addresses are divided into four regions,
each indexing a range of 64KB file pages. For example, the
node [0− 3804) represents file addresses from page 0 to page
3804. The same interpretation applies to the remaining address
ranges.

Lack of metadata: Figure 8a shows the data flow with the
default data layout. In box 1, the task arldm_saveh writes to
six HDF5 datasets, each mapped to specific file page ranges.

363

Machine Compute, Memory Storage options (notes)
CPU
cluster

2x Intel(R) Xeon Silver 4114,
48 GB RAM

NFS (default); NVMe SSD (node);
SATA SSD (node); HDD (node)

GPU
cluster

2× AMD EPYC; NVidia
RTX 2080 Ti; 384 GB RAM

NFS (default); BeeGFS (w/
caching); SSD(node)

Table III: Machine configurations for experiments.

This spread implies that each dataset has content in all four
different file regions. Notably, all datasets share the first region
(the default location for metadata), while the actual VL data
content of each dataset is stored in different file regions.

3) Data Format Optimization: Data flow with a chunked
layout is illustrated in Figure 8b. Box 2 highlights HDF5’s
File-Metadata region, which stores metadata about all datasets
within the file. External optimization systems can leverage
this information for data placement and identifying poten-
tially unused data. Interestingly, the chunked layout uses only
slightly more file address space (chunked up to page 15232
vs. contiguous up to 15216) due to this additional metadata.
Our I/O analysis reveals significantly fewer I/O operations
when reading chunked datasets – specifically, half the number
of POSIX write operations compared to contiguous layouts.
This improvement results from the availability of metadata
information when handling variable-length data.

VII. EVALUATION

A. Experimental Setup

Hardware: Our evaluation uses the machines listed in
Table III. While our evaluation focuses on medium-to-small
scales, the findings remain relevant for large-scale workflows.
Control loops often operate at these scales, and smaller de-
ployments can present more performance optimization oppor-
tunities due to less data movement and resource contention
[31].

Evaluation Software: We employ various evaluation meth-
ods to validate DaYu’s effectiveness. Our DaYu tool gathers
and analyzes runtime data access patterns to identify areas
for optimization. Internally, DaYu relies on HDF5 for track-
ing application data access. For a comprehensive overhead
assessment, we use the well-established H5bench benchmark
suite [32], a representative parallel I/O benchmark designed for
large-scale HDF5 workflows. We supplement H5bench with a
custom Python script for simulating corner-case I/O behaviors.

B. Data Semantic Mapper Overhead Analysis

To evaluate the overhead introduced by DaYu’s profiling
capabilities, we conducted two tests: one with h5bench and one
with a custom Python benchmark. Both tests were executed
on a single node to maximize visibility of potential overhead.
They capture, respectively, the typical and worst-case overhead
incurred by DaYu’s full functionality without data collection
granularity adjustments (results in Figure 9).

The Python benchmark creates a corner-case scenario with
an unusually large number (200) of datasets [33] stored in a
small file. This test aims to isolate potential bottlenecks within
DaYu’s profiling, particularly when dealing with frequent data

object access within a single task. Repeated reads of the
same datasets within the same task trigger increased overhead
because DaYu tracks semantic data even for closed datasets,
deferring logging until the file is closed.

Results in Figure 9a and 9b show that the Data Semantic
Mapper’s overhead remains below 0.23% and decreases with
increasing file size or number of processes. This is because
DaYu’s overhead is proportional to data object operations
(create/open/close) and application access patterns. When data
objects are opened or closed once per file and application
access involves large I/O sizes, DaYu’s overhead remains low
even as program I/O time increases.

Note that DaYu’s time-sensitive I/O tracing comes with a
trade-off. Runtime overhead increases with higher I/O activ-
ity (read/write) within a file’s open/close period, potentially
reaching up to 4% (Figure 9c). The storage overhead of VOL
remains low at 0.2%, while VFD increases linearly with I/O
operations (Figure 9d).

Importantly, for analyses that do not require time-sensitive
I/O traces, users can turn off I/O tracing. This will result in
constant storage overhead.

This suggests that DaYu’s storage footprint remains ac-
ceptable for the valuable insights it provides. Even with
the largest tested storage footprint, the offline components
require minimal processing time for the collected statistics.
The Workflow Analyzer takes less than 15 seconds to analyze
a graph with 1k nodes and 6k edges, and less than 2 seconds to
construct the corresponding FTG and SDG in HTML format.

