ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow and Concurrency-Aware Cache Optimizations

Xiaoyang Lu^{*1}, Boyu Long^{*2,3}, Xiaoming Chen², Yinhe Han², Xian-He Sun¹

¹Illinois Institute of Technology, ²Chinese Academy of Sciences, ³University of Chinese Academy of

Sciences

Sparse Matrix-Matrix Multiplication (SpMM)

SpMM is widely used in machine learning and computation fields

• There is an increasing demand for higher performance and efficiency in SpMM

Sparse Matrices have various sparse patterns

- Various matrix sizes, densities, and distribution of non-zeros
- Significant challenges for conventional cache-based \bullet computing architectures

Limitations of Current SpMM Accelerators

There are **three common limitations** faced by current SpMM accelerators:

Adaptive Execution Flow

Detect Sparse Patterns:

- Adjacent rows with similar distributions of non-zero elements tend to have a stable row length (number of non-zero elements)
- Partition rows into bands based on changes in row length
- Rows in the same band have a similar sparse pattern

Select Condensing Degrees:

- Large band Determine the optimal condensing degree via a sampling phase
- Small band Apply a moderate condensing degree directly
- Fixed Execution Flow: A fixed execution flow is hard to adapt different sparse patterns
- **Overlooking the Importance of Concurrency:** SpMM operations often lead to concurrent cache line demands; even a single cache miss can stall the processing chain
- **On-Chip Cache does not Incorporate Non-Blocking** Features: A single cache miss causes delays in subsequent accesses

Mat A Memory 4 Condensing PureFiber Mat A Mat B NB Buffer Fetcher Fetcher Policy Adapter Condensed A 1 2 3 4 5 Global **Global Cache** Buffer - SQ -MPE APE Merging Sync ţ÷ ′ Scheduler Scheduler MPE - SQ APE Mat B Mat A Element Mat B Row Fiber Cached Mat C Partial Row Fiber c_{3,0} c_{3,2} **b**_{5,1} **b**_{5,2} **B**₅ a_{3,5} $\mathbf{c_{3,0}} \mid \mathbf{c'_{3,1}} \mid \mathbf{c_{3,2}} + \mathbf{c'_{3,2}}$ $c'_{3,1}$ $c'_{3,2}$ Mat C Partial $c'_{3,1}$ $c'_{3,2}$ Mat C Partial Row Fiber from MPE Row Fiber

Concurrency-Aware Cache Replacement

- Use the **Next Request Distance (RD)** to capture the reuse distance of the rows
- Use Fiber Density (FD) to capture the number of cache lines in the corresponding row
- Select the cache line with the **highest combined sum** of RD and FD for eviction
- Allow all cache lines of a row to be accessed concurrently without any cache misses

Non-Blocking (NB) Buffer

- Handle multiple outstanding data requests concurrently
- Allow the cache to issue new memory requests even when previous ones are still being serviced

SPADA

Our Solution: ACES

SpMM

