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SUMMARY
5

This study presents a practical solution for data collection and restoration to migrate a process written
in high-level stack-based languages such as C and Fortran over a network of heterogeneous computers.
We first introduce a logical data model, namely the Memory Space Representation (MSR) model,
to recognize complex data structures in process address space. Then, novel methods are developed to
incorporate the MSR model into a process, and to collect and restore data efficiently. We have implemented10

prototype software and performed experiments on different programs. Experimental and analytical results
show that: (1) a user-level process can be migrated across different computing platforms; (2) semantic
information of data structures in the process’s memory space can be correctly collected and restored;
(3) costs of data collection and restoration depend on the complexity of the MSR graph in the memory
space and the amount of data involved; and (4) the implantation of the MSR model into the process is not15

a decisive factor of incurring execution overheads. With appropriate program analysis, we can practically
achieve low overhead. Copyright  2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As network computing becomes an increasingly popular choice for computing, network process
migration has recently received unprecedented attention. One driving force behind process migration
is its support for fault tolerance (fault-driven): to migrate processes from the faulted machine to other
machines when a fault is detected. Checkpointing is commonly used for fault tolerance. Checkpointing25

enables the execution of the code to be resumed from a previously saved state (checkpoint) rather
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than its beginning; thus, the damage caused by the fault can be limited to a tolerable degree.
Since a checkpointed process can be restarted at other machines in a distributed environment, fault
tolerance can be achieved either by resuming the process at the same machine after the fault is
recovered or resuming at a new machine via network transfer. Another driving force of process
migration is performance (performance-driven): to migrate processes from one machine to another5

for better performance. Load balance is one of the motivations of performance-driven migrations.
Recent research shows process migration is necessary for load balancing in non-dedicated distributed
environments [1–3]. Other reasons for performance-driven migration include data access locality,
migrating processes towards the source of the data, and resource sharing, migrating processes toward
the source of appropriate hardware and software. Emerging new applications such as collaborative10

computing, ubiquitous immersion computing, and network grid computing [4], require the support
of process migration. Migration provides the mobility of computing. Efficient process migration
is recognized as a critical issue for next generation network environments [5]. Although a few
approaches for heterogeneous process migration have been presented [6–10], due to its complexity,
no wildly accepted or standard solutions currently exist for efficient heterogeneous process migration15

for traditional stack-based languages such as C or Fortran. A current success in mobile computing
is the creation of Java. Java is a good choice for many applications. However, Java’s status as a
scientific programming language has been continuously under question due to its poor performance
on computationally intensive applications and its simplified data structures.

In this study, we present a new methodology of data collection and restoration that enables20

sophisticated data structures such as pointers to be migrated appropriately in a heterogeneous
environment. This methodology analyzes the pre-stored or current program state for heterogeneous
process migration and can be used for both fault-driven and performance-driven purposes.
Our approach is highly independent of computer hardware, operating system and compilation tools,
and can reduce the costs of process migration by transferring only live data, the data needed for further25

computation beyond the point where process migration take place, during process migration. It has
also been applied and implemented to migrate applications written in the C language. It is an important
step toward the search for a general solution to network process migration. This study may also be of
benefit to strengthening the performance of mobile languages, such as Java.

Fundamentally, there are three steps that enable process migration in a heterogeneous environment30

on existing code.

1. Identify the subset of language features which are migration-safe, i.e. features that theoretically
can be carried across a network.

2. Choose a methodology to perform heterogeneous process migration. We define processes which
can be migrated based on the chosen methodology as being ‘migratable’.35

3. Develop mechanisms to migrate the ‘migratable’ process reliably and efficiently.

Smith and Hutchinson [8] have identified the migration-unsafe features of the C language. With the
help of a compiler, most of the migration-unsafe features can be detected and avoided. Different
approaches have been proposed during the last two decades for heterogeneous process migration,
including our recently proposed migration-point. In the migration-point approach, procedures and data40

structures are given to transform a high-level program into a migratable format automatically via a pre-
compiler. The transformation process includes migration-point analysis, data analysis, and the insertion
of migration macros [10,11]. The basic ideas of the migration-point methodology are discussed in

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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Section 2. The focus of this study is on the last step, mechanisms for carrying out migration correctly
and efficiently. Our mechanisms include:

1. recognizing the complex data structures of a migrating process for heterogeneous process
migration;

2. encoding the data structures into a machine-independent format;5

3. transmitting the encoded information stream to a new process on the destination machine; and
4. decoding the transmitted information stream and rebuild the data structures in the memory space

of the new process on the destination machine.

Other design alternatives for encoding and decoding the state information may also be possible.
The need for different conversion mechanisms for different computing platforms could be avoided10

by using a common machine-independent format. A machine-independent format would be more
appropriate for general enterprise network environments.

We have designed and implemented the data collection and restoration mechanisms to support
process migration of applications written in any stack-based programming languages with the presence
of pointers and dynamic data structures. A prototype runtime library has been developed to support15

process migration of migration-safe C code [8] in a heterogeneous environment. Experimental
measurements of C programs with different dynamic data structures and execution behaviors have
been performed. Experimental results are very encouraging. They confirm that: (1) a user-level process
can be migrated across different computing platforms; (2) semantic information of data structures in
the process’ memory space can be correctly collected and restored; (3) the costs of data collection and20

restoration depend on the complexity of the data structures involved; and (4) with appropriate program
analysis, we can practically achieve low overhead throughout the program execution. Although runtime
overheads may occur due to the insertion of data collection and restoration macros, we have made a
number of observations on the sources of the overheads and how they might be avoided.

This paper is organized as follows. Section 2 gives background discussions on how a process is25

migrated and what the difficulties of migration are in the presence of pointer-based data structures.
Section 3 introduces a logical model to describe data elements and pointers at a snapshot of the program
memory space. We present data collection and restoration mechanisms in Section 4. Section 5 shows
the implementation and experimental results of three programs with different execution behaviors.
We discuss related works in Section 6. Finally, Section 7 gives conclusions and a discussion of future30

work.

2. BACKGROUNDS

In the C language, some language features and programming practices can be unsafe for process
migration. Some of them can prohibit process migration, while others require additional supportive
mechanisms. Some language features, especially those that generate machine-specific intermediate35

outputs, may prohibit heterogeneous process migration. For example, if integer values are converted
from pointer addresses, they may be meaningless or misleading when the process migrates to a new
machine.

Nevertheless, the presence of these features in a process alone does not mean process migration is
impossible. In fact, the consideration is rather application specific. For the pointer conversion example,40

process migration would not be possible if the computational logic of a process depends highly on

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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the memory addresses of the source machine. On the other hand, the migration is allowed when the
computation does not involve or depend on machine-specific data. In our design, we employ a program
analysis technique to notify users of the existence of these features and their use in source code and let
users decide whether to apply the migration mechanisms.

There are also other language features that do not prohibit heterogeneous process migration, but need5

supportive mechanisms to make it possible. In many cases, problems arise when specific properties that
are needed for data collection and restoration during the migration cannot be determined at compile
time. As a result, we need to apply certain rules to handle these features during a migration.

