
ACES: Accelerating Sparse Matrix Multiplication with
Adaptive Execution Flow and Concurrency-Aware

Cache Optimizations

Xiaoyang Lu∗

xlu40@hawk.iit.edu

Department of Computer Science,

Illinois Institute of Technology

USA

Boyu Long∗

longboyu21b@ict.ac.cn

Institute of Computing Technology,

Chinese Academy of Sciences

University of Chinese Academy of

Sciences

China

Xiaoming Chen†

chenxiaoming@ict.ac.cn

Institute of Computing Technology,

Chinese Academy of Sciences

China

Yinhe Han†

yinhes@ict.ac.cn

Institute of Computing Technology,

Chinese Academy of Sciences

China

Xian-He Sun†

sun@iit.edu

Department of Computer Science,

Illinois Institute of Technology

USA

Abstract

Sparse matrix-matrix multiplication (SpMM) is a critical com-

putational kernel in numerous scienti�c and machine learn-

ing applications. SpMM involves massive irregular memory

accesses and poses great challenges to conventional cache-

based computer architectures. Recently dedicated SpMM

accelerators have been proposed to enhance SpMM per-

formance. However, current SpMM accelerators still face

challenges in adapting to varied sparse patterns, fully ex-

ploiting inherent parallelism, and optimizing cache perfor-

mance. To address these issues, we introduce ACES, a novel

SpMM accelerator in this study. First, ACES features an

adaptive execution �ow that dynamically adjusts to diverse

sparse patterns. The adaptive execution �ow balances par-

allel computing e�ciency and data reuse. Second, ACES

incorporates locality-concurrency co-optimizations within

the global cache. ACES utilizes a concurrency-aware cache

management policy, which considers data locality and con-

currency for optimal replacement decisions. Additionally, the

integration of a non-blocking bu�er with the global cache en-

hances concurrency and reduces computational stalls. Third,

the hardware architecture of ACES is designed to integrate

∗Both authors contributed equally to this research.
†Corresponding authors.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0386-7/24/04.

h�ps://doi.org/10.1145/3620666.3651381

all innovations. The architecture ensures e�cient support

across the adaptive execution �ow, advanced cache opti-

mizations, and �ne-grained parallel processing. Our perfor-

mance evaluation demonstrates that ACES signi�cantly out-

performs existing solutions, providing a 2.1× speedup and

marking a substantial advancement in SpMM acceleration.

ACM Reference Format:

Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, and Xian-He

Sun. 2024. ACES: Accelerating Sparse Matrix Multiplication with

Adaptive Execution Flow and Concurrency-Aware Cache Optimiza-

tions. In 29th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Volume 3 (ASP-

LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,

NY, USA, 15 pages. h�ps://doi.org/10.1145/3620666.3651381

1 Introduction

Sparse matrix-matrix multiplication (SpMM) is a compu-

tational process where two sparse matrices are multiplied.

SpMM is a cornerstone in scienti�c simulations [7], linear

algebra [44, 57], graph analytics [5, 6, 8, 24, 47, 59], and the

rapidly evolving �elds of deep learning [14, 19, 20, 33, 42].

Its crucial role in e�ciently processing large-scale data struc-

tures and complex algorithms makes the e�ective accelera-

tion of SpMM not just a computational challenge, but a key

enabler in advancing researches and applications in these

diverse and impactful domains.

The processing e�ciency of SpMM is heavily in�uenced

by the characteristics of the input sparse matrices. The high

proportion of zero elements in these matrices leads to chal-

lenges such as low utilization of computational and mem-

ory resources. These irregular sparse patterns, coupled with

unpredictable memory access patterns, present signi�cant

obstacles for conventional cache-based computing architec-

tures, which are typically optimized for dense and regular

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

data patterns. As a result, SpMM often becomes a perfor-

mance bottleneck, particularly in an era where processing

large datasets is increasingly crucial [15]. Given the critical

role of SpMM in various computational domains, developing

specialized accelerators to enhance SpMM performance is

important.

