ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations

Xiaoyang Lu*, Boyu Long*, Xiaoming Chen, Yinhe Han, Xian-He Sun

SpMM and Sparse Patterns

SpMM is widely used in machine learning and computation fields

- Applications include sparse/compressed deep neural networks, sparse linear algebra, and tensor algebra...
- There is an increasing demand for higher performance and efficiency in SpMM

Sparse Matrices have various sparse patterns

- Various matrix sizes, densities, and distribution of non-zeros
- Significant challenges for conventional cache-based computing architectures

Matrices from SuiteSparse matrix collection

ACES - Motivation

Three common limitations faced by SpMM accelerators:

Tradition: Fixed Execution Flow

- The efficiency of each execution flow is determined by sparse patterns
- There is inconsistent performance across different sparse matrices

An Adaptive Execution Flow is Needed

ACES - Motivation

Three common limitations faced by SpMM accelerators:

Tradition: Overlook the Importance of Concurrency

- Only focuses on reducing the number of cache misses
- SpMM operations often lead to concurrent cache line demands
- Even a single cache miss can stall the processing chain

Handle the Concurrent Access Demands of SpMM

Tradition: On-Chip Cache does not Incorporate Non-Blocking Features

• A single cache miss causes delays in subsequent accesses

Non-Blocking Cache Design in Accelerator

ACES - Adaptive Execution Flow

Condensing degree impacts the execution flow of SpMM

ACES - Adaptive Execution Flow

w/o Condensing

Aggressive Condensing

Moderate Condensing

Condensing degree impacts the execution flow of SpMM

- Consider four processing elements, each performing scalar-vector multiplication
- Each element (scalar) is taken from Matrix A and is multiplied with the corresponding row (vector) of Matrix B

Detect Sparse Patterns + Select Condensing Degrees

• Detect Sparse Patterns

- Indicate sparse pattern changes by row length variations (SPADA [ASPLOS'23])
- Adjacent rows with similar distributions of non-zero elements tend to have a stable row length (number of non-zero elements)
- Partition rows into bands based on changes in row length
- Several bands: rows in the same band have a similar sparse pattern

Detect Sparse Patterns + Select Condensing Degrees

• Select Condensing Degrees

- For a large band:
 - Determine the optimal condensing degree via a sampling phase
 - Conduct three sample passes, one for each condensing degree
 - Choose the best condensing degree for the remaining rows in the band
- For a small band:
 - Apply a moderate condensing degree directly

ACES - Concurrency-Aware Cache Replacement (PureFiber)

Locality-Awareness:

- Once the condensation is determined, the demand order of the rows in Matrix B is also determined
- Use the Next Request Distance (RD) to capture the reuse distance of the rows

Concurrency-Awareness:

- A single miss still stalls the scalar-vector multiplication process
- Use Fiber Density (FD) to capture the number of cache lines in the corresponding row

• FD is an indicator of **potential concurrent accesses**

ACES - Concurrency-Aware Cache Replacement (PureFiber)

PureFiber Cache Replacement Policy

- **Pure Fiber** allows all cache lines of a row to be accessed concurrently without any cache misses
- Aim to achieve a high number of **Pure Fibers**
- Select the cache line with the **highest combined sum of RD and FD** for eviction
- Consider both data locality and concurrency

ACES - Non-Blocking (NB) Buffer

- Manage concurrent cache miss accesses
- When the global cache has a miss, instead of stalling like a blocking cache, it stores the miss information in the NB buffer
- The NB buffer initiates a fetch for the missing data from the main memory
- The NB buffer handles multiple outstanding data requests concurrently, allowing the cache to issue new memory requests even when previous ones are still being serviced

Methodology

Benchmark

Configuration

• SuiteSparse

Workload	Density	Workload	Density
2cubes_sphere (cs)	1.6e-04	offshore (of)	6.3e-05
amazon0312 (az)	2.0e-05	p2p-Gnutella31 (pg)	3.8e-05
ca-CondMat (cc)	3.5e-04	patents_main (pm)	9.7e-06
cage12 (cg)	1.2e-04	poisson3Da (p3)	1.9e-03
cop20k_A (ca)	1.8e-04	roadNet-CA (rc)	1.4e-06
email-Enron (ee)	2.7e-04	scircuit (sc)	3.3e-05
filter3D (f3)	2.4e-04	web-Google (wg)	6.1e-06
m133-b3 (mb)	2.0e-05	webbase-1M (w1)	3.1e-06
mario002 (m2)	1.4e-05	wiki-Vote (wv)	1.5e-03

Baselines

- SIGMA [HPCA'20]: Inner-product
- SpArch [HPCA'20]: Outer-product
- SPADA [ASPLOS'22]: Adaptive

MPEs	16 MPEs (multipliers); 1 GHz
APEs	16 APEs (merger); 1 GHz
SQs	16 SQs, 2 KB per queue
Global Buffer	0.5 KB, 32-entry buffer
Global Cache	1 MB, 16 banks, 16-way associative
Crossbar	16×16 and 16×16, swizzle-switch based
NB buffer	0.5 KB, 64 subentries
Memory	128 GB/s, 16 64-bit HBM channels, 8GB/s per channel
	*

Overhead

- Area: 3.5 mm²
- Power: 2.8 W

ACES - Performance

Comparison among SIGMA, SpArch, SPADA, and ACES

- ACES consistently provides optimal performance across all workloads
- 25.5× over SIGMA, 8.9× over SpArch, and 2.1× over SPADA

ACES vs. ACES-LRU

ACES-LRU:

- Operates with the same workflow as ACES
- Employs an LRU (Least Recently Used) cache replacement policy **ACES** shows a **15.9%** improvement over **ACES-LRU**

ACES vs. ACES w/o NB buffer

ACES w/o NB buffer:

- Operates with the same workflow as ACES
- Does not integrate with the NB buffer
- ACES shows a 35.8% improvement over ACES w/o NB buffer

ACES - Summary

ACES features an **adaptive execution flow** that dynamically adjusts to diverse sparse patterns

ACES incorporates **locality-concurrency co-optimizations** within the global cache

ACES integrates a **non-blocking buffer** with the global cache to enhance concurrency

ACES outperforms state-of-the-art SpMM accelerators

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations

Xiaoyang Lu*, Boyu Long*, Xiaoming Chen, Yinhe Han,

Xian-He Sun

xlu40@hawk.iit.edu