1) Component Analysis: To gain further insight into the
performance of DaYu’s Data Semantic Mapper, we analyzed
the time breakdown of its three components: the Input Parser
(which reads the configuration), the Access Tracker (which
intercepts data access and I/O), and the Characteristics Mapper
(which maps data to I/O). We compared its performance under
two scenarios: an h5bench test using a large file size (80GB)
and 64 processes, and the previously described corner-case
Python test. The results of this analysis are presented in
Figures 10a and 10b.

H5bench revealed minimal DaYu overhead, with 38.83 ms
accounting for 0.008% of the execution time. The execution
time primarily comes from the Characteristics Mapper. The
corner-case Python test explored the worst-case scenario,
showing 4% overhead (2.97% VFD, 1.0% VOL). This aligns
with our observation that frequent data object open and close
operations lead to higher overhead, particularly in the Access
Tracker component, which records all data object accesses.

C. DaYu I/O Optimization Evaluation

1) Improving Data Placement: This evaluation demon-
strates how DaYu’s analysis can guide improvements in data
locality, showcasing the potential for tailored data prefetching
and task scheduling to optimize I/O according to established
optimization guidelines.

While large-scale evaluations are valuable, this work focuses
on real-world applications that require faster turnaround times,
often found at smaller scales. Here, data movement efficiency

364

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0 20 40 60 80

Ex
ec

ut
io

n
O

ve
rh

ea
d

%

File Size (GB)

VFD

VOL

(a) H5bench data size scaling.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0.16%

0 16 32 48 64

Ex
ec

ut
io

n
O

ve
rh

ea
d

%

Num of Processes

VFD

VOL

(b) H5bench process scaling.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0 2000 4000 6000 8000

Ex
ec

ut
io

n
O

ve
rh

ea
d

%

Dataset I/O Operations

VFD

VOL

(c) Python file read count scaling.

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0 2000 4000 6000 8000

St
or

ag
e

O
ve

rh
ea

d
(%

)

I/O Operations

VFD Storage %

VOL Storage %

(d) Python storage scaling.

Figure 9: DaYu’s Data Semantic Mapper Overhead with VFD (low-level) and VOL (high-level): (a) H5bench with increased
total file size; (b) H5bench with increased parallel I/O processes with a fixed 1GB I/O per process; (c) Increased dataset I/O
count with a fixed 200MB file size; (d) DaYu statistics storage overhead compared to the program’s required storage size.

18.20%

4.91%

76.89%

Input_Parser

Access_Tracker

Characteristic_Mapper

Total Time: 38.83 ms

(a) DaYu with h5bench.

1.40%

41.73%

56.87%

Input_Parser

Access_Tracker

Characteristic_Mapper

Total Time: 813.74 ms

(b) DaYu with corner-case Python.

Figure 10: Breakdown of DaYu execution overhead.

limits optimization opportunities. Future work will explore
how I/O performance scales with workflow size.

PyFLEXTRKR: DaYu’s analysis shows that some files
are heavily reused across stages, while others are specific to
individual tasks within a stage. These insights enable strate-
gic file placement to improve data locality. To demonstrate
the impact, we evaluate the performance improvement on
a sub-workflow encompassing stages 3 through 5 from the
PyFLEXTRKR workflow (Figure 4). Focusing on stages 3-5,
DaYu’s analysis identifies that the run_gettracks tasks (stage
3) are parallelizable with an all-to-all access pattern (all tasks
access all files). This function produces a single output file
used as input for the subsequent run_trackstats task (stage
4). Stage 4 utilizes the same input files as stage 3, but the
task is not parallelizable and exhibits a fan-in access pattern.
By leveraging this knowledge, we can co-schedule stage 4
to run on the same node where the output from stage 3
is generated. Similarly, the run_identifymcs task (stage 5) is
not parallelizable and accesses the output file from stage 4.
DaYu identifies this one-to-one access pattern, enabling the
co-scheduling of stages 3, 4, and 5 on the same processing
node.