Existing SpMM accelerators predominantly utilize �xed

execution �ows, such as inner-product (InP) [22, 45], outer-

product (OutP) [43, 61], or row-by-row (ROW) [50, 60], each

tailored to optimize either input or output data reuse. How-

ever, the e�ciency of each execution �ow is determined by

sparse patterns, resulting in inconsistent performance across

di�erent sparse matrices. For instance, in InP, the sparse pat-

tern critically in�uences the index intersection between the

two input matrices, a�ecting input data fetching e�ciency.

In OutP, the sparse pattern determines the size of the result-

ing partial matrices, making output data reuse optimization

crucial. In the case of ROW, the distribution of non-zeros

in the input matrices in�uences the e�ectiveness of input

data reuse, impacting overall data access e�ciency. This

variability in performance due to di�ering sparse patterns

underscores the need for SpMM execution �ow that can dy-

namically adapt to optimize performance across a range of

matrix structures.

Additionally, the existing SpMM accelerators exhibit lim-

ited capabilities in exploiting the inherent parallelism in

SpMM, leading to several ine�ciencies. First, the inherent

dependencies in the execution �ow can lead to a collective

dependency of hardware processing elements (PEs) on com-

pleting a batch of tasks. In other words, multiple PEs process-

ing the same batch must wait for all tasks to be completed

before proceeding, typically leading to the underutilization

of PEs and prolonged pipeline latency. Second, synchroniza-

tion challenges [50] frequently arise in existing accelerators,

especially when multiple mergers are tasked with working

on the same region of the output matrix. In such situations,

the mergers must carefully sequence their work to ensure

both the correctness and coherence of the merging process.

Therefore, the merge process, responsible for consolidating

the multiplication results, often becomes a bottleneck due

to the need for synchronization. These ine�ciencies impede

the e�ective utilization of hardware resources and limit the

overall performance of SpMM operations. This underscores

the need for designs that better align execution �ows with

the architecture, enhance �ne-grained parallelism, and miti-

gate the synchronization overhead, thereby maximizing the

potential of parallel processing.

Furthermore, cache performance is crucial for the e�-

ciency of SpMM accelerators, but is often overlooked. Con-

ventional cache replacement policies used in SpMM acceler-

ators [32, 60, 61] aim to reduce the number of cache misses

but overlook the importance of concurrency. In SpMM op-

erations, it is common for multipliers to request cache lines

of a row or column concurrently. This concurrency means

that even a single cache miss can cause delays in the entire

processing chain. Moreover, the design of caches in current

accelerators does not incorporate non-blocking features. As

a result, a single cache miss causes delays in subsequent ac-

cesses, thereby exacerbating performance bottlenecks. These

challenges underscore the pressing need for advanced cache

optimizations in SpMM accelerators. Such optimizations

must be tailored to e�ciently handle the unique access de-

mands of SpMM, considering concurrent accesses and ensur-

ing non-blocking cache operations to optimize the overall

performance of the accelerator.

In this paper, we introduce ACES, an innovative acceler-

ator for SpMM, speci�cally designed to dynamically adapt

its execution �ow to accommodate varying sparsity pat-

terns, optimize parallel execution, and implement locality-

concurrency co-optimizations for on-chip cache. ACES has

the following unique features.

• Adaptive execution �ow. ACES is equipped with

an adaptive execution �ow that intelligently adjusts

to varying sparsity patterns of input matrices. This

adaptability is achieved through a spectrum of con-

densing degrees, implemented with minimal overhead

and without altering the original encoding formats of

the matrices. This ensures optimal performance across

diverse matrix structures.

• Balanced data reuse and synchronization. ACES

considers the reuse of input data and the synchroniza-

tion needed for merging partial output results from

each execution �ow. By balancing memory access be-

havior with parallelism, it selects themost suitable con-

densing degree for various sparse patterns, enhancing

e�ciency.

• Concurrency-aware cachemanagement.ACES em-

ploys PureFiber, a concurrency-aware cache replace-

ment policy, to optimize cache management. This pol-

icy accounts for both reuse distance and potential con-

current accesses, aiming to minimize total stalls caused

by cache accesses.

• Non-blocking bu�er integration. ACES incorpo-

rates a non-blocking bu�er to manage cache miss ac-

cesses, ensuring that cache misses do not signi�cantly

disrupt subsequent accesses, thereby improving data

access concurrency.

