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SpMM and Sparse Patterns

SpMM is widely used in machine learning and computation fields
• Applications include sparse/compressed deep neural networks, sparse linear algebra, 

and tensor algebra…
• There is an increasing demand for higher performance and efficiency in SpMM

Sparse Matrices have various sparse patterns
• Various matrix sizes, densities, and distribution of non-zeros
• Significant challenges for conventional cache-based computing architectures

Matrices from SuiteSparse matrix collection 
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ACES - Motivation

Three common limitations faced by SpMM accelerators: 

Tradition: Fixed Execution Flow
• The efficiency of each execution flow is determined by sparse patterns
• There is inconsistent performance across different sparse matrices

Input Reuse (Mat B)

Output Reuse (Mat C)

Index Intersection

Partial Result

InP OutP ROW

Scalar Matrix Vector
Synchronization

An Adaptive Execution Flow is Needed
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ACES - Motivation

Three common limitations faced by SpMM accelerators: 

Tradition: Overlook the Importance of Concurrency
• Only focuses on reducing the number of cache misses
• SpMM operations often lead to concurrent cache line demands
• Even a single cache miss can stall the processing chain

Tradition: On-Chip Cache does not Incorporate Non-Blocking Features
• A single cache miss causes delays in subsequent accesses

Non-Blocking Cache Design in Accelerator

Handle the Concurrent Access Demands of SpMM
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ACES - Overview
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ACES - Adaptive Execution Flow
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Condensing degree impacts the execution flow of SpMM



ACES - Adaptive Execution Flow
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Condensing degree impacts the execution flow of SpMM
• Consider four processing elements, each performing scalar-vector multiplication
• Each element (scalar) is taken from Matrix A and is multiplied with the corresponding 

row (vector) of Matrix B



ACES - Adaptive Execution Flow

Detect Sparse Patterns + Select Condensing Degrees

• Detect Sparse Patterns 
• Indicate sparse pattern changes by row length variations (SPADA [ASPLOS’23])
• Adjacent rows with similar distributions of non-zero elements tend to have a stable row 

length (number of non-zero elements)
• Partition rows into bands based on changes in row length
• Several bands: rows in the same band have a similar sparse pattern
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ACES - Adaptive Execution Flow

Detect Sparse Patterns + Select Condensing Degrees

• Select Condensing Degrees
• For a large band:
• Determine the optimal condensing degree via a sampling phase
• Conduct three sample passes, one for each condensing degree
• Choose the best condensing degree for the remaining rows in the band

• For a small band:
• Apply a moderate condensing degree directly
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ACES - Concurrency-Aware Cache Replacement (PureFiber)

Locality-Awareness:
• Once the condensation is determined, the demand 

order of the rows in Matrix B is also determined
• Use the Next Request Distance (RD) to capture the 

reuse distance of the rows
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Concurrency-Awareness:
• A single miss still stalls the scalar-vector 

multiplication process
• Use Fiber Density (FD) to capture the number of 

cache lines in the corresponding row
• FD is an indicator of potential concurrent accesses

Vector

Stall
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ACES - Concurrency-Aware Cache Replacement (PureFiber)

PureFiber Cache Replacement Policy
• Pure Fiber - allows all cache lines of a row to be accessed concurrently without any cache 

misses
• Aim to achieve a high number of Pure Fibers 
• Select the cache line with the highest combined sum of RD and FD for eviction
• Consider both data locality and concurrency 

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations 10



ACES - Non-Blocking (NB) Buffer
• Manage concurrent cache miss accesses
• When the global cache has a miss, instead of stalling like a blocking cache, it stores the miss 

information in the NB buffer
• The NB buffer initiates a fetch for the missing data from the main memory 
• The NB buffer handles multiple outstanding data requests concurrently, allowing the 

cache to issue new memory requests even when previous ones are still being serviced
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Methodology
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Benchmark
• SuiteSparse

Baselines
• SIGMA [HPCA’20]: Inner-product
• SpArch [HPCA’20]: Outer-product
• SPADA [ASPLOS’22]: Adaptive

Configuration

Overhead
• Area: 3.5 mm2

• Power: 2.8 W



ACES - Performance
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Comparison among SIGMA, SpArch, SPADA, and ACES

• ACES consistently provides optimal performance across all workloads
• 25.5× over SIGMA, 8.9× over SpArch, and 2.1× over SPADA



ACES - Performance
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ACES vs. ACES-LRU
ACES-LRU: 
• Operates with the same workflow as ACES
• Employs an LRU (Least Recently Used) cache replacement policy
ACES shows a 15.9% improvement over ACES-LRU

ACES vs. ACES w/o NB buffer
ACES w/o NB buffer:
• Operates with the same workflow as ACES
• Does not integrate with the NB buffer
ACES shows a 35.8% improvement over ACES w/o NB buffer



ACES - Summary

ACES features an adaptive execution flow that dynamically adjusts 
to diverse sparse patterns

ACES incorporates locality-concurrency co-optimizations within the 
global cache

ACES outperforms state-of-the-art SpMM accelerators

ACES integrates a non-blocking buffer with the global cache to
enhance concurrency 
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