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AbstractÐA major difficulty in restructuring compilation, and in parallel programming in general, is how to compare parallel

performance over a range of system and problem sizes. Execution time varies with system and problem size and an initially fast

implementation may become slow when system and problem size scale up. This paper introduces the concept of range comparison.

Unlike conventional execution time comparison in which performance is compared for a particular system and problem size, range

comparison compares the performance of programs over a range of ensemble and problem sizes via scalability and performance

crossing point analysis. A novel algorithm is developed to predict the crossing point automatically. The correctness of the algorithm is

proven and a methodology is developed to integrate range comparison into restructuring compilations for data-parallel programming. A

preliminary prototype of the methodology is implemented and tested under Vienna Fortran Compilation System. Experimental results

demonstrate that range comparison is feasible and effective. It is an important asset for program evaluation, restructuring compilation,

and parallel programming.

Index TermsÐPerformance evaluation, parallel compiler, scalable computing, software systems.

æ

1 INTRODUCTION

THE most significant question with parallel machines is
the same today as it has been for many decades: How

can software applications take advantage of hardware
parallelism [1]. Traditionally, distributed memory architec-
tures have been programmed using message passing,
where the user is responsible for explicitly inserting
communication statements into a sequential program. The
development of parallel languages, such as Vienna Fortran
[2], Fortran D [3], and High Performance Fortran (HPF) [4],
improved the situation by providing high-level features for
the specification of data distributions. Among others, the
Vienna Fortran Compilation System (VFCS) [5] and Fortran
D compilation system [3] have been developed to support
such languages and to automatically generate a message
passing program. However, current technology of code
restructuring systems inherently lacks the power to fully
exploit the performance offered by distributed memory
architectures. The primary motivation of parallel processing
is high performance. Effectiveness and efficiency of
restructuring compilation are the current barriers for the
success of a simple, high-level programming model
approach.

Restructuring a program can be seen as an iterative

process in which a parallel program is transformed at each

iteration. The performance of the current parallel program

is analyzed and predicted at each iteration. Then, based on

the performance result, the next restructuring transforma-
tion is selected for improving the performance of the
current parallel program. This iterative process terminates
when certain predefined performance criteria are met or as
a result of explicit user intervention. Integrating perfor-
mance analysis with a restructuring system is critical to
support automatic performance tuning in the iterative
restructuring process. The development of a fully compi-
ler-integrated performance system for scalable parallel
machines is especially challenging. In a scalable environ-
ment, the performance of a program varies with data
distribution, system size (number of processors), and
problem size. A superior program implementation is only
superior over a range of system and problem sizes.
Predicting the performance of parallel programs and
integrating performance indices automatically into a re-
structuring compiler are two major challenges facing
researchers in the field [6]. Moreover, current performance
analysis and visualization tools are targeted at message-
passing programming models where parallelism and
interprocessor communication are explicit. They fall short
in supporting high-level languages and are not readily
integrated into restructuring compilers.

Two major functionalities of data-parallel restructuring
compilers are the distribution of data arrays over processors
and the choice of appropriate restructuring transformations.
A key question in realizing these two functionalities is how
to predict the scaled performances of a small number of
data distributions and transformations automatically so that
appropriate optimization decisions can be made. In order to
compare relative performance over a range of problem and
system sizes, scalability prediction is proposed as a solution
in this study. Scalability is the ability to maintain parallel
processing gain when system and problem size increase. It
characterizes the scaling property of a code on a given
machine. A slow code with good scalability may become
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superior when system and problem sizes scale up. The
system sizes for which the performance ranking of different
code changes are called crossing points. In this paper, we
introduce the concept of range comparison, which is
concerned with the determination of crossing points. Based
on analytical results given in Section 3.2, automatic crossing
point prediction and automatic range comparison are
studied in this research. An iterative algorithm is first
derived to predict the scalability and crossing point on a
given parallel platform. Then, the connection between the
iterative algorithm and an existing static performance
estimator, P 3T [7], is discussed. A preliminary prototype
of automatic range comparison is implemented under the
Vienna Fortran Compilation System (VFCS). Finally, two
applications are tested with two different data distributions
to verify the correctness and feasibility of the range
comparison approach. While current experimental results
are preliminary, they clearly demonstrate the feasibility and
effectiveness of the range comparison approach for pro-
gram restructuring.