• Tailored hardware architecture. The hardware ar-

chitecture of ACES is speci�cally designed to comple-

ment its adaptive execution �ow and cache optimiza-

tions. The architecture dedicates an addition process-

ing element (APE) to each multiplication processing

element (MPE), providing �ne-grained parallelism and

minimizing inter-PE dependencies.

We evaluate ACES against three state-of-the-art SpMM ac-

celerators, including SIGMA [45], SpArch [61], and SPADA [32],

across a variety of workloads with diverse sparse patterns.

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

×

×

×

=

=

=

×

×

×

=

=

=

×

×

×

=

=

=

Mat A

(M×K)

Mat B

(K×N)

Partial

Results

Mat A

(M×K)

Mat B

(K×N)

Partial

Results

Mat A

(M×K)

Mat B

(K×N)

Partial

Results

...

+ ++

+ ++

P
a
ra
ll
e
li
s
m

(a) Inner-product (InP) (b) Outer-product (OutP) (c) Row-by-row (ROW)

Figure 1. Examples of three execution �ows: (a) inner-

product, (b) outer-product, and (c) row-by-row.

Overall, ACES not only consistently provides optimal perfor-

mance across all workloads, with average speedups of 25.5×

over SIGMA, 8.9× over SpArch, and 2.1× over SPADA, but

also achieves this with the lowest area cost, further under-

scoring its e�ciency and innovation in SpMM acceleration.

2 Background

2.1 Execution Flows for SpMM

The multiplication of two sparse matrices involves speci�c

execution �ows, dictating how the matrices are accessed and

processed. The three primary execution �ows in SpMM are

InP [22, 45], OutP [43, 61], and ROW [50, 60]. Figure 1 demon-

strates how matrices A and B are multiplied to produce out-

put matrix C using each execution �ow. Each execution �ow

exhibits distinct characteristics in terms of input and out-

put reuse, index intersection e�ciency, and synchronization

requirements.

InP computes each element of matrix C by calculating

the inner product of a corresponding row of matrix A and a

column of matrix B. InP achieves full reuse of matrix C, as all

partial results for each element are immediately accumulated.

Additionally, InP allows multiple PEs to compute di�erent

elements of the output matrix simultaneously, thus minimiz-

ing synchronization issues. However, it faces challenges in

e�ciently reusing matrix B, since each column of matrix B

must be refetched multiple times for every row in matrix

A. Moreover, InP often encounters ine�ciencies in index

intersection due to the sparsity of matrices A and B. When

fetching an entire row of A and an entire column of B for

computation, only non-zero elements with matching indices

contribute to C. Given the sparsity, many fetched elements

lack matching indices, leading to numerous redundant oper-

ations. This ine�ciency is exempli�ed in Figure 1(a), where

the index intersection between the last row of matrix A and

the last column of matrix B is illustrated.

OutP computes the outer product of a row of matrix A

with a column of matrix B, forming one partial matrix of C

at a time. These partial matrices are subsequently merged to

produce the �nal output matrix C. OutP allows for e�cient

reuse of the input matrices, as each row of A and each col-

umn of B are fetched only once. Additionally, OutP mitigates

the ine�ciencies in index intersection seen in InP, since only

entirely zero columns ofA and rows of B do not contribute to

the output, a scenario that is relatively rare. However, OutP

faces challenges in managing the size and number of partial

output matrices, particularly when dealing with matrices

that have highly irregular sparsity patterns. The cumula-

tive size of all partial matrices often surpasses that of the

�nal output matrix, leading to signi�cant memory tra�c and

computational complexity during the merging process. This

issue becomes even more pronounced when handling large

matrices, where the memory and computational demands

are substantially increased. Furthermore, when multiple PEs

are involved in generating and merging these partial matri-

ces, synchronization becomes necessary to ensure a correct

merging process. A large number of synchronization require-

ments can signi�cantly limit the e�ciency of the accelerator

and the utilization of PEs.