For example, the uses of union can cause a memory block to hold data values whose type cannot be
determined at compile-time. As a result, we do not know how to encode and decode the data values into10

an appropriate machine-independent format during a heterogeneous process migration. In our current
solution, we assume that union is used for saving memory space rather than data conversion. Thus,
we simply replace union with struct to avoid type ambiguity.

Another example of such features is dynamic memory allocation. Programmers may use malloc()
to allocate a memory block of arbitrary length and later cast the memory block addresses to pointers15

of arbitrary type. The casting can cause the type of data in the memory block to change at runtime.
In our solution, we put additional constraints to the uses of dynamic memory allocation. We require
all dynamic memory allocation to use our wrapper function which requires the programmer to specify
a data type to the created memory block. During process migration, data values in memory blocks are
encoded and decoded based on this type information.20

Another feature of interest is the function pointer, which can cause a change of execution flow that
may be hard to determine at compile time. We will discuss our solution in the next section.

2.1. Source code annotation

In our design, a program must be transformed into a ‘migratable’ format. As introduced in our
previous work [11], we apply source code annotation to insure the program is migration capable. In the25

annotation process, we first select a number of locations in the source code on which process migration
can be performed. We call such a location a ‘poll point’. At each poll point, a label statement and a
specific macro containing migration operations are inserted. Every time the process execution reaches
the poll point, the macro will check whether a migration request has been sent to the process. If so,
the migration operation is executed. Otherwise, the process continues normal execution. We refer to30

the poll point where the migration occurs as the ‘migration point’. The migration operations include
the operations to collect the execution state and live data of the migrating process, and the operations to
restore them on the memory space of a process on another machine. In our design, the selection of poll
points and the insertion of macros are performed automatically by the source code transformation
software (or pre-compiler). Users can also select their preferred poll points if they know suitable35

migration locations in their source codes.
The pre-compiler consists of different phases of program analysis and source code annotation

mechanisms. The program analysis techniques consist of poll-point analysis and live variable analysis.
The poll-point analysis identifies poll-point locations in source code. The pre-compiler investigates
function body one by one. If poll points are selected (manually or automatically) in a function, the poll-40

point analysis will insert associated poll points at every function call statement made to the function.
The reason for this is to identify a sequence of function calls when a migration is performed at any
selected poll point.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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In case of function pointers, we assume that the pointers could invoke any function including those
that have poll points. As a result, we insert an associated poll point at every function call statement to
a function pointer in the source code.

After selected poll points have been identified, we apply live variable analysis on them to define a
set of variables whose values are needed for future computation. For associated poll points, a slightly5

different technique is used. We define live variables at the location right after the function call statement
rather than at the location where the call statement is made. The reasons for this will be given in the
next section.

Finally, the pre-compiler annotates a set of macros into various locations in the source code.
For a selected poll point, we insert macros to collect and restore data values of live variables. For an10

associated poll point, we insert two macros immediately before and after the function call statement,
respectively. The former macro keeps a record of the function calling. The latter macro performs the
data collection and restoration of the live variables as being identified as the output of live variable
analysis of the associated poll point. These macros work together during process migration to perform
a data-transfer mechanism to be discussed later.15

In our process migration environment, we assume that the source program has been pre-distributed
and compiled on potential destination machines. We model a distributed environment to have
a scheduler, which performs process management and sends a migration request to a process.
The scheduler conducts process migration directly via a remote invocation and network data transfers.
First, the process on the destination machine is invoked to wait for the execution state and the live20

data of the migrating process. Then, the migrating process collects this information and sends it to
the waiting process. After successful transmission, the migrating process terminates. Concurrently, the
new process receives the state information, restores it on appropriate memory locations, and resumes
execution from the point where process migration occurred.

2.2. Data-transfer mechanism25

The data-transfer mechanism is a mechanism that governs the collection, transfer, and restoration of
execution status and memory contents of a process when multiple or nested function call are made.
A migration point can be inside a nested function call or a recursion during a migration situation.
In our design, we collect and restore live data of the innermost function first and those of its callers
subsequently. For example, the function call sequence, main → f1 → f2, means the function30

main calls f1 and f1 calls f2. Figure 1 shows an example process migration from a source to a
destination computer. Suppose a migration occurs within f2. The live data are then collected in the
order of function f2, f1, and main accordingly. From the figure, when program execution reaches the
migration point in f2(), the annotated migration operations recognize the sequence of function calls
as the execution state and then collect the live data of f2 before returning to its caller function, f1.35

Note that the rest of the execution in f2 is abandoned. In f1, live data is collected and the execution
returns to the main function. Finally, the migration operations collect live data in main, send the
execution state and the collected live data to the destination computer, and terminate the migrating
process.

After receiving the execution state and live data from the migrating process, the new process at the40

destination machine restores the execution state by executing a series of ‘goto’ and function calls
to reconstruct the nested function calls identical to that of the migrating process. Then, it restores

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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main (){

f1()

f1(){

f2()

f2(){

migration point
restore live

}

}

}

restore live
restore live

exe state memory statemigration 
information

execution flow

goto

abandoned 
execution

main (){

f1(){

f2()

f1()

}

}

f2(){

}

migration point
live in f2

live in f1

live in main

source computer destination computer

A

B

C

D

Figure 1. An example process migration.

the live data for the innermost function and resumes execution there until the function finishes.
Upon returning to the caller function, its live data would be immediately restored before the function
resumes execution. Note, that these repeating operations are the result of the macros associated with
the associated poll points previously discussed.

From the main → f1 → f2 example in Figure 1, live data of f2 will be restored first. Then, the5

function f2 continues execution until the computation of that function ends. After the execution flow
returns to the caller function f1, the live variables at the associated poll points are restored. Then, the
function f1 continues execution until f1 finishes. The live variables of the associated poll points in
the main function are restored afterward. After that, the main function continues computation until the
program finishes.10

To collect and restore live data, special purpose interfaces are applied to collect and restore the values
of live variables. Live variables at every poll point are defined based on live variable analysis performed
by the pre-compiler. We have developed the Save_memory and Restore_memory functions to
collect and restore variable contents, respectively. In the augmented macros, the functions are applied
to live variables in the same order of data collection and restoration.15

2.3. Process memory space

Generally, in a process memory space, every variable occupies a piece of memory containing data
values of a certain type. We call this piece of memory a memory block. A memory block may reside
in any part of a program memory space: global, stack, or heap segments. It consists of an array of

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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data values with the same type. The data type could be primitive data types such as character, integer,
and pointer, or compositional types such as array or structure. A pointer is a memory address. It is
considered as a primitive data type which allows referential relationships to be created among memory
blocks.

Despite the common uses of pointers and their well-known benefits, the referential capability of5

pointer poses difficulties in data collection and restoration. It is easy to transfer non-pointer data values
across heterogeneous computers. The data values can be converted to network format such as XDR [12]
for data transmission, or they can be converted directly from the source to the destination computers’
formats. On the other hand, transferring pointer values is non-trivial. Since a pointer is a platform-
specific memory address, the pointer values in one machine do not make sense to other machines.10

Moreover, pointers could represent a referential relationship among memory blocks crossing different
memory segments (e.g. from memory blocks in a stack segment to a heap segment and vice versa).
The pointer variables can also have their pointer values changed dynamically at runtime (by pointer
assignment or arithmetic). In complex program data structures, the circular referential relationships
among memory blocks can also be created. A scheme to migrate data in memory space with the15

presence of pointers must be able to handle these complexities.