This paper is organized as follows: VFCS and its
performance estimation tool are introduced in Section 2.
The concept of scalability, performance crossing point and
range comparison are presented in Section 3. An iterative
algorithm for automatic performance prediction is de-
scribed in detail. Experimental results are given in
Section 4 to illustrate how the newly proposed algorithm
can be integrated within VFCS in order to predict the
crossing point automatically. Finally, Section 5 concludes
with a summary.

2 VIENNA FORTRAN COMPILATION SYSTEM

VFCS is a parallelizing compiler for Vienna Fortran and
High Performance Fortran. VFCS is integrated with several
tools for program analysis and transformation and, among
others, provides a parallelization technique which is based
upon domain decomposition in conjunction with the Single-
Program-Multiple-Data (SPMD) programming model. This
model implies that each processor is executing the same
program based on a different data domain. The work
distribution of a parallel program is determinedÐbased on
the underlying data distributionÐaccording to the owner-
computes rule, which means that the processor that owns a
datum will perform the computations that make an assign-
ment to this datum. Nonlocal data referenced by a
processor imply communication which is optimized by
several strategies [5], such as extracting single element
messages from a loop and combining them into vectors
(communication vectorization), removing redundant com-
munication (communication fusion), and aggregating dif-
ferent communication statements (communication
aggregation). The analysis described in this paper is
targeted toward regular computations, such as stencil
computations, and relies heavily on compile-time analysis
and optimization as provided by VFCS.

2.1 P 3T : A Performance Estimator

P 3T [7], [8] is an integrated tool of VFCS which assists users
in performance tuning of regular programs at compile time.
P 3T is based on a single profile run to obtain characteristic

data for branching probabilities, statement, and loop
execution counts. It is well-known [9], [10], [11], [12] that
the overhead to access nonlocal data from remote proces-
sors on distributed memory architectures is commonly
orders of magnitude higher than the cost of accessing local
data. Communication overhead is, therefore, one of the
most important metrics in choosing an appropriate data
distribution. P 3T models communication overhead by two
separate performance parameters: number of data transfers
and amount of data transferred. For the sake of brevity,
only issues of static estimation of communication overhead
are discussed in this section. Interested readers may refer to
[7], [8], [13] for more information regarding the other
performance parameters of P 3T .

Note that, in Section 4, we define communication time
that combines the P 3T parameters mentioned above and
various machine specific metrics.

2.1.1 Number of Data Transfers

The number of data transfers is a critical parameter which
reflects the high message startup costs on most distributed
memory architectures. Commonly, the overhead for com-
munication is decreasing if it can be hoisted outside of a
nested loop. Moreover, communication inside of a specific
loop body in many cases implies that the loop is
sequentialized due to synchronization between the proces-
sors involved in the communication. P 3T carefully models
the loop nesting level at which a communication is placed,
array access patterns, data dependences and distribution,
control flow, and compiler communication optimizations
(e.g., communication vectorization and fusion) in order to
determine the number of data transfers with high accuracy.

For communication that can be hoisted outside a loop
nest, we assume the loosely synchronous communication
model [14], which implies that all involved processors
communicate simultaneously. For such a communication
statement, the number of data transfers is determined by
the maximum number of data transfers across all involved
processors. For communication that cannot be hoisted
outside a loop nest due to a data dependence, we assume
that it sequentializes the loop at which the communication
is placed, as well as all data transfers implied by the
communication. The number of data transfers for such a
communication is given by the sum of data transfers across
all processors involved in the communication.

2.1.2 Amount of Data Transferred

The current generation of distributed memory architectures
reduces the impact of the message length on the commu-
nication overhead. For applications that transmit small data
volumes, the startup cost is the predominate communica-
tion cost factor. However, for increasing data volumes
transmitted, the message transfer time per byte and, in turn,
the amount of data transferred become the first order
performance effect. In order to provide a highly accurate
estimate for the amount of data transferred (given in bytes)
as induced by a parallel program, P 3T estimates the
number of nonlocal data elements accessed and incorpo-
rates machine specific data type sizes. For this purpose, P 3T
examines the loop nesting level at which a communication
is placed, array access patterns, data dependences and
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distributions, control flow, and compiler communication
optimizations.

As the compiler specifies the communication pattern at
the source code level, the target architecture can be for the
most partÐexcept for data type sizesÐignored. Conse-
quently, this parameter ports easily to a large class of
distributed memory architectures.