Our analysis identified two additional potential optimiza-
tions, but we opted not to implement them due to their

0

100

200

300

400

Stage-In Stage 3 Stage-Out Stage 4 Stage 5 Stages Sum
Ti

m
e

(S
ec

)

Stages

C1: 170MB_48P_2N BeeGFS (Baseline)
C1: 170MB_48P_2N SSD
C2: 1.2GB_240P_8N BeeGFS (Baseline)
C2: 1.2GB_240P_8N SSD

Figure 11: Comparing execution times for baseline vs. DaYu-
optimized PyFLEXTRKR Stage 3-5 with Configuration 1 (C1)
and Configuration 2 (C2) experiments. C1 uses a total of 170
MB of input files, 48 processes, and runs on 2 nodes. C2 uses
a total of 1.2 GB of input files, 240 processes, and runs on 8
nodes.

negligible impact on overall performance. In the data reuse
scenario (Circle 1, Figure 4, write-after-read I/O), the small
file size allows it to be held entirely in memory during the task,
ensuring it won’t be swapped out. Since the workflow’s cur-
rent memory usage is not a constraint, implementing custom
caching is unnecessary. Similarly, the time-dependent input
files are also small and can be accommodated within the node’s
local storage. Consequently, prefetching data onto the node is
not necessary at this stage to save space for them.

Our findings in Figure 11 demonstrate that, with a combi-
nation of data prefetching and task scheduling, the workflow
runtime from stages 3 to 5 shows an overall speedup of 1.6x.
Specifically, Stage 3 in experiment C1 shows a speedup of
2.6x.

DDMD: DaYu analysis revealed inefficiencies in the work-
flow. A large dataset created during Aggregate remains unused
by Training, and both Aggregate and Inference share input
files. To improve data movement, we can implement several
optimizations following I/O optimization guidelines:

• Eliminate Unused Data Access: Aggregate will no longer
access the unnecessary dataset, reducing data movement.

• Co-locate Aggregate and Inference: By placing Aggregate
and Inference on the same node, I/O performance is

365

0

50

100

150

200

250

300

350

400

1 2 3

Ti
m

e
(s

ec
)

Iterations

DDMD BeeGFS (Baseline)
DDMD BeeGFS+SSD

Figure 12: DDMD (12 tasks) execution vs. DaYu optimized.

improved, and data movement is significantly reduced.
• Pipeline Training and Inference: Training runs on a

separate node with pre-staged input data, while Inference
leverages the pre-trained model from the current iteration,
optimizing execution flow.

• Asynchronous Data Staging: Finished data is asyn-
chronously staged from local storage to shared storage
during the startup of the next iteration, maximizing effi-
ciency.

For the observed data reuse scenario (Circle 2, Figure 6,
read-after-write I/O), the current experiment I/O sizes can
be accommodated in memory during the task period without
being swapped out by other I/O. Thus, implementing custom
caching is unnecessary here. This approach yields a 1.15x
performance improvement per pipeline iteration and a 1.2x
improvement across a 5-iteration pipeline, as shown in Figure
12.

2) Improving Data Layout: This evaluation explores how
DaYu’s analysis guides the development of a straightforward
data layout policy, ultimately reducing I/O times within work-
flows by following optimization guidelines.

PyFLEXTRKR: Our analysis of the workflow revealed a
key inefficiency: scattered datasets were causing excessive
metadata accesses. To address the challenge of metadata
overhead, we implemented an optimization strategy that con-
solidates these small datasets into a single, larger one. This
approach reduces metadata overhead by keeping track of the
original file offsets within the consolidated dataset. To evaluate
the I/O impact of data layout improvements, we simulated
the stage-9 PyFLEXTRKR workflow (Figure 5) using various
dataset sizes within a file. This file contained 32 datasets,
each accessed 23 times. We tested performance under different
numbers of concurrent processes to understand scaling behav-
ior. The I/O was performed against a fast node-local NVMe
drive to optimally handle small, concurrent I/O [34]. The
measured I/O times (sum of POSIX operations) demonstrate
that data consolidation significantly improves performance
when datasets are small and numerous (Figure 13a). This op-
timization is particularly effective for files containing smaller
datasets. Furthermore, I/O performance benefits increase as
the number of processes concurrently accessing the same file
decreases. Benchmarks across dataset sizes (1KB-8KB) and
process scaling reveal I/O time reductions of 1.7x to 3.7x with

data consolidation.
DDMD: Our analysis shows that the original chunked

data layout causes excessive metadata and I/O operations. To
improve I/O efficiency, we applied an optimization technique
that converts datasets to a contiguous layout, reducing both
metadata overhead and I/O operations. To measure the I/O
time of these changes, we simulated the I/O behavior of
DDMD’s OpenMM and Aggregate tasks to evaluate the per-
formance difference between chunked and contiguous dataset
layouts.