ROW operates based on row-wise partitioning of the in-

put matrices. For each row Cğ of the output matrix C, ROW

calculates the result by merging the scalar-vector products

of each non-zero element ėğ,ġ in row Ağ with the correspond-

ing row Bġ of matrix B. ROW generates and stores partial

results for a single output row at a time, enabling e�cient

on-chip management and good reuse of matrix C. In terms

of index intersection between the two input matrices, ROW

is e�cient, as it fetches only those pairs of non-zeros that

are already matched. However, ROW faces challenges in e�-

ciently reusing the rows of matrix B due to irregular access

patterns driven by the non-zero distribution in matrix A.

Moreover, when PEs work concurrently to generate partial

results for the same output row, synchronization becomes

necessary, as depicted in Figure 1(c), potentially creating

bottlenecks in highly parallel systems.

While conventional execution �ows in SpMM provide

distinct characteristics to matrix multiplication, there is no

universally optimal solution. The complexity of handling

highly irregular sparsity patterns, coupled with the demands

of parallel computing, underscores the need for innovative,

adaptive execution �ows that can e�ciently balance data

reuse, index intersection, and parallelism.

2.2 SpMM Accelerators

SIGMA [45] is an InP-based SpMM accelerator that enhances

index intersection e�ciency through a bitmap format for

sparse matrix representation. This format ensures that only

essential computations are conducted. Additionally, SIGMA

employs �exible interconnections among PEs to optimize

their utilization. SpArch [61] adopts an OutP execution �ow

for SpMM, speci�cally focusing on enhancing the e�ciency

of the merging process. It proposes an aggressively con-

densed matrix representation for matrix A, which reduces

the number of partial matrices produced during multiplica-

tion but may compromise input reuse. Additionally, SpArch

integrates a high-radix merger, pipelining the production

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

and merging of partial matrices. SPADA [32] inherits ROW

and introduces a window-based adaptive (WA) execution

�ow to e�ectively adapt SpMM to various sparse patterns,

thereby addressing the limitations of traditional �xed execu-

tion �ows. The specialized hardware architecture of SPADA

includes multiple multipliers, which are responsible for con-

currently executing scalar-vector multiplications within a

WA window. However, WA introduces a collective depen-

dency among the multipliers. This dependency dictates that

a multiplier can only proceed to the next window once all the

multiplication tasks in the current window are completed.

2.3 Challenges and Opportunities

SpMMacceleratorswith �xed execution �ows, such as SIGMA [45]

and OuterSPACE [43], have introduced innovations in accel-

erating SpMM. However, they also encounter challenges due

to the limitations of their �xed execution �ows. In contrast,

the WA execution �ow of SPADA [32] o�ers an innova-

tive approach to adapt to diverse sparse patterns. However,

WA relies on collective dependencies among multipliers for

coordinated execution, which, while essential, introduces

potential bottlenecks in hardware parallelism. This depen-

dency can limit the e�ciency and scalability of the system,

especially in cases where high parallel processing is required.

Moreover, the performance of on-chip caches presents

a signi�cant challenge in the context of concurrent data

demands inherent in SpMM operations. Current accelera-

tors [32, 60, 61] optimize cache performance on data locality.

However, data concurrency is equally important [36, 38, 46,

52]. E�ective cache management should consider data lo-

cality and concurrency together. In addition, the on-chip

cache should handle cache misses in a non-blocking manner,

allowing the cache to continue servicing other requests ef-

�ciently. The non-blocking design could enhance the data

concurrency and reduce computational stalls.

Leveraging insights from the existing accelerators and the

characteristics of SpMM, ACES di�erentiates itself with an

adaptive execution �ow that balances data reuse and paral-

lelism, which e�ectively overcomes the limitations of �xed

execution �ows and the collective dependencies of WA. Fur-

thermore, ACES emphasizes the co-optimizations of locality

and concurrency in on-chip cache design and management.

We introduce the details of ACES in the subsequent section.

3 ACES Architecture

3.1 Overview of ACES

Figure 2 presents an overview of ACES, an accelerator de-

signed for e�cient SpMM. The key components of ACES

consist of a condensing adaptor to dynamically determine the

execution �ow; multiple PEs, including MPEs for handling

multiplications and APEs for merging partial results; two

schedulers (synchronization scheduler and merging sched-

uler) that adaptively distribute tasks across APEs; and a

Memory

Global Cache

NB Buffer
Mat A

Fetcher

Mat B

Fetcher

Global

Buffer

MPE

MPE

.