3 PERFORMANCE RANGE COMPARISON

While execution time is an important performance metric
for optimizing parallel programs, its comparison bonds to a
specific pair of system and problem size. Execution time
alone is not sufficient for performance comparison over a
range of system and problem sizes. Scalability has been
recognized as an important property of parallel algorithms
and machines in recent years [15]. Several scalability
metrics have been proposed [16], [17], [18]. However,
scalability has been traditionally studied separately as an
independent property. Only very recently has the relation
of scalability and execution time been studied and the
concept of range comparison been introduced [19], [20].
Unlike conventional execution time comparison, in which
performance is compared at a particular system and
problem size, range comparison compares the performance
of programs over a range of system and problem size via
scalability and performance crossing point analysis. To fully
understand the concept of range comparison, some back-
ground of scalability and crossing point analysis needs to be
introduced.

3.1 Isospeed Scalability

A major driving force behind parallel computing is to solve
large problems fast. Traditionally, execution time is the
measure of choice for fixed-size problems. Execution time
by itself, however, is not adequate for scalable computing,
where problem size scales up with system size. Speed,
defined as work divided by time, has been proposed as an
alternative primary metric for scalable computing. Average
speed is the achieved speed divided by the number of
processors used.1 Average speed is a quantity that ideally
would be unchanged with scaled system size. The following
definition was first given in [16].

Definition 1 (Isospeed Scalability of Algorithm-Machine
Combination). An Algorithm-Machine Combination is
scalable if the achieved average speed of the algorithm on the
given machine can remain constant with the increasing
number of processors, provided the problem size can be
increased with the system size.

For a large class of Algorithm-Machine Combinations
(AMCs), the average speed can be maintained by increasing
the problem size. The necessary problem size increase
varies with algorithm-machine combinations. This variation
provides a quantitative measurement for scalability. Let W
be the amount of work of an algorithm when p processors
are employed in a machine, and let W 0 be the amount of

work of the algorithm when p0 > p processors are employed
to maintain the average speed, then the scalability from
system size p to system size p0 of the algorithm-machine
combination is:

 �p; p0� � p
0 �W
p �W 0 ; �1�

where the work W 0 is determined by the isospeed
constraint. Finally, let Tp�W� be the time for computing W
work on a p processors system; (2) shows how scaled
execution time can be computed from scalability

Tp0 �W 0� �  ÿ1�p; p0� � Tp�W�: �2�
Three approaches have been proposed to determine

scalabilities [16]. They are: computing the relation between
problem size and speed, directly measuring the scalability,
and predicting scalability with certain predetermined para-
meters. While all of the three approaches are practically
important, scalability prediction seems to be less expensive
and benefits most from compiler support.

The parallel execution time Tp�W� can be divided into
two parts: the ideal parallel processing time and parallel
processing overhead, To�W�.

Tp�W� � Ts�W�
p
� To�W� �W ��

p
� To�W�; �3�

where Ts is the sequential execution time, � is the
computing capacity, defined as time per unit of work, of a
single processor. The parallel processing overhead To
contains the load imbalance overhead, communication
overhead, and other possible parallelism degradations. By
the definition of scalability (see (1)), scalability can be
predicted if and only if the scaled work size, W 0, can be
predicted. A prediction formula has been given in [21] to
compute W 0:

W 0 � a � p
0 � T 0o�W 0�

1ÿ a�
; �4�

where a is the achieved average speed and T 0o�W 0� is the
parallel processing overhead on p0 processors. When
parallel degradation does exist (i.e., T 0o�W 0� > 0), a �� < 1
and, therefore, (4) is traceable. T 0o > 0 is a necessary and
sufficient condition of (4). When T 0o � 0, ideal scalability is
achieved with  �p; p0� � 1. Parallel processing overhead
T 0o�W 0� in general is a function of problem size. With
unknowns on both sides of the equation, using (4) for
scalability prediction is not a straightforward task.

3.2 Performance Crossing Point and Range
Comparison

Theorem 1 gives a relation between scalability and execu-
tion time of two different algorithm-machine combinations.
It has been analytically proven and experimentally con-
firmed in [19].

Theorem 1. If algorithm-machine combinations 1 and 2 have
execution time � � T and T , respectively, at the same initial
state (the same initial system and problem size), then
combination 1 has a higher scalability than combination 2 at
a scaled system size if and only if the execution time of
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combination 1 is smaller than the � multiple of the execution
time of combination 2 for solving W 0 at the scaled system size,
where W 0 is the scaled problem size of combination 1.