As shown in Figure 13b, contiguous datasets consistently
outperform chunked layouts across various dataset sizes and
process counts. In high-concurrency scenarios typical of
OpenMM, the performance improvement using contiguous
datasets can achieve a speedup of 1.9x.

ARLDM: DaYu’s analysis revealed that the ARLDM work-
flow frequently handles large datasets (6GB to 20GB), with
over 90% being variable-length data. This data type requires
extensive metadata to record data locations. To address this
challenge and improve data access, we modified the default
contiguous layout to HDF5’s chunked layout. We measured the
execution time of the task arldm_saveh5, which corresponds
to the write time of the complete file.

While contiguous and chunked layouts offer comparable
performance for smaller datasets (as seen in the 5GB test case,
Figure 13c), the advantages of chunking become significant
with larger datasets. Our findings demonstrate that optimal
chunk sizes can enhance write performance by up to 1.4x
compared to contiguous layouts. This improvement stems
from DaYu’s analysis, which reveals that chunked layouts
significantly reduce I/O operations (by 2x) for variable-length
data compared to contiguous layouts. This reduction is due to
the metadata within chunked datasets, which provides indexing
for variable-length data and leads to better I/O performance.

VIII. RELATED WORK

A. Application I/O Characterization

Significant effort has been devoted to characterizing appli-
cation I/O behavior. Tools like Darshan [10] and Recorder [11]
provide insights into storage-level or call-level I/O perfor-
mance. However, they primarily focus on storage access char-
acteristics rather than application-level data patterns. Addition-
ally, tools like TOKIO [35] analyze extensive data traces for
system-level insights but lack application-specific I/O analysis.
While research has explored I/O patterns on supercomput-
ers [36] and tools like IOMiner [37] identify root causes of
poor I/O performance, they do not address cross-workflow
data locality and reuse patterns. Existing tools and research
highlight the value of capturing runtime I/O behavior, but
a semantic-level approach is crucial for analyzing workflow-
wide data access patterns and effectively communicating bot-
tlenecks to programmers. This requires understanding data
locality (reuse frequency) and reuse patterns (how data is
utilized across tasks). Such analysis goes beyond traditional
I/O profiling, uncovering insights into workflow I/O behavior

366

0
100
200
300
400
500
600
700
800
900

1000

4 8 16 32

I/
O

 T
im

e
(m

s)

Num of Processes

Baseline_1k Baseline_2k Baseline_4k Baseline_8k
Consolidated_1k Consolidated_2k Consolidated_4k Consolidated_8k

(a) PyFLEXTRKR Baseline (Scattered) vs. Consolidated.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Num of Processes

Baseline_100 Baseline_200 Baseline_400 Baseline_800

Contig_100 Contig_200 Contig_400 Contig_800

(b) DDMD Baseline (Chunked) vs. Contiguous.

0

100

200

300

400

500

600

700

800

900

5GB 10GB

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

File Size

Contig (Baseline)

5 Chunks

10 Chunks

(c) ARLDM.

Figure 13: Comparing the I/O performance of the original workflow data layout vs. the DaYu data layout.

that might otherwise be overlooked and pinpointing critical
bottlenecks.

B. Workflow Characterization and Optimization

Characterization: Traditionally, scientific workflow char-
acterization has focused on computational resource utilization,
using resources like the Parallel Workload Archive [38] and
the Grid Workload Archive [39]. While tools like Pegasus [40]
capture task-to-file dependencies, they lack the data-centric
information needed for improving I/O. Previous efforts by
Bharath et al. and Juve et al. [41], [42] explored profiling
workflows, including I/O and memory access characteristics.
DaYu builds upon these works but offers a distinct approach by
focusing on the relationship between tasks and data objects,
enabling a new understanding of dataflow semantics within
workflows.