As an overview to our solution, the process migration mechanism is strongly based on a
logical memory model, namely the Memory Space Representation (MSR), machine-independently
representing memory blocks and pointers in process memory space. Based on the model, the transfer
of memory space contents can be described in four stages, consequently corresponding to areas A, B, C,20

and D in Figure 1. First, during normal operation before migration, the process records the properties of
memory blocks created in its memory space in a data structure called the MSR Lookup Table (MSRLT).
This data structure works as a mapping table between the conceptual MSR model and the physical
representation of the process memory space. It also gives a logical addressing mechanism which
allows the memory blocks to be machine-independently accessed. Second, during process migration,25

operations in migration macros invokeSave_memory to collect data from live variables. The routines
scan the logical memory model to collect the contents of memory blocks as well as their logical
addresses into a machine-independent format. Third, after the migration information is transmitted
to the destination computer, the new process rebuilds the mapping and MSRLT data structures while
executing a series of gotos to resume the execution state. Finally, data restoration operations are30

performed by invoking Restore_memory to extract memory contents and a logical address out of
the transmitted migration information. Then, the data contents are assigned to the memory space of
the destination process at the physical locations corresponding to given logical addresses. Note that
such physical locations can be derived from the logical addresses using the MSRLT data structures
previously rebuilt.35

3. MEMORY SPACE REPRESENTATIONS

This section describes the logical model, the MSR, and its associated operations for data collection and
restoration for process migration in a heterogeneous environment. We model a snapshot of a program
memory space as a graph G, defined by G = (V ,E) where V and E are the set of vertices and edges,
respectively. It is called the MSR graph. Each vertex in the graph represents a memory block, whereas40

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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each edge represents a relationship between two memory blocks when one of them contains a pointer,
which is an address that refers to a memory location of any memory block node in V .

3.1. Representation of memory blocks

A memory block is a piece of memory allocated during program execution. It contains an object or an
array of objects of a particular type. In case of the array, every object element has the same data type.5

Each memory block is represented by a vertex v in the MSR graph. The following terminologies are
used in our study:

• head(v), the starting address of the memory block v;
• type(v), type of the object stored in the memory block;
• elem(v), Number of objects of type type(v) in the memory block.10

When we refer to the address of a memory block, we mean any address within the memory block.
The predicate Address of(x, v) is true if and only if head(v) ≤ x ≤ head(v) + (unit size × elem(v))

where unit size is the size of an object of type type(v). For the sake of brevity, we use an example to
illustrate the MSR graph concept.

Given a sample program in Figure 2(a), Figure 2(b) shows all the memory blocks in the snapshot of15

the program memory space right before the execution of the memory allocation instruction at line 20
of function foo, assuming that the for loop at line 13 in the main function had been executed four
times before the snapshot was taken. Each memory block in Figure 2(b) is represented by a vertex vi ,
where 1 ≤ i ≤ 12. The associated variable name for each memory block is shown in parenthesis.

For local and global variables, a memory block is assigned separately for each variable. It only20

contains an array of objects if and only if it corresponds to an array declared in the source code.
At line 5 of the program in Figure 2(a), although first and last are declared next to each other, we
considered them to occupy separate memory blocks (v1 and v2) in memory space instead of an array
of size two. In our design, a memory block contains an array of objects iff it associates with an array
variable declaration.25

For memory blocks in the heap segment, we assign a memory block containing an array of objects
when the process executes a dynamic memory allocation instruction. Let addr be an address in the
program memory space, addri , where 1 ≤ i ≤ 4, are addresses of dynamically allocated memory
blocks created at runtime. We also use addri as a memory block’s name in this example.

The memory blocks can reside in different areas of the program memory space. If a memory block30

is created in the global data segment, it is called a global memory block. If it is created in the heap
segment by dynamic memory allocation, we name it the heap memory block. In the case where the
memory block resides in the activation area for a function f in the stack segment, it is called the
local memory block of function f . Let Gm, Hm, Lmmain, and Lmfoo represent sets of global memory
blocks, heap memory blocks, local memory blocks of function main, and the local memory block35

of function foo, respectively. From Figure 2, we can define Gm = {v1, v2}, Hm = {v7, v8, v9, v10},
Lmmain = {v3, v4, v5, v6}, and Lmfoo = {v11, v12}.

Figure 3 shows the MSR graph representing a snapshot of memory space of the sample program
in Figure 2(a). The edges ei , where 1 ≤ i ≤ 12, represent the relationships between the pointer
variables and the addresses of their reference memory blocks. General representations of pointers will40

be discussed in Section 3.4.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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};

1:

   float data;

   int a, *b;

{

   int i; 

   a = 1;

   b = &a ;

      first->link = last;

      last  = parray[i];

      if( i > 0 )

(a)

}

}

         parray[i]->link = parray[i-1];

   (*p)->data = 10.0 ;

   (**q) ++ ;

}

2:

3:

4:

main()6:

5:

10:

8:

7:

9:

11:

12:

13:

14:

15:

16:

17:

18:

20:

19:

21:

22:

(b)

Local of foo function

Local of Main function

v1(first)

v2(last)

Heap Data Segmentv3(i)

v4(a)

v5(b)

v6(parray)

v7(addr1)

v8(addr2)

v9(addr3)

v10(addr4)

v11(p)

v12(q)

Global Data Segment

struct node { 

   struct node * link;

struct node *first, *last;

   struct node *parray[10];

foo( struct node **p, int **q ){

   *p = (struct node *)

        malloc ( sizeof( struct node ) );

      foo ( parray + i, &b );

   for ( i = 0; i < 10; i++ ){

   first = parray[0];

Figure 2. An example program and its memory blocks.

3.2. Data type of memory blocks

A data type describes a set of properties for the same kind of data and associates a set of functions
to manipulate data objects. To support data collection and restoration, additional information and
operations have to be provided to recognize and manipulate the data value of memory blocks.

3.2.1. Type information table5

At compile time, we assign a unique number, namely the Type Identification (Tid) number, to every data
type. The Type Information (TI) table is a data structure used to store information of every data type.
The TI is generated and annotated to source code by the pre-compiler. The TI table contains platform-
specific information of every data type declared in the source code. The information is generated when
we compile the annotated source code to produce an executable for a particular computing platform.10

Most importantly, the TI table contains a number of type-specific functions to encode and decode

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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V5

V12

V9

V2

V1

V11 V6

V7

V8

V10

e3

e4

e5

e6

e8

e7

v1(first)

v2(last)

v3(i)

v4(a)

v5(b)

v6(parray)

v7(addr1)

v8(addr2)

v9(addr3)

v10(addr4)

e1e2

e9
e10

e11

e12

v11(p)

v12(q)

(a) (b)

e1

e10

e11

e12

e3

e4

e5

e7

e8
e9

e6

e2

Figure 3. An example of the MSR graph.

data and to transform data between machine-specific and machine-independent formats. We define the
TI table globally so that process migration operations can access it from anywhere during program
execution. The TI table is indexed by the Tid number and contains the following fields.