Theorem 1 shows that if an AMC is faster at the initial
state and has a better scalability than that of others, then
it will remain faster over the scalable range. Range
comparison becomes more difficult when the initially
faster AMC has a smaller scalability. When the system
size scales up, an originally faster code with lower
scalability can become slower than another code with a
better scalability. Finding the fast/slow crossing point is
critical for optimizing performance and choosing efficient
data distributions and program transformations in a data-
parallel environment. Finding the superiority/inferiority
crossing point, however, is very difficult. The definition
of crossing point is problem size and system size
dependent. Definition 2 gives a formal definition of
crossing point based on the isospeed scalability [20].

Definition 2 (Scaled Crossing Point). For any � > 1, if
algorithm-machine combinations 1 and 2 have execution time
� _T and T , respectively, at the same initial state, then we say a
scaled system size p0 is a crossing point of combinations 1 and
2 if the ratio of the isospeed scalability of combination 1 and
combination 2 is greater than � at p0.

Let AMC 1 have execution time t, scalability ��p; p0�, and
scaled problem size W 0. Let AMC 2 have execution time T ,
scalability 	�p; p0�, and scaled problem size W �. By
Definition 2, p0 is the crossing point of AMC 1 and 2 if
and only if

��p; p0�
	�p; p0� > �: �5�

In fact, by (2), when ��p; p0� � �	�p; p0�, we have
tp0 �W 0� � Tp0 �W ��. Notice that, since � > 1, combination
2 has a smaller execution time at the initial state,
tp�W� > Tp�W�. This superiority/inferiority changing in
execution time gives the meaning of performance crossing
point. The correctness of Theorems 2 and 3 is proven in
[20], [22].

Theorem 2. If algorithm-machine combination 1 has a larger
execution time than algorithm-machine combination 2 at the
same initial state, then, for any scaled system size p0, p0 is a
scaled crossing point if and only if combination 1 has a smaller
scaled execution time than that of combination 2.

Theorem 3. Assume algorithm-machine combination 1 has a
larger execution time than algorithm-machine combination 2
at the initial state, then the scaled ensemble size p0 is not a
scaled crossing point if and only if combination 1 has a larger
execution time than that of combination 2 for solving any
scaled problem W y such that W y is between W 0 and W � at p0,
where W 0 and W � is the scaled problem size of combination 1
and combination 2, respectively.

Theorem 3 gives the necessary condition for range
comparison of scalable systems: p0 is not a crossing point
of p if and only if the fast/slow relation of the systems does
not change for any scaled problem size within the scalable
range of the two compared algorithm-machine combina-
tions. Based on this fundamental finding, with the compar-
ison of scalability, we can predict the relative performance
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of computing systems over a range of problem sizes and
machine sizes. This unique property of scalability compar-
ison is practically valuable. It provides a more reasonable
comparison of computing systems and guides for optimiz-
ing computing for a given range of applications. Fig. 1 gives
the range comparison algorithm in terms of finding the

smallest crossing point via scalability comparison. While

not listed here, an alternative range comparison algorithm

that finds the smallest crossing point via execution time

comparison can be found in [22]. In general, there could be

more than one crossing point over the consideration range
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for a given pair of CMCs. These two algorithms can be used

iteratively to find successive crossing points.

3.3 Automatic Crossing-Point Prediction

The procedure of range comparison listed in Fig. 1 is in

terms of scalability. Scalabilities of different code imple-

mentations, or different algorithm-machine combinations in

general, still need to be determined for range comparison.

Scalabilities of different algorithmic implementations can be

prestored for performance comparison. In many situations,

however, premeasured results of scaled systems are not

available and predictions are necessary. We propose an

iterative method, listed in Fig. 2, to compute W 0 and to

predict the scalability automatically. We assume that the

underlying application is scalable and its work W is a

monotonically increasing function of a scaling parameter n

(input data size). We also assume that parallel overhead To
is either independent of parameter n (ideally scalable) or is

monotonically increasing with n (parallel degradation

exists). The iterative algorithm consists of three parts: the

main program and two subroutines for computing the

function of ��W� and the inverse of ��W�. Function ��W� is

implied by (4). Mathematically, the iterative algorithm is to

find a fixed point of ��W� such that W � ��W�. A proof of

correctness of the algorithm is provided in [23].
Our correctness proof does not give the convergence rate

of the iteration algorithm. Like most iterative methods, the

convergence rate of the algorithm is application dependent.