Optimization: There is extensive research on optimizing
application I/O, including tools like DXT Explorer [43] for
log analysis that facilitates I/O optimization, Behzad et al.’s
autotuning system [44], and Carretero et al.’s solution for
reducing I/O contention with performance-aware I/O schedul-
ing [45]. However, these primarily focus on optimizing single
applications, leaving a gap in addressing cross-application I/O
optimization. Lee et al. [46] introduced Data Flow Lifecycles
to analyze workflows from task and data flow perspectives and
proposed workflow optimization with this analysis. However,
this approach lacks location and temporal ordering (per task
and per file) as well as the semantic information needed to
fully understand dataflow across applications.

IX. CONCLUSION

Currently, automated methods for understanding data flow
between distributed tasks in scientific workflows are lacking,
hindering effective I/O optimization. To address this challenge,
we introduce DaYu, a data flow analysis and optimization
framework. DaYu provides critical insights into data access
patterns and I/O performance through a multi-layered data
semantic extraction approach. The DaYu Workflow Analyzer
extracts data flow and incorporates I/O behaviors to construct
and visualize a Semantic Dataflow Graph. This comprehensive
analysis enables users to uncover workflow optimizations.
Guided by DaYu’s insights, performance analysts can optimize
workflows using the provided guidelines. Our evaluations

demonstrate that DaYu’s analysis enables significant I/O per-
formance improvements, resulting in up to a 3.7x speedup. The
time overhead for DaYu’s time-ordered data is typically under
0.2% of runtime (4% in extreme cases). Storage overhead is
under 0.25% of data volume (0.3% in extreme cases).

Enhancing DaYu’s real-world impact is a key focus for
future work. We plan to expand the I/O optimization guide-
lines, further leveraging DaYu’s insights to automate opti-
mization strategies. Our future work will involve integrating
DaYu’s analysis capabilities with existing I/O optimization
ecosystems. This could include tools like Drishti [47] for
performance analysis and optimization recommendations. Ad-
ditionally, integration with I/O middleware like Hermes [19]
could enable transparent and immediate runtime optimization,
further streamlining the workflow optimization process. Fu-
ture work will also investigate extending DaYu’s support for
asynchronous I/O and Message Passing Interface (MPI) appli-
cations to explore even broader applicability. Asynchronous
I/O and MPI are prevalent in high-performance computing
workflows, and enabling DaYu to analyze and optimize these
workflows would significantly increase its impact.

X. ACKNOWLEDGMENTS

This research is supported by the U.S. Department of
Energy (DOE) through the Office of Advanced Scientific
Computing Research’s “Orchestration for Distributed & Data-
Intensive Scientific Exploration”; the “Cloud, HPC, and Edge
for Science and Security” LDRD at Pacific Northwest National
Laboratory; and partly by the National Science Foundation
under Grants no. CSSI-2104013 and OAC-2313154.

REFERENCES

[1] G. Berriman, J. Good, A. Laity, A. Bergou, J. Jacob, D. Katz, E. Deel-
man, C. Kesselman, G. Singh, M.-H. Su et al., “Montage: A grid
enabled image mosaic service for the national virtual observatory,” in
Astronomical Data Analysis Software and Systems (ADASS) XIII, vol.
314, 2004, p. 593.

[2] L. Clarke, X. Zheng-Bradley, R. Smith, E. Kulesha, C. Xiao, I. Toneva,
B. Vaughan, D. Preuss, R. Leinonen, M. Shumway et al., “The 1000
genomes project: data management and community access,” Nature
methods, vol. 9, no. 5, pp. 459–462, 2012.

[3] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. Van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175, 2018.

367

[4] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig et al., “The inter-
national exascale software project roadmap,” The international journal
of high performance computing applications, vol. 25, no. 1, pp. 3–60,
2011.

[5] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the root
causes of cross-application i/o interference in hpc storage systems,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2016, pp. 750–759.

[6] H. Group et al., “Hierarchical data format version 5,” 1997.
[7] Q. Sun, T. Jin, M. Romanus, H. Bui, F. Zhang, H. Yu, H. Kolla,

S. Klasky, J. Chen, and M. Parashar, “Adaptive data placement for
staging-based coupled scientific workflows,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–12.

[8] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar,
“Stacker: an autonomic data movement engine for extreme-scale data
staging-based in-situ workflows,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 920–930.