1. Unit size. Platform-specific size in bytes of an object of a particular type. An object of a particular
type can occupy different sizes (in bytes) on different platforms. In the case of an array, the unit5

size is the size of a unit member of the array.
2. Number of elements. Number of array elements.
3. Object Tid number. The Tid number of the contents of an array or the Tid of an object being

referenced by a pointer.
4. Number of components. Number of components of a structure or record data structures.10

5. A pointer to component_layout table. The component_layout table contains
information about the format of a structure type. Each record in the table supplies information
for a component of the structure. This table is used to translate the offset of any pointer address
relative to the beginning address of the memory block to the machine-independent format and
vice versa. Each record in the component_layout table contains the following information:15

(a) the beginning offset (in bytes) of the corresponding component relative to the beginning
position of the structure;

(b) the Tid number of a component unit; and
(c) the number of elements of an array-typed component.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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6. Saving function. A function to save the contents of a memory block into a stream of machine-
independent information. It is used during the data collection process.

7. Restoring function: A function to extract memory block contents from the transmitted
information stream and rebuild the memory block in memory space. It is a basic method for
data restoration.5

These fields are defined differently based on the characteristics of the data type of interest. If the
data type is an array of basic indivisible data values such as integers, we define a record for this
type in the fields 1, 2, 6 and 7. For instance, we define a Tid table record for the int abc[10] to
have unit size = sizeof(int), number of elements = 10, and saving and restoring functions =
methods to save and restore an int data value. On the other hand, we define fields 1, 2, 4, 5, 610

and 7 to represent an array of compositional data values such as an array of a structure. For example,
taking struct node type in Figure 2(a), struct node arr[10] could be represented by having
unit size = sizeof(struct node), number of elements = 10, number of components = 2,
and the component layout as well as saving and restoring functions to their corresponding entities
for struct node data type. In the case of an array of pointers, we define fields as 1, 2, 3,15

6 and 7. For examples, we can describe verb—struct node * parray[10]— in the Tid table using
unit size = sizeof(struct node *), number of elements = 10, object Tid number = Tid
number of the struct node data type.

3.2.2. Memory block saving and restoring functions

To be able to collect and restore the data values of a memory block, the saving and restoring functions20

are created based on the structure of its data type. The pre-compiler generates these functions as a part
of the TI table.

The saving and restoring functions are the most important functions for data collection and
restoration mechanisms. During process migration, the data collection mechanism is performed to
collect the memory blocks in a process. When a memory block is encountered, the saving function is25

invoked according to the type of data values stored in the memory block. Then, the memory block’s
contents are encoded into a machine-independent format and saved to an output buffer.

After the buffer is transmitted to a new machine, the data restoration mechanism is operated. In turn,
the mechanism invokes the restoring function to extract the contents of memory blocks, decode them
to a machine-specific format, and store the decoded information to the appropriate memory locations.30

Figure 4 shows the structures of the saving and restoring functions for the struct node data type.
We refer to the saving and restoring function with the prefixes pack_ and unpack_, respectively,
followed by the type name. Two different methods are applied to save and restore the contents of
a data type. First, to save a non-pointer value such as the floating-point value of node.data,
XDR techniques [12] can be readily employed. From Figure 4, the functions pack_float and35

unpack_float are generated to save and restore values of node.data, respectively. On the other
hand, to save and restore pointer values, the function Save_memory and Restore_memory are
used. The component node.link, a pointer variable as seen in Figure 4 is saved and restored in this
way. Section 4 discusses both functions in details.
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struct node {

   float   data ;

struct node * link ;

}

Structure of a data type Algorithm for the saving function Algorithm for the restoring function

to restore    

pack_float (...) {

1. identify a memory block ;

3. Call  to

values of node.data

collect node.link

}

pack_struct_node_type (...){

2. Call    pack_float to save    

}

Use XDR to encode and save values

1. identify a memory block ;

3. Call  

values of node.data

node.link

}

restore 

unpack_struct_node_type (...){

2. Call  unpack_float

unpack_float (...) {

}

Use XDR to decode and restore values

Save_memory() Restore_memory()to

Figure 4. Algorithms of saving and restoring functions for the struct node data type.

3.3. MSRLT data structure

The MSRLT data structure is introduced to provide the following benefits.

1. To keep the properties of memory blocks to support data conversion during process migration.
These properties include the Tid, unit size, and number of elements.

2. To support memory block search during data collection. As mentioned in Section 3.2, the saving5

functions traverse nodes of the MSR graph and collect their contents in a depth-first manner.
Every MSR node has a corresponding variable in the MSRLT data structure, which will be
marked when the node is visited. Since a visited node will never be saved again, duplication in
collecting and transferring of a memory block is prevented.

3. To provide machine-independent identifications of memory blocks. Memory blocks are usually10

identified by their address in a process. However, because different memory addressing schemes
are used on different computer architectures, a technique to logically identify the memory blocks
is developed for data collection and restoration between heterogeneous computers. Figure 5
shows the one-to-one mapping of memory addresses between two heterogeneous computers
(A and B) using the MSRLT data structures. A memory address on computer A is converted15

to a logical address using MSRLT on A. Then, on computer B, we convert the logical address
back to a native memory address using B’s MSRLT structures.

3.3.1. Significant and trivial memory block nodes

In our design, the memory blocks recorded in the MSRLT data structure are those that need to have
their status recorded for the data collection and restoration operations. In practice, keeping track of20

all the memory blocks is quite expensive and unnecessary. Only the memory blocks that are visible
to multiple functions and those that are (or may be) pointed to by multiple pointers are recorded for
process migration. Since such memory blocks could be visited multiple times during data collection,

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27



U
nc

or
re

ct
ed

 p
ro

of
sApril 15, 2002 Marked proof Ref: SPE464/24525e Sheet number 13

HETEROGENEOUS PROCESS MIGRATION 13

Use 
machine-
specific
memory
address

Use 
machine-
specific
memory
address

MSR Lookup
table (MSRLT)

The mapping 
table from 
computer A 
to MSR 

Memory space
of migrating 
process

Memory space

process
of a  new 

The MSR logical 
memory model

computer A computer B

Logical
memory 
address

MSR Lookup
table (MSRLT)

The mapping 
table from 
MSR model  
to computer B 

Figure 5. The MSRLT data structures allow mappings of memory addresses among heterogeneous computers.

their visiting status has to be recorded in the MSRLT. In the MSR graph, these vertices are called
significant nodes, whereas the other vertices are called trivial nodes. The significant nodes and their
properties will be recorded in the MSRLT data structures. We classify nodes in the MSR graph into two
types, because during process migration the significant nodes might be visited multiple times due to
their multiple references, while the trivial nodes are collected and restored only once via their variable5

names or memory addresses. For the sample program given in Figure 2, let Gs, Hs, Lsmain, and Lsfoo be
the sets of the significant nodes of global, heap, local data of function main, and local data of function
foo, respectively. We get Gs = {}, Hs = {v7, v8, v9, v10}, Lsmain = {v4, v5, v6}, and Lsfoo = {}.

At compile-time, a variable is registered to the MSRLT data structure when the following occur.