It depends on the properties of function f�n�. For most

scientific computations, f�n� is a low degree polynomial

function and the algorithm converges very fast. Our

experimental results show that the algorithm only requires

three to five iterations to converge to a solution with an

error bound of � � 10ÿ2.
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4 AUTOMATIC PERFORMANCE COMPARISON UNDER

VFCS

We have implemented a prototype version of the iterative
algorithm within VFCS for predicting the scalability and
execution time of a parallelized code. The functionalities of
P 3T and VFCS have been fully implemented as described in
Section 2. Fig. 3 shows the structure of the scalability
prediction within VFCS. The input program is parallelized,
instrumented by VFCS, and a message passing code is
generated. This code is then compiled and executed on the
target parallel machine. A performance analysis tool
analyzes the tracefile obtained and computes (initial)
performance indices which are then used by scalability
prediction. Finally, scalability prediction implements the
iterative algorithm as described in Section 3. At each
iteration of the algorithm, the problem size is specified,
the source code is automatically parallelized, performance
indices (number of transfers Z and the amount of data
transferred D) are estimated by P 3T , and scalability
prediction is performed. This process iterates until the
algorithm converges.

Experimental results show that our approach provides
an effective solution for capturing the scaling properties of a
parallel code and supports optimizing data-parallel pro-
grams. Two cases are presented in detail in this section to
illustrate how the iterative algorithm is used within the
VFCS environment and how the prediction is carried out
automatically.

The experiments have been carried out on an iPSC/860
hypercube with 16 processors. The parallel processing
overhead To used in the scalability iteration algorithm, as
described in Section 3, contains communication overhead
and load imbalance. We choose two codes, Jacobi and
Redblack, both of which contain several two-dimensional

arrays and imply good load balance. To, therefore, contains

only the communication time that can be obtained by the

formula

To � Z��� �� �D� � 
 � h�; �6�
where Z and D are predicted at compile time for any

problem size W using P 3T . The machine specific para-

meters, � and �, are the startup time and the transfer time

per message byte, respectively. 
 represents the additional

overhead for each network hop and h is the number of

hops.
Jacobi and Redblack have been parallelized by VFCS and

their performance measured on four processors of an iPSC/

860 hypercube. The performance indices obtained and

needed for computing the initial state of the scalability

prediction are given by the work W , the total execution time

on p processors Tp, the computation time Tc, and the

communication overhead To. The execution models of

Jacobi and Redblack, based on (3), are as follows:

Tp � Tc � To �W
p

�� To � 11
�nÿ 2�2

p
�� To

and

Tp � Tc � To �W
p

�� To � 6
�nÿ 1�2

p
�� To:

We assume that the computations of Jacobi and Redblack

are uniformly distributed across all processors.

The computing rate � � Tc�p
W and the average speed a �

W
p�Tp�W� can be determined by the measured computation

time and total execution time. The initial value of the

prediction algorithm, W0 � p0 �W
p , is computed based on the
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TABLE 3
Redblack: Two-Dimensional Distribution, Predicted, and Measured Scalability



work W and p � 4. Starting with iteration k � 0, a new

input data size nk � fÿ1�Wk� is obtained for k � 0. The

communication overhead T 0o and the scaled work W 0
k are

predicted using (6) and (4), respectively. Scalability from

processors p to processors p0 is determined when the

terminating condition Wk ÿWkÿ1j jj j < � is satisfied for a

fixed � > 0 (� � 10ÿ2 is used in our experiments). Otherwise

the method iterates with the new parameter nk�1.
Tables 1 and 2 show the measured and predicted

scalability of Jacobi algorithm with two different data
distribution strategies: two-dimensional block distribution
and column-wise distribution of all program arrays to two-
dimensional and one-dimensional processors array, respec-
tively. The difference in percentage between the predicted
and measured values is given in the third column of the
tables.

The experimental results confirm that our predicted
scalabilities are very accurate and the variations of scaled
performance for various data distributions are also
captured.

Table 3 shows the predicted and measured scalability
values of the Redblack algorithm with two-dimensional
distribution. Tables 4, 5, and 6 present the predicted
execution times versus the measured ones for Jacobi with
two-dimensional block distribution, one-dimensional dis-
tribution, and Redblack with two-dimensional block dis-
tribution, respectively.