[9] T. Wang, S. Byna, B. Dong, and H. Tang, “Univistor: Integrated
hierarchical and distributed storage for hpc,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2018, pp. 134–
144.

[10] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, pp. 1–26, 2011.

[11] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel i/o tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2020, pp. 1–8.

[12] H. Devarajan and K. Mohror, “Extracting and characterizing i/o behavior
of hpc workloads,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2022, pp. 243–255.

[13] M. Liu, J. Zhai, Y. Zhai, X. Ma, and W. Chen, “One optimized
i/o configuration per hpc application: leveraging the configurability of
cloud,” in Proceedings of the Second Asia-Pacific Workshop on Systems,
2011, pp. 1–5.

[14] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the hdf5 technology suite and its applications,” in Pro-
ceedings of the EDBT/ICDT 2011 workshop on array databases, 2011,
pp. 36–47.

[15] R. Rew and G. Davis, “Netcdf: an interface for scientific data access,”
IEEE computer graphics and applications, vol. 10, no. 4, pp. 76–82,
1990.

[16] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “Adios 2: The
adaptable input output system. a framework for high-performance data
management,” SoftwareX, vol. 12, p. 100561, 2020.

[17] A. Collette, Python and HDF5: unlocking scientific data. " O’Reilly
Media, Inc.", 2013.

[18] 2024. [Online]. Available: https://github.com/pnnl/DaYu
[19] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A heterogeneous-

aware multi-tiered distributed i/o buffering system,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 219–230. [Online].
Available: https://doi.org/10.1145/3208040.3208059

[20] 2015. [Online]. Available: https://docs.hdfgroup.org/hdf5/develop/_h5_
v_l__u_g.html

[21] J. Henderson and D. Robinson, HDF5 VFD Plugins, 2021.
[Online]. Available: https://www.hdfgroup.org/wp-content/uploads/
2021/10/HDF5-VFD-Plugins-HUG.pdf

[22] Z. Feng, J. Hardin, H. C. Barnes, J. Li, L. R. Leung, A. Varble, and
Z. Zhang, “Pyflextrkr: a flexible feature tracking python software for
convective cloud analysis,” EGUsphere, pp. 1–29, 2022.

[23] H. Lee, M. Turilli, S. Jha, D. Bhowmik, H. Ma, and A. Ramanathan,
“Deepdrivemd: Deep-learning driven adaptive molecular simulations for
protein folding,” in 2019 IEEE/ACM Third Workshop on Deep Learning
on Supercomputers (DLS), 2019, pp. 12–19.

[24] J. Wei, X. Chu, X.-Y. Sun, K. Xu, H.-X. Deng, J. Chen, Z. Wei, and
M. Lei, “Machine learning in materials science,” InfoMat, vol. 1, no. 3,
pp. 338–358, 2019.

[25] P. A. O’Gorman and J. G. Dwyer, “Using machine learning to parameter-
ize moist convection: Potential for modeling of climate, climate change,
and extreme events,” Journal of Advances in Modeling Earth Systems,
vol. 10, no. 10, pp. 2548–2563, 2018.

[26] A. Nouri, P. E. Davis, P. Subedi, and M. Parashar, “Exploring the role of
machine learning in scientific workflows: Opportunities and challenges,”
arXiv preprint arXiv:2110.13999, 2021.

[27] C. Peña-Monferrer, R. Manson-Sawko, and V. Elisseev, “Hpc-cloud
native framework for concurrent simulation, analysis and visualization
of cfd workflows,” Future Generation Computer Systems, vol. 123, pp.
14–23, 2021.

[28] J. Senk, A. Yegenoglu, O. Amblet, Y. Brukau, A. Davison, D. R.
Lester, A. Lührs, P. Quaglio, V. Rostami, A. Rowley et al., “A col-
laborative simulation-analysis workflow for computational neuroscience
using hpc,” in High-Performance Scientific Computing: First JARA-
HPC Symposium, JHPCS 2016, Aachen, Germany, October 4–5, 2016,
Revised Selected Papers 1. Springer, 2017, pp. 243–256.

[29] X. Pan, P. Qin, Y. Li, H. Xue, and W. Chen, “Synthesizing coher-
ent story with auto-regressive latent diffusion models,” arXiv preprint
arXiv:2211.10950, 2022.