1. The variable is a global variable referred by multiple functions or in a function with possibility10

of direct or indirect recursion. Since the variable’s memory block can be accessed from multiple
functions in the activation record, they could be significant memory blocks.

2. The memory block address of a variable is or may be assigned to a pointer or used in the right-
hand side of any pointer arithmetic expression. In C, addresses and information of variables that
apply ‘&’ are registered to the MSRLT data structure. For array variables, their names represent15

the starting addresses of memory blocks. Therefore, if an array name is used in the right-hand
side of a pointer arithmetic statement, its memory block could have multiple references and thus
could be a significant memory block.

Special macros are inserted at the beginning of the body of the main function to register information
of significant global variables to the MSRLT data structure, while those of significant local variables20

are inserted at the beginning of the function in which they are declared. In case the local variables
belong to the main function, the MSRLT registration macros are inserted right after those of the global
variables.

In the case where a memory block is dynamically allocated in a heap segment, we know
that its starting address is assigned to a pointer variable. Therefore, we record the address and25
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other information to the MSRLT data structure. In our design, we create a function that wraps
up the original memory allocation statement. The registration of an allocated memory space is
performed right after the memory allocation inside the wrapper function. In the C language, we
replace the original malloc function by our MSR_ALLOC function. For example, the statement
. . . = (struct tree *) malloc( sizeof(struct tree) ) will be replaced by . . . =5

(struct tree *) MSR_ALLOC( tid, sizeof(structtree) )where tid is the Tid number
of struct tree. The MSR_ALLOC function calls malloc and then registers information of the
allocated memory block to the MSRLT data structure. Likewise, the MSR_FREE is used instead of the
original free operation. It deletes the memory block’s address and information from the MSRLT data
structure and then calls free.10

3.3.2. Data structure

The MSRLT data structure is used to keep information of significant memory blocks. It works like a
mapping table between the physical memory space and the MSR model. It also provides each memory
block with a logical identification that is used for reference for heterogeneous process migration.
Figure 6 shows the structure of the MSRLT data structure consisting of two tables: the mem_stack15

and mem_set tables. The mem_stack table is a table that keeps track of the activated functions.
Each record in the table represents a particular data segment of the program. The first record denoted
by mem_stack[0] is used for keeping information of the set of significant memory blocks of the
global variables. The second record, mem_stack[1], contains information of the set of significant
memory blocks in the heap segment. The third one is used for the set of significant memory blocks20

of local variables of the main function. The rest are used for the significant memory blocks of local
variables of each activated function. A record of the mem_stack table consists of two fields: a pointer
to a mem_set table and the number of records in the pointed mem_set table.

The mem_set table is used to store information of every significant memory block of a data segment
of the program represented by a record in the mem_stack table. The mem_set table is separated25

from the mem_stack to facilitate the implementation. Since the size of each mem_set table could
be arbitrary, the separation makes it easier to allocate the table’s memory space. Each record in the
mem_set table consists of the following fields:

1. Tid, type identification number of the object contained in the memory block;
2. unit_size, size in bytes of each object in the memory block;30

3. element_num, the number of objects stored in the memory block;
4. mem_block_pointer, a pointer to the starting address of the memory block; and
5. marking_flag, a marking flag used to check if the memory block has been visited during the

memory collection operation.

When the program starts its execution, the first three records of the mem_stack table will35

be created. Then, whenever a function call is made, a mem_stack record will be added to the
mem_stack table in a stack-like manner. If there are significant local variables in the function, they
will be added to the mem_set table of the last mem_stack record. Note that significant variables
are registered to the MSRLT data structures using special macros inserted into the program source
code. After the function finishes its execution, the mem_stack record as well as its mem_set table40

will be destroyed. In the case of memory blocks in a heap segment, the information of the memory

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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mem_stack[i]

mem_set[j]

Program Memory Space

memory block

MSRLT  Data  Structure

Figure 6. The MSRLT data structures.

block allocated by the function malloc will be added to the mem_set table of the mem_stack[1]
record. They will be deleted from the mem_set table when the free operation is called.

Every significant memory block can be identified by a pair of indices of its mem_stack and
mem_set records. This identification scheme will be used as a logical identification of the significant
memory blocks across different machines. Let v, stack index(v), and set index(v) be a significant MSR5

node, the index of its mem_stack record, and the index of its mem_set record, respectively. The
logical representation of v is given by (stack index(v), set index(v)).

3.4. Representation of pointer

As stated at the beginning of this section, each edge in the MSR graph represents a pair of memory
addresses: the memory address of a pointer and the memory address of the object to which the pointer10

refers. The format is shown in Figure 7. Note that examples in this section are not related to those
given previously. There are three edges between nodes v1 and v2 in Figure 7. For example, edge e1 is
represented in the form of (addr1, addr4) where addr1 and addr4 are addresses that satisfy the predicate
Address of for node v1 and v2, respectively. The symbol addr1 is a pointer object that contains
the address addr4 in its memory space. Therefore, given addr1 we always get addr4 as its content.15

By taking a closer look at e1, we can also write it in the form of (addr1, head(v2)+(addr4−head(v2))).
The address head(v2) is called the pointer head, and the number (addr4 − head(v2)) is called the
absolute pointer offset.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1–27
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v1 v2

addr2

addr1
e1

e2

e3
addr3

addr4

addr5

addr6 

e1 = ( addr1, addr4 ),
e2 = ( addr2, addr6 ),
e3 = ( addr5, addr3 ).

Figure 7. A representation of a pointer between two nodes of the MSR graph.

.... ....

...

...

struct s1{

}

struct s1 a[20];

struct s2{

}

a[0] a[i] a[19]

c3c2c1

c2c1c0

c0   t1 c0;
  struct s2 c1[10];
  t3 c2;
  t4 c3;

  t5 c0;
  t6 c1;
  t7 c2[30];

Machine−independent Offset for 

a[i].c1[0].c2[3] is :

( −, i ), ( 1, 0 ), ( 2, 3 )

a[i].c1[0]

a[i].c1[1].c2[3]

Figure 8. An example of the machine-independent format of the pointer offset.

The representation of a pointer in machine-independent format consists of the machine-independent
representations of the pointer head and the pointer offset. According to the definition of the significant
memory block, the node that is pointed to is always a significant node. Thus, its properties are stored
in the MSRLT data structure. From the example in Figure 7, the logical identification of v2 can be
represented by (stack index(v2), set index(v2)). We use this logical identification to represent the5

pointer head in the machine-independent information stream for process migration.
To represent the offset of the pointer in machine-independent format, we have to transform

the absolute pointer offset into a sequence of (component position, array element position) pairs.
The component position is the order of the components in the memory space of a structure to which the
pointer refers, whereas the array element position is the index to the array element that has the pointer10

pointing to its memory space. The sequence of machine-independent pointer offsets can be generated
from a given absolute pointer offset using the information provided in the component_layout
tables mentioned in Section 3.2. The absolute pointer offset can also be derived from the machine-
independent offset using the same information.
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For example, the absolute pointer offset (&a[i].c1[0].c2[3] − a) of the memory block of
the variable a in Figure 8 can be translated into a sequence 〈(0, i), (1, 0), (2, 3)〉. Note that we start
indexing from zero. From the first pair, the component position is zero because the memory block
has only itself as a component. The array position tells us that the pointer points to the (i + 1)th
element of the array a. The component position part of the second pair (1, 0) means that the pointer5

points to the second component of the structure stored in a[i], which is a[i].c1. The array
element position part of (1, 0) tells us that a[i].c1 is the array and that the pointer points to the
first element of that array, a[i].c1[0]. Finally, the component position of the pair (2, 3) means
that a[i].c1[0] is the structure and the pointer falls on the third component of a[i].c1[0],
which is a[i].c1[0].c2. The array element position of the pair (2, 3) indicates that the component10

a[i].c1[0].c2 is the array and that the pointer points to the fourth element of a[i].c1[0].c2,
which is a[i].c1[0].c2[3].