The initial problem size used in Tables 1, 2, 3, 4, 5, 6 is
determined by the asymptotic speed [24] for best perfor-
mance, where n � 64 is chosen. We have measured the
average execution time required for a single iteration
(covering parallelization, P 3T , and scalability prediction)
of Fig. 3. For Redblack, the parallelization time accounts for
0:7 secs, P 3T for 0:3 secs, and scalability prediction for 0:1
secs. Overall, every iteration took approximately 1:1 secs,

which remains constant for changing problem size. The
execution time of Redblack can be written as �T4�64� �
�1869 � 5560 �s and for Jacobi T4�64� � 1869 �s where � is
2:975. According to Tables 1, 2, and 3, the scalability of
Jacobi is higher than that of Redblack. Therefore, by
Theorem 1, the smaller initial execution time and larger
scalability show that Jacobi scales better than Redblack,
which is confirmed by measured results as given in Tables 4,
5, and 6.

A more interesting result is given by the two different
Jacobi versions. From Tables 1 and 2, we can see that the 2D
distribution implementation has a larger initial execution
time and a better scalability, on p � 16, than that of column-
wise distribution. According to Theorem 2, there will be a
crossing point at some scaled system size p0. However, in
this case, the crossing point is greater than 16 and cannot be
confirmed by our prototype implementation. Fig. 4 shows
that there is no crossing point for range of 4 to 16
processors.

As pointed out in [21], scaled performance is more
sensitive for small applications, where increasing system
size will cause more noticeable change of communication/
computation ratio. For Jacobi, the communication/compu-
tation ratio increases with the decrease of problem size. At
the initial state, where p � 4 and n � 20, the execution time
for Jacobi with column-wise distribution strategy is given
by T4�20� � 594 �s and for Jacobi with 2D distribution it is
�T4�20� � 753 �s, where � � 1:267. Considering the scal-
ability results of Tables 7 and 8, we see that, for p0 � 8, the
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Fig. 4. No scaled crossing point for Jacobi with starting point p � 4,
n � 64.



2D distribution scales better than that of column-wise

distribution. The ratio between the two predicted scalabil-

ities, 0:652
0:373 � 1:747, is greater than �. Therefore, by

Definition 2, p0 � 8 is a crossing point where the execution

time of 2D distribution becomes less than that of column-

wise distribution. This crossing point is due to the

communication behavior involved on iPSC/860 for p0 � 8

and is confirmed by the measured execution times as shown

in Fig. 5a.
In order to verify Theorem 3, we measured both codes

with n � 33 and n � 50, respectively. In accordance with

Theorem 3, before p � 8, there is no performance crossing

point and p � 8 may correspond to a crossing point for a

given problem size in the scalable range. The results are

shown in Fig. 5b.
In this study, our focus is on range comparison under

data-parallel compilation systems. More experimental

results of range comparison can be found in [25] for MPI

applications.

5 CONCLUSION

There are many ways to parallelize a program, and the

relative performance gain of different parallelizations

strategies varies with problem size and system size.

Comparing the performance of different implementations

of an algorithm over a range of system and problem sizes is

crucial in developing effective parallelizing compilers and

ultimately in reducing the burden of parallel programming.

In this study, a practical methodology is developed for

automatic range comparison and it is tested in a data-

parallel compilation system. The proposed methodology is

built on rigorous analytical models which are both correct

and efficient. Experimental results confirm its effectiveness

as part of a parallelizing compiler.
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TABLE 7
Predicted Scalability for Jacobi with 2D Distribution

TABLE 8
Predicted Scalability for Jacobi Column-Wise Distribution

Fig. 5. Scaled crossing point (a) and crossing point (b) for the Jacobi with n � 20.



This paper offers several contributions. First, we identify

the importance and feasibility of range comparison in data-

parallel compilation systems; next, an iterative algorithm is

developed to experimentally predict the scalability of

algorithm-machine combinations and to enable automatic

range comparison. P 3T , an existing static estimator, is

modified to integrate automatic range comparison into a

data-parallel compilation systems. Finally, the range com-

parison approach is tested as part of Vienna Fortran

Compilation System. Our experimental results demonstrate

the feasibility and high potential of range comparison in a

parallelizing compiler.
The concept and analytical results given in Sections 3.1

and 3.2 are very general. They are applicable to any

algorithm-machine combinations. The scalability predic-

tion algorithm given in Section 3.3 assumes that the

workload is a deterministic function of a scaling factor n.

While this assumption is quite reasonable, the algorithm

requires an estimation of the parallel processing over-

head. The algorithm has been tested with P 3T static

performance estimator under Vienna Fortran Compilation

System. Due to the availability of VFCS and P 3T , the

experimental results presented in this paper are limited

on the 16-node iPSC/860 available at University of

Vienna. The integrated range comparison methodology

introduced in this research, however, is general. It can be

adopted for large parallel systems, as well as for other

advance compilation systems [25].
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