[30] J. Mainzer, N. Fortner, G. Heber, E. Pourmal, Q. Koziol, S. Byna, and
M. Paterno, “Sparse data management in hdf5,” in 2019 IEEE/ACM 1st
Annual Workshop on Large-scale Experiment-in-the-Loop Computing
(XLOOP), 2019, pp. 20–25.

[31] K. Mehta, A. Cliff, F. Suter, A. M. Walker, M. Wolf, D. Jacobson,
and S. Klasky, “Running ensemble workflows at extreme scale: Lessons
learned and path forward,” in 2022 IEEE 18th International Conference
on e-Science (e-Science), 2022, pp. 284–294.

[32] T. Li, S. Byna, Q. Koziol, H. Tang, J. L. Bez, and Q. Kang, “h5bench:
HDF5 I/O Kernel Suite for Exercising HPC I/O Patterns,” in Proceedings
of Cray User Group Meeting, CUG 2021, 2021.

[33] T. H. Group, “Hdf5 dataset size and number questions,” Apr 2024.
[Online]. Available: https://forum.hdfgroup.org/t/hdf5-dataset-size-and-
number-questions/12215

[34] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of nvme ssds
and their implication on real world databases,” 2015.

[35] G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown,
and K. Harms, “Tokio on clusterstor: connecting standard tools to
enable holistic i/o performance analysis,” Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2018.

[36] T. Patel and S. Byna, “Uncovering access, reuse, and sharing charac-
teristics of i/o-intensive files on large-scale production hpc systems.”
in Proceedings of the 18th USENIX Conference on File and Storage
Technologies, 2020, 2020.

[37] T. Wang, S. Snyder, G. Lockwood, P. Carns, N. Wright, and S. Byna,
“Iominer: Large-scale analytics framework for gaining knowledge from
i/o logs,” in 2018 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2018, pp. 466–476.

[38] 2014. [Online]. Available: https://www.cs.huji.ac.il/labs/parallel/
workload/

[39] 2024. [Online]. Available: http://gwa.ewi.tudelft.nl/
[40] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,

R. Mayani, W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[41] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in 2008 third work-
shop on workflows in support of large-scale science. IEEE, 2008, pp.
1–10.

[42] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future generation
computer systems, vol. 29, no. 3, pp. 682–692, 2013.

[43] J. Ousterhout and F. Douglis, “Beating the i/o bottleneck: A case for
log-structured file systems,” ACM SIGOPS Operating Systems Review,
vol. 23, no. 1, pp. 11–28, 1989.

[44] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing i/o performance
of hpc applications with autotuning,” ACM Transactions on Parallel
Computing (TOPC), vol. 5, no. 4, pp. 1–27, 2019.

[45] J. Carretero, E. Jeannot, G. Pallez, D. E. Singh, and N. Vidal, “Mapping
and scheduling hpc applications for optimizing i/o,” in Proceedings of
the 34th ACM International Conference on Supercomputing, 2020, pp.
1–12.

368

https://github.com/pnnl/DaYu
https://doi.org/10.1145/3208040.3208059
https://docs.hdfgroup.org/hdf5/develop/_h5_v_l__u_g.html
https://docs.hdfgroup.org/hdf5/develop/_h5_v_l__u_g.html
https://www.hdfgroup.org/wp-content/uploads/2021/10/HDF5-VFD-Plugins-HUG.pdf
https://www.hdfgroup.org/wp-content/uploads/2021/10/HDF5-VFD-Plugins-HUG.pdf
https://forum.hdfgroup.org/t/hdf5-dataset-size-and-number-questions/12215
https://forum.hdfgroup.org/t/hdf5-dataset-size-and-number-questions/12215
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
http://gwa.ewi.tudelft.nl/

[46] H. Lee, L. Guo, M. Tang, J. Firoz, N. Tallent, A. Kougkas, and X.-
H. Sun, “Data flow lifecycles for optimizing workflow coordination,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2023, pp. 1–15.

[47] J. L. Bez, L. B. N. Laboratory, H. Ather, L. B. N. Laboratory, S. Byna,
and L. B. N. Laboratory, “Drishti: Guiding End-Users in the I/O
Optimization Journey,” 2022.

369