4. DATA COLLECTION AND RESTORATION MECHANISMS

Figure 9 shows software components that support data collection and restoration mechanisms.
The components are the MSRLT data structure, the TI table, and the data collection and restoration15

library.
In our design, the data collection and restoration mechanisms are implemented in the data collection

and restoration library. The mechanisms are performed upon the invocation of the Save_memory and
Restore_memory functions. Both functions are in the following formats:

Save_memory( mem_block_address, Tid )

and

Restore_memory( mem_block_address, Tid )

where the mem_block_address is a memory address of a memory block and Tid is a type
identification number of the data value of the memory block. We apply Save_memory and
Restore_memory in two different situations.

• They are used to collect and restore live variables in source codes as mentioned in the data20

transfer mechanism in Section 2.
• They are employed to collect and restore pointer contents in the saving and restoring functions

as previously discussed in Section 3.2.2.

When process migration occurs, Save_memory is applied to collect the contents of a live variable
at a migration point. The function searches for a record of a memory block in the MSRLT data structure25

based on the memory address given as an input parameter. If the memory block is found and it has never
been visited before, Save_memory will save the given memory address (mem_block_address)
in the machine-independent pointer format (as discussed in Section 3.4) and proceed to save the data
contents of the memory block by invoking the type-specific saving function. Recall that the saving
function already handles XDR encoding and makes recursive calls to Save_memory if there are any30

pointers contained in the memory block. On the other hand, if the memory block has already been
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Figure 9. Software components for data collection and restoration mechanisms.

visited, Save_memory will only save the machine-independent pointer to the output buffer and then
return. As a result, Save_memory collects information of MSR nodes and edges of any directed
cyclic or acyclic MSR graph in a depth-first-search manner.

After the buffer is transmitted to a new machine, the restoring function extracts the information of
the memory blocks, decodes them to a machine-specific format, and stores them in appropriate memory5

locations. We should recall that (according to the data transfer mechanism) the MSRLT data structure
has already been rebuilt in the memory space of the new process before the restoration of memory block
contents. Therefore, the mapping mechanism between machine-independent and machine-specific
memory block identifications is provided. To extract memory blocks’ information from the buffer, the
function Restore_memory is applied. It first extracts the type and logical location information from10

the buffer. Then, Restore_memory restores information of the memory block to the MSRLT data
structures and then uses the MSRLT to map the logical location to an appropriate physical memory
address. After that, it invokes a type-specific restoring function to convert the data contents of the
memory block to a machine-specific format and restore the data contents there. Note that if the contents
contain pointers, Restore_memorywould be recursively invoked to restore them. After the contents15
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of memory blocks are restored, Restore_memory restores pointer data values by converting the
machine-independent pointer information from the buffer to appropriate memory addresses.

4.1. An illustrative example

This section gives an illustrative example of the MSR model and explains how the data collection and
restoration are performed on the MSR nodes and links. The emphasis is on mechanisms that work with5

the MSR at a high level.
Based on the example given in Figure 2, we describe the data collection and restoration as

follows. Suppose that the migration point is set right before the execution of the instruction at
line 20 when the for loop at line 12 had been executed four times previously. According to the data
transfer mechanism mentioned in Section 2, the live data of the function foo have to be saved,10

followed by that of the function main. For brevity, we only discuss the collection and restoration
of the variables p (or v11) in foo and first (or v1) in main. In data collection, the statement
Save_memory( p, .. ) would be executed at the migration point in foo, and the statement
Save_memory( &first, .. )would be called at a location in mainwhere foo returns. Likewise,
the statements Restore_memory( &p, .. ) and Restore_memory( &first, .. ) are15

operated in the same locations in foo and main, respectively, for data restoration.
Due to the depth-first traversal, the collection of v11 would result in the values of v11, e8, v6, e6

and v10 being saved first. Then, the algorithm would backtrack to collect e5, v9, e12, v8, e11, v7 and
e10 before backtracking again to save e4 and e3. After the collection process finishes in foo, the data
collection operation in main will start. Taking v1 as an example, only the values of v1 and e1 are20

collected for the first variable. This is because the node v7 and its subsequent links and nodes have
already been visited.

In the data restoration process, the variables in function foo and main are restored in the same
sequence in which they were collected. The restoration functions will be invoked recursively on the
destination process. The functions use the MSRLT data structure to translate the graphical notations25

(nodes and links), as well as their values, back to the machine-specific format.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Software for heterogeneous data transfer can be classified into four layers, as illustrated in Figure 10.
The first layer relies on basic data communication utilities. Migration information can be sent to the
destination machine using TCP protocol, shared file systems, or remote file transfer. In the second30

layer, XDR routines [12] are used to translate primitive data values such as ‘char’, ‘int’, and ‘float’ of
a specific architecture into a machine-independent format. In the third layer, the MSR Manipulation
(MSRM) library routines are employed to translate complex data structures, such as user-defined
types and pointers, into a stream of machine-independent migration information. The MSRM library
provides routines such as Save_pointer and Restore_pointer and those for manipulating the35

MSRLT data structures. These routines are called by macros annotated to source programs to support
a migration event. Finally, the annotated source code is linked to the TI table, as well as the saving and
restoring functions, to generate a migratable process in the application layer. The TI table, as well as
the saving and restoring functions, is also used by the MSRM library routines.
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Figure 10. The layered structure of software for data collection and restoration.

5.1. Heterogeneity

We have conducted experimental testing on various programs to verify our heterogeneous process
migration model. The experimental results of three programs, namely test pointer, linpack benchmark,
and bitonic sort program, which represent different classes of applications, have been selected to be
presented here.5

The test pointer is a synthesis program which contains various data structures including a pointer
to integer, a pointer to an array of 10 integers, a pointer to array of 10 pointers to integers, and a tree-
like data structure. The MSR graph of the tree-like data structure is shown in Figure 11(a). The root
pointer of the tree is a global variable. All tree nodes are generated with dynamic memory allocations.
The program works in two steps. It first generates and initializes every data structure and then traverses10

the tree-like structure. In our experiment, we perform process migration in the main() function after all
data structures have been generated and initialized. After the migration, the tree-like data structure is
traversed on the migrated machine.

