
Xiaoyang Lu∗, Boyu Long∗, Xiaoming Chen, Yinhe Han,
Xian-He Sun

ACES: Accelerating Sparse Matrix Multiplication
with Adaptive Execution Flow and Concurrency-

Aware Cache Optimizations

SpMM and Sparse Patterns

SpMM is widely used in machine learning and computation fields
• Applications include sparse/compressed deep neural networks, sparse linear algebra,

and tensor algebra…
• There is an increasing demand for higher performance and efficiency in SpMM

Sparse Matrices have various sparse patterns
• Various matrix sizes, densities, and distribution of non-zeros
• Significant challenges for conventional cache-based computing architectures

Matrices from SuiteSparse matrix collection

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 1

ACES - Motivation

Three common limitations faced by SpMM accelerators:

Tradition: Fixed Execution Flow
• The efficiency of each execution flow is determined by sparse patterns
• There is inconsistent performance across different sparse matrices

Input Reuse (Mat B)

Output Reuse (Mat C)

Index Intersection

Partial Result

InP OutP ROW

Scalar Matrix Vector
Synchronization

An Adaptive Execution Flow is Needed
ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 2

ACES - Motivation

Three common limitations faced by SpMM accelerators:

Tradition: Overlook the Importance of Concurrency
• Only focuses on reducing the number of cache misses
• SpMM operations often lead to concurrent cache line demands
• Even a single cache miss can stall the processing chain

Tradition: On-Chip Cache does not Incorporate Non-Blocking Features
• A single cache miss causes delays in subsequent accesses

Non-Blocking Cache Design in Accelerator

Handle the Concurrent Access Demands of SpMM

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 3

ACES - Overview

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 4

ACES - Adaptive Execution Flow

0 1 2 3 4 5
Mat A

0 1 2 3 4 5
Condensed Mat A

0 1 2 3 4 5
Condensed Mat A

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

(a) (b) (c)

w/o Condensing Aggressive Condensing Moderate Condensing

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 5

Condensing degree impacts the execution flow of SpMM

ACES - Adaptive Execution Flow

0 1 2 3 4 5
Mat A

0 1 2 3 4 5
Condensed Mat A

0 1 2 3 4 5
Condensed Mat A

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

(a) (b) (c)

w/o Condensing Aggressive Condensing Moderate Condensing

P0

P1

P2

P3

P0
P1

P2
P3

P0 P2

P1 P3

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 6

Condensing degree impacts the execution flow of SpMM
• Consider four processing elements, each performing scalar-vector multiplication
• Each element (scalar) is taken from Matrix A and is multiplied with the corresponding

row (vector) of Matrix B

ACES - Adaptive Execution Flow

Detect Sparse Patterns + Select Condensing Degrees

• Detect Sparse Patterns
• Indicate sparse pattern changes by row length variations (SPADA [ASPLOS’23])
• Adjacent rows with similar distributions of non-zero elements tend to have a stable row

length (number of non-zero elements)
• Partition rows into bands based on changes in row length
• Several bands: rows in the same band have a similar sparse pattern

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 7

ACES - Adaptive Execution Flow

Detect Sparse Patterns + Select Condensing Degrees

• Select Condensing Degrees
• For a large band:
• Determine the optimal condensing degree via a sampling phase
• Conduct three sample passes, one for each condensing degree
• Choose the best condensing degree for the remaining rows in the band

• For a small band:
• Apply a moderate condensing degree directly

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 8

ACES - Concurrency-Aware Cache Replacement (PureFiber)

Locality-Awareness:
• Once the condensation is determined, the demand

order of the rows in Matrix B is also determined
• Use the Next Request Distance (RD) to capture the

reuse distance of the rows

Scalar

0
1
2
3
4
5

0 1 2 3
Mat BA Condensed

Column of Mat A

Concurrency-Awareness:
• A single miss still stalls the scalar-vector

multiplication process
• Use Fiber Density (FD) to capture the number of

cache lines in the corresponding row
• FD is an indicator of potential concurrent accesses

Vector

Stall

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 9

ACES - Concurrency-Aware Cache Replacement (PureFiber)

PureFiber Cache Replacement Policy
• Pure Fiber - allows all cache lines of a row to be accessed concurrently without any cache

misses
• Aim to achieve a high number of Pure Fibers
• Select the cache line with the highest combined sum of RD and FD for eviction
• Consider both data locality and concurrency

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 10

ACES - Non-Blocking (NB) Buffer
• Manage concurrent cache miss accesses
• When the global cache has a miss, instead of stalling like a blocking cache, it stores the miss

information in the NB buffer
• The NB buffer initiates a fetch for the missing data from the main memory
• The NB buffer handles multiple outstanding data requests concurrently, allowing the

cache to issue new memory requests even when previous ones are still being serviced

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 11

Methodology

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 12

Benchmark
• SuiteSparse

Baselines
• SIGMA [HPCA’20]: Inner-product
• SpArch [HPCA’20]: Outer-product
• SPADA [ASPLOS’22]: Adaptive

Configuration

Overhead
• Area: 3.5 mm2

• Power: 2.8 W

ACES - Performance

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 13

0.0
2.0
4.0
6.0
8.0

10.0
12.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

No
rm

al
ize

d
Sp
ee
du

p

SIGMA
SpArch
SPADA
ACES

13.0 15.9

Comparison among SIGMA, SpArch, SPADA, and ACES

• ACES consistently provides optimal performance across all workloads
• 25.5× over SIGMA, 8.9× over SpArch, and 2.1× over SPADA

ACES - Performance

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 14

ACES vs. ACES-LRU
ACES-LRU:
• Operates with the same workflow as ACES
• Employs an LRU (Least Recently Used) cache replacement policy
ACES shows a 15.9% improvement over ACES-LRU

ACES vs. ACES w/o NB buffer
ACES w/o NB buffer:
• Operates with the same workflow as ACES
• Does not integrate with the NB buffer
ACES shows a 35.8% improvement over ACES w/o NB buffer

ACES - Summary

ACES features an adaptive execution flow that dynamically adjusts
to diverse sparse patterns

ACES incorporates locality-concurrency co-optimizations within the
global cache

ACES outperforms state-of-the-art SpMM accelerators

ACES integrates a non-blocking buffer with the global cache to
enhance concurrency

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 15

Xiaoyang Lu∗, Boyu Long∗, Xiaoming Chen, Yinhe Han,
Xian-He Sun

ACES: Accelerating Sparse Matrix Multiplication
with Adaptive Execution Flow and Concurrency-

Aware Cache Optimizations

xlu40@hawk.iit.edu