.

.

!!,# !!,$

Mat B Row FiberMat A Element

"%,& "%,$

Cached Mat C Partial Row Fiber

Mat C Partial Row Fiber from MPE

Condensing

Adapter

PureFiber

Policy

a3,5

0 1 2 3 4 5

0

1

2

3

Mat A

0

1

2

3

0 1 2 3 4 5

Condensed A

0

1

2

3

4

5

0 1 2 3

Mat B

"%,#
'

"%,$
'

"%,#
'

"%,$
'

"%,& "%,#
'

"%,$ + "%,$
'

Mat C Partial

Row Fiber

APE

.

.

.

APE

APE

B5

Sync

Scheduler

Merging

Scheduler

SQ

SQ

Figure 2. Overview of ACES.

global cache, which is integrated with a non-blocking bu�er

(NB bu�er) to organize a non-blocking cache system. These

components synergize to build the key features of ACES:

an adaptive execution �ow, a tailored hardware architec-

ture, and advanced locality-concurrency co-optimizations in

cache management.

Adaptive execution �ow. ACES incorporates a conden-

sation adapter that dynamically tunes the condensed matrix

representation for matrix A to optimize the execution �ow,

as depicted in the top left of Figure 2. This feature allows for

�exibility in handling varying sparsity patterns of matrix A

(more details in Section 3.2). A fetcher for matrix A retrieves

elements from the condensed columns, placing them in a

global bu�er, speci�cally designed as a lightweight bu�er

to store elements of matrix A, while another fetcher fetches

necessary rows of matrix B into the global cache.

Tailored hardware architecture.ACES employs parallel

computing, utilizing MPEs and APEs to support its adaptive

execution �ow (detailed in Section 3.3). Each MPE, illus-

trated in the bottom left of Figure 2, loads a distinct non-zero

element from the condensed column of matrix A and a cor-

responding row from matrix B. These MPEs execute scalar-

vector multiplications in parallel, as shown in the bottom

middle of Figure 2. In conjunction with each MPE, each APE

independently performs immediate merging of the partial

output rows produced by the MPE with the corresponding

partial result stored in the global cache, as demonstrated in

the bottom right of Figure 2. A synchronization scheduler

is designed to mitigate synchronization con�icts between

APEs when processing immediate merging (more details in

Section 3.4). After completing all multiplication operations,

the APEs, under the coordination of a merging scheduler

(detailed in Section 3.4), engage in the �nal merging stage

to merge the remaining partial results into the �nal output

matrix.

Locality-concurrency co-optimizations for global cache.

The global cache in ACES is a critical component, designed

to e�ciently manage both matrix B rows and matrix C par-

tial output rows. The PureFiber cache replacement policy is

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 1 2 3 4 5

Mat A
0 1 2 3 4 5

Mat B

0

1

2

3

4

5

0 1 2 3 4 5

Condensed Mat A
0 1 2 3 4 5

Mat B

0

1

2

3

4

5

0 1 2 3 4 5

Condensed Mat A
0 1 2 3 4 5

Mat B

0

1

2

3

4

5

MPE 0

MPE 1

MPE 2

MPE 3

a!,!

a#,!

a!,$

a#,$

B0

B1

B1

B0

C!
%

C#
%

C!
%%

C#
%%

×

×

×

×

=

=

=

=

Parallelism

MPE 0

MPE 1

MPE 2

MPE 3

a!,!

a$,&

a&,'

a',(

B0

B3

B4

B2

C!
%

C$
%

C&
%

C'
%

×

×

×

×

=

=

=

=

Parallelism

MPE 0

MPE 1

MPE 2

MPE 3

a!,!

a$,&

a(,&

a#,!