The linpack benchmark from the netlib repository at ORNL [13] is a computationally intensive
program with arrays of double and arrays of integer data structures. Their MSR graphs are as simple15

as unconnected memory block nodes. Pointers are only used to pass parameters between functions.
The benchmark solves a system of linear equations, Ax = b. Most variables in this program are
declared in the main function. We have performed two experiments on this program with two different
problem sizes. First, the program solves a matrix problem of order 200. The size of the matrix A in
this case is 200 × 200. In the second test, the order of matrix is increased to 1000. At runtime, we20

force the program to migrate when the function DAXPY is executing with a function call sequence
main() → DGEFA() → DAXPY(), which means that the function main() calls the function DGEFA()
which in turn calls the function DAXPY().

Finally, the bitonic sort program [14,15] was tested. In this program, a binary tree, illustrated in
Figure 11(a), is used to store randomly generated integer numbers. The program will manipulate the25
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(a) (b)

Figure 11. MSR graph for the test pointer (a) and the bitonic sort (b) programs.

tree so that the numbers are sorted when the tree is traversed. The root of the tree is defined in the main
function. Dynamic memory allocation operations and recursions are used extensively in this program.
Two different problem sizes are again tested for the experiments. One is a tree with 1024 nodes,
the other is a tree with 4096 nodes. Process migration is conducted in the function bimerge() with
a sequence of function recursive calls, main() → bisort() → bisort() → bisort() → bisort() →5

bimerge() → bimerge() → bimerge() → bimerge().
In each experiment, we originally run the test program on a DEC 5000/120 workstation running

Ultrix and then migrate the processes to a SUN Sparc 20 workstation running Solaris 2.5, so the
migration is truly heterogeneous. The DEC 5000/120 is a 32-bit machine, while the SUN Sparc 20 is a
64-bit machine. The two systems use different endianness. They are connected via a 10 Mbit/s Ethernet10

network. Each machine has its own file system. All the test programs are compiled with optimization
using gcc on the Sparc 20 workstation and using cc on the DEC workstation. As listed in Table I,
we test all the programs on two different data sizes, which create different sizes of data transmission
(Tx Size) (in bytes) during process migration. The total cost of process migration (Migrate) can be
split into three parts: the cost of collecting data structure of a migrating process (Collect), the cost15

of transmitting those data (Tx), and the cost of restoring them on a destination machine (Restore).
Note that the data collection and restoration in all test cases appear to be significantly different due to
the unparallel performance between the source and destination machine.

Output results indicate that all applications run correctly under different testing circumstances.
We inspected all the data structures and their contents and found them to be consistent before20

and after process migration. In the test pointer program, despite multiple references to MSR’s
significant nodes, all memory blocks and pointers are collected and restored without duplication.
Other data structures such as the pointer to an array of 10 pointers to integers also contain correct
values under C de-referencing semantics. For the linpack benchmark, large floating-point data are
correctly transferred. The data collection and restoration process preserves the high-order floating-25

point accuracy. The linpack benchmark also indicates the correctness of migration in the presence of
multiple function calls. Finally, the bitonic sort program tests the capabilities of our process migration
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Table I. Timing results (in seconds) of migration.

Program Test pointer Linpack Bitonic

Tx Size 1 165 680 3 242 480 325 232 8 021 232 46 704 182 248

Collect 2.678 14.296 0.303 5.591 0.150 0.419
Tx 1.200 4.296 0.357 9.815 0.053 0.191
Restore 2.271 4.563 0.095 2.962 0.077 0.278
Migrate 6.150 23.181 0.756 18.368 0.280 0.889

Table II. Timing results (in seconds) of migration.

Programs Linpack 1000 × 1000 Bitonic 8192

Collect 0.657 0.275
Tx 0.790 0.037
Restore 0.649 0.214
Migrate 2.096 0.526

technique under dynamic memory allocation and execution behaviors. During the bitonic execution,
the size of heap and stack data segments change dynamically. The migration results indicate correct
data transfer in all program segments.

5.2. Data collection and restoration complexity

Table II shows the performance of process migration in a homogeneous environment where the linpack
benchmark and the bitonic sort program are migrated from an Ultra 5 machine to another via a
100Mb/s Ethernet. The table shows that different applications can demonstrate different portions of
time spent for data collection, transfer, and restoration. We define process migration time as

Migration = Data Collection+ Transmission+ Data Restoration

By Table II the migration time of the linpack and bitonic programs are 2.096 and 0.526 s, respectively.5

The complexity of data collection and restoration is application dependent. For example, the linpack
program has a small number of MSR nodes, yet each node occupies a substantial amount of memory
space. Therefore, most of the data collection time is spent on encoding data in memory blocks and
copying data to an output buffer. Likewise, the data restoration would mostly involve decoding the
transmitted data and copying the results to the memory space. On the other hand, the bitonic sort10

program contains a large number of small memory blocks. Thus, in data collection, we not only encode
and copy data to the output buffer, but also search for live memory blocks in memory space. For data
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Figure 12. (a) Data collection and restoration time of the linpack program. (b) Data collection and
restoration time of the bitonic sort program.

restoration, we do not have to search memory blocks, but a large number of memory allocations has to
be considered.

Based on the data collection algorithm, we can define the collection complexity as

Collect = MSRLT Search+ Encoding and Copying

where the MSRLT Search time is the time for searching the MSRLT data structure. Suppose that
there are n fully-connected MSR nodes in the program memory space and each node has Di bytes,
where 1 ≤ i ≤ n, then the MSRLT Search time depends on n and has the upper bound complexity
of O(n log n), while the encoding and copying time depends on the size of live data to be migrated,∑n

i=1 Di . The complexity is O(
∑n

i=1 Di). For the data restoration algorithm, we define

Restore = MSRLT update+ Decoding and Copying

Since the logical location of every migrated memory block is attached to its data, the data restoration
algorithm only spends constant time to restore the items according to the MSRLT data structure.
Thus, the MSRLT update takes O(n) time complexity, and the Decoding and Copying takes5

O(
∑n

i=1 Di).
Figure 12(a) compares the data collection and restoration times of the linpack program. In this

experiment, we measure the performance of matrices with sizes 400 × 400, 600 × 600, 800 × 800,
and 1000 × 1000. All experiments were performed on two Ultra 5 SUN workstations connected via a
100Mb/s network. Data collection and restoration times are shown together as a function of migration10

data (
∑n

i=1 Di). In the linpack benchmark, memory spaces for matrices are allocated as local variables
at the beginning of the main() function and are referenced by other functions throughout program
lifetime. The program is computationally intensive and contains no dynamic memory allocation.
The larger the problem size, the bigger the size of memory blocks that hold the input matrices. Since the
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Table III. Overhead of migratable programs on different poll-point placements.

Programs Original One-level Two-level

Linpack 1000 × 1000 764.64 765.21 (0.57) 777.61 (12.97)
Bitonic 8192 0.82 0.94 (0.12) 1.02 (0.2)

number of MSR nodes does not increase when the problem size scales up, the MSRLT search time
and MSRLT update time are held constant. As the results show, the data collection and restoration
complexities scale linearly with the size of live data to be transmitted during a migration. The timing
differences between data collection and restoration are also constant for all transmitted data sizes.

The bitonic sort program exhibits a different behavior. Figure 12(b) shows the data collection and5

restoration performance of the bitonic program for different data sizes. Let n be the number of the
MSR nodes in the program and

∑n
i=1 Di be the size of all the data. As the input data of the bitonic sort

program scales, both n and
∑n

i=1 Di also increase. As a result, the effect of MSRLT search time
(O(n log n)) contributes to a noticeably higher collection time than that of the MSRLT update time
(O(n)) for data restoration, when the number of data to be sorted scales up.10

5.3. Execution overhead

Source code annotation may remove certain code optimizations and bring some overhead to the
execution. The overhead is application specific and may come from many factors. Without considering
the external factors such as interaction with the operating system or I/O contention, experiences show
that the overhead of process migration depends mostly on two factors: the placement of poll points and15

the number of memory allocations. Table III reports the execution overhead when poll points are placed
on different levels of a nested function call. Numbers inside the parentheses indicate the overheads,
the average wallclock timing differences between the migratable processes (with different poll-point
placements) and the original benchmark. In the linpack benchmark with 1000×1000 problem size, the
execution overhead of 0.57 s is detected when poll points are put to the main() function (or 1-level20

of nested function call). To make the process migratable inside the function DGEFA(), the main() and
DGEFA() both have to be annotated. The overhead appears to increase 12.97 s in the second level
nested call. When we go further and modify the DAXPY() function in the third level nested function
call, a significant increase of 491.85 s in execution overhead occurs. The reason for this is that the
DAXPY() is called by many functions over 13 million times during execution, while DGEFA() is25

called 26 times and main() is invoked only once. Moreover, since the amount of work for each call to
the DAXPY() is small, the inserted migration macro will cause a significant proportion of the overhead.
The overhead which occurred is reasonable and can be mostly avoided. In a practical situation, there is
no need to insert a poll point inside of a small kernel.

In case of the bitonic sort, a similar phenomenon to that of the linpack benchmark is noticed. As we30

try to make the inner function of the call sequence migratable, a significant amount of execution
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overhead occurs. This overhead is also caused by the high frequency of invocation of the inner function
and the low ratio of work over the overhead of source code annotation.

The performance of the bitonic program also suffers from dynamic memory allocation. As stated
earlier, the wrapper function must be applied to the original malloc and free functions, high
execution overhead can occur when a large number of small memory blocks are allocated during5

program execution. To solve this problem, good poll-point placement mechanisms need to be
developed. Some work has been done in developing heuristic algorithms [10,16]. Smart memory
allocation policies may also be employed to avoid the memory overheads. More investigation into
this matter is needed.

Since the data structure of MSRLT depends on where poll points are placed, the execution overhead10

of maintaining these data structures is a function of the location of poll points and the number of
runtime memory allocations.

6. RELATED WORKS

Early works of Theimer and Hayes [7] propose the use of a debugger to access runtime data,
integrate them to program source code, and recompile the program. This design pioneers the source15

code manipulation to achieve machine-independent state transfer. However, the data integration and
recompilation could be time consuming and create unacceptable migration overhead, especially for
large-scale applications.

An alternative approach for heterogeneous process migration is based on the interpretive language
models. Attadi et al. [17] emulates an abstract common machine on different computing platforms20

and uses abstract interpretive instructions to execute applications. More recently, mobile agent systems
such as the Java-based IBM Aglet [18] and Telescript [19] also use the interpretive models to handle
heterogeneous process migration. However, this approach has a drawback in slow execution due to
interpretation overheads.

The work of von Bank et al. [20] has defined a theoretical framework for language systems to support25

heterogeneous migration. Their work indicates that a program can transfer its states among different
machines only at locations where its machine codes have an equivalent process state. We define such
equivalent locations using poll points.

The approach presented in Dubach et al. [21] and Shub [6] uses a modified compiler to generate
code along with migration information for heterogeneous machines. Their system is implemented on30

top of the V operating system [22] and extends V’s migration mechanisms to handle heterogeneity.
Their design requires that each primitive data item occupies the same memory address space in
all architectures. In the case of a structure or record, an item must be found at the same offset.
These requirements are not practical for heterogeneous process migration in general. Their design
also relies on the implementation of the V system.35

Recent work on the TUI system [8] by Smith and Hutchinson, investigated features of high-
level languages that are compatible with process migration and developed a prototype to migrate
C applications. Their definition of ‘migratable’ features in C helps identify a class of C applications
that can be migrated in a heterogeneous environment. In their prototype implementation, process
migration is controlled by the external agents, migrout and migin, for data collection and40

restoration, respectively. The compiler must be modified to provide debugging information which
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contains locations of pre-emption points and call points inside the intermediate code to capture and
restore process state. Their work has a number of design aspects that comply with the foundation given
in [20].

Our data collection and restoration techniques are different. Instead of using external agents to access
process memory space, we annotate the source code to systematically keep track of program data5

structure in form of a MSR graph. The annotation also results in process migration to be incorporated
as a part of user programs. There is a tradeoff between TUI’s design and ours. Although TUI’s design
exhibits no execution overheads, the need to modify the front-end and back-end of the compiler limits
portability to various computer platforms. In TUI’s design, the compiler, assembler, and linker have to
be modified for every computing platform in the environment. Such modification may not be possible10

for commercialized compilers and is non-trivial for sophisticated opened-source compilers such as
gcc [8]. We believe our design is more portable and less dependent on external processes. We also
argue that with appropriate poll-point selection and memory management, our approach can practically
achieve low execution overheads.

The other research using program annotation techniques to support process migration is the Process15

Introspection (PI) approach proposed by Ferrari et al. [9]. The PI performs source code annotation but
collects and restores all global, heap, and stack data during process migration, while only live data
are transferred by our technique. PI is a general approach for checkpointing, which is similar to the
migration-point approach proposed in [10,11].

7. CONCLUSION AND FUTURE WORK20

In this study, a fundamental technique for heterogeneous process migration, low-level mechanisms
for data collection and restoration, is presented. A graph model, namely the MSR graph, is proposed
to identify required data in memory space. Memory blocks, as well as relationships among memory
addresses indicated by pointers, are represented in the form of nodes and edges, respectively, in the
MSR graph. The TI table is constructed to store properties of every data type to be used during25

program execution. The development of functions to save and restore contents of memory blocks is
also a part of the TI table construction. Then, the MSRLT data structure is employed to keep track
of memory blocks in the program memory space. The MSRLT data structures also provide a logical
scheme to identify memory blocks during process migration. In addition, the representation of pointers
in a machine-independent format is described. Finally, the proposed design is implemented in the30

form of C library routines. Three C programs with different data structures and execution behaviors,
including numerically intensive and pointer intensive, with recursions have been transformed to the
migratable format and tested in our experiments. Analytical and experimental results show that the
proposed data collection and restoration method is correct, efficient, and general. While our software
is developed for C programs, the poll-point concept, memory representation model, and data collection35

and transfer techniques introduced in this study are independent of C and can be extended to other
languages as well.

Work remains to be done to develop a distributed system which can support network process
migration dynamically, transparently, and efficiently. This includes the development of a scheduler
which can make optimal decisions on when and where to migrate, the requirement of a pre-compiler40

which can make migration transparent to the user, and the establishment of a well-defined virtual
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machine environment which can be seamlessly integrated with the scheduler, the pre-compiler, and the
proposed basic migration mechanism.
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