B0

B2

B0

B2

C!
%

C$
%

C(
%

C#
%

×

×

×

×

=

=

=

=

Parallelism

Good Reuse of B

Bad Reuse of B

Good Reuse of B

Need Synchronization

w/o Synchronization

w/o Synchronization

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

(a)

(b)

(c)

×

×

×

=

=

=

Figure 3. Three execution �ows with di�erent condensing

degrees: (a) w/o condensing, (b) aggressive condensing, and

(c) moderate condensing.

employed to manage cache lines e�ectively by considering

both data locality and concurrency (more details in Section

3.5). The integration of a NB bu�er in the global cache (more

details in Section 3.6) supports the PureFiber policy and en-

hances performance by facilitating non-blocking accesses.

3.2 Adaptive Execution Flow

Inspired by ROW, in ACES, each MPE is tasked with a scalar-

vector multiplication, involving a single non-zero element

from matrix A and the corresponding row in matrix B. This

design addresses the ine�ciencies of index intersection in

InP and reduces the collective dependency among MPEs.

Moreover, generating partial results at row granularity o�ers

several advantages. It supports immediate merging, which

pipelines both multiplication and merging processes. Addi-

tionally, it alleviates the challenges in OutP, where transfer-

ring entire partial matrices during the merging stage can

signi�cantly increase memory tra�c. However, the ROW

method compromises the reuse of matrix B, as non-zero ele-

ments from the same row of matrix A are often processed

concurrently by MPEs, leading to requests for di�erent rows

of matrix B. To optimize the reuse of matrix B, we traverse

the non-zero elements of matrix A column by column, sim-

ilar to OutP. Figure 3(a) demonstrates this execution �ow

when no condensing is applied to matrix A. While this exe-

cution �ow enhances the reuse of matrix B, it can also lead to

multiple MPEs generating partial results for the same output

matrix row, particularly when matrix A has high sparsity.

This situation introduces synchronization challenges among

APEs during the immediate merging.

An aggressive condensed matrix representation for ma-

trix A involves shifting all non-zero elements to the left-

most columns, which results in much denser condensed

columns. Despite condensation, each non-zero element re-

tains a record of its original column index to ensure computa-

tional accuracy [61]. With the aggressive condensed matrix

representation, traversal of non-zero elements of matrix A

occurs through condensed columns, impacting the execu-

tion �ow of SpMM. In terms of implementation, matrix A

is stored in the CSR format, where each row is an ordered

list of column indices. The elements sharing the same in-

dex in each ordered list are fetched and assigned to MPEs

for parallel computing. As shown in Figure 3(b), when four

MPEs concurrently perform scalar-vector multiplications

using elements from a condensed column of matrix A and

corresponding rows from matrix B, the potential for reusing

rows from matrix B diminishes due to simultaneous requests

for di�erent rows. However, aggressive condensing often

generates distinct partial rows for the output matrix dur-

ing parallel scalar-vector multiplications. This results in a

diminished need for synchronization among APEs during

immediate merging.

In an e�ort to strike a balance between data reuse and

parallel computing e�ciency, we introduce a moderately

condensed matrix representation for matrix A. As depicted

in Figure 3(c), the columns of matrix A are divided into two

distinct groups: the �rst half in one group and the second

half in the other. Within each group, non-zero elements of

matrix A are shifted to the leftmost columns, which is the

same as in aggressive condensing. For the example in Fig-

ure 3, the moderate condensing of matrix A enhances the

reuse of matrix B when compared with aggressive condens-

ing. Furthermore, it reduces synchronization challenges that

might emerge without condensing.

Each condensing degree tries to o�er a trade-o� between

data access and parallelism. However, given the complex

and varied sparsity patterns in matrices, no single condens-

ing degree can consistently outperform others across all

workloads. This highlights the critical need for an adaptive

mechanism, tailored to dynamically adjust to the unique

sparse pattern of each input, thereby optimizing overall per-

formance. ACES introduces such a mechanism, o�ering a

spectrum of condensing degrees to ensure an optimized exe-

cution �ow tailored to each workload.

In ACES, we employ a condensing adapter to dynamically

adjust the representation of matrix A among three condens-

ing degrees: none, moderate, and aggressive. We �rst parti-

tion the entire matrix into bands. Drawing on insights from

[32], we recognize that adjacent rows with similar distribu-

tions of non-zero elements tend to have a stable row length

(number of non-zero elements). Leveraging this observation,

the partitioning of thematrix into bands is primarily based on

row lengths, as indicated by the CSR o�sets array, ensuring a

fast and lightweight partitioning. A new band is established

whenever the absolute di�erence in row length between

adjacent rows surpasses a speci�ed threshold, which we em-

pirically set to be 10. Considering that each band displays

a similar sparse pattern, we select the optimal condensing

degree for each. For large bands, consisting of at least 256

rows, we identify the optimal condensing degree through

the sampling phase. In the sampling phase, we execute three

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

sample passes, each containing 32 rows. During these passes,

we execute the SpMM with di�erent condensing degrees

and monitor the overall execution time, including both mul-

tiplication and immediate merging tasks. The condensing

degree resulting in the best execution time is then applied

to the remaining rows in the band, as it o�ers the most e�-

cient balance between data reuse and parallelism. For small

bands, we apply moderate condensing by default due to in-

su�cient data for sampling, striking a balance between no

and aggressive condensing.

Once the execution �ow is determined, the fetcher for

matrix A loads non-zero elements of matrix A into the global

bu�er ahead of execution. Concurrently, the fetcher for ma-

trix B rows retrieves the row corresponding to the matrix

A element being fetched and places it in the global cache.

Each row of matrix B, stored as a �ber [32, 60], is a list sorted

by coordinate, consisting of the coordinates and values of

each non-zero element. Then, the element from matrix A

and the corresponding �ber of matrix B are dispatched to an

available MPE.

3.3 Processing Elements

Each MPE in ACES is speci�cally designed for executing

scalar-vector multiplications, a fundamental operation in

SpMM. The partial output �ber produced by an MPE is �lled

into a corresponding selective queue (SQ), bu�ers the se-

quentially generated products from the multiplier. Due to

the independence of each scalar-vector multiplication, every

MPE can operate concurrently, avoiding collective dependen-

cies and thereby maximizing processing element utilization.

ACES adopts a distinctive one-to-one pairing of MPEs with

APEs, facilitating e�cient processing of di�erent rows of

the output matrix in SpMM. The bottom middle of Figure 2

shows the example of MPE executes the scalar-vector multi-

plication between ė3,5 with the corresponding row B5.

In tandem with MPEs, APEs play a crucial role, particu-

larly in the immediate merging of partial output �bers. Each

APE handles the merging of newly produced partial output

�bers from SQ with corresponding partial output �bers pre-

viously generated and stored in the global cache. This design

allows APEs to initiate the merging process as soon as a

partial �ber becomes available in the corresponding SQ, thus

enhancing the e�ciency of the system. The merging of each

�ber is achieved by walking two pointers over the two �bers,

comparing the corresponding coordinates, merging them

accordingly if the coordinates match, and then advancing

the pointers based on the comparison results. The outcome

of this merging is a new �ber of matrix C, which is a sorted

merge of the two input �bers and is then written back to

the global cache for further processing. The bottom right of

Figure 2 illustrates an APE executing the merging between

two partial �bers. In instances where there is no partial �ber

in the global cache that can be merged with the partial �ber

loaded from the SQ, the APE will write the partial �ber into

the cache directly. This approach is implemented to prevent

the stalls that could arise from waiting for a matching �ber

to be fetched from memory. Immediate merging at row gran-

ularity in ACES facilitates the easy storage of partial �bers

in the global cache and ensures e�ective reuse of matrix C,

consequently reducing memory tra�c. The independent and

concurrent processing by the APEs, in collaboration with

the synchronization scheduler, enhances system parallelism

and optimizes the utilization of MPEs. Meanwhile, the MPEs

continue with subsequent multiplication tasks, further am-

plifying the parallel processing capabilities of ACES.

In immediate merging, APEs focus on merging newly

generated partial �bers with those currently stored in the

global cache. However, due to the limited capacity of the

global cache, it is not feasible to keep all partial �bers there.

Consequently, some partial �bers are periodically written

back to DRAM. This necessitates a �nal merging stage after

the completion of all scalar-vector multiplications. During

the �nal merging, every APE in the system participates, with

each APEmerging two partial �bers at a time. ACES employs

a merging scheduler to optimize this �nal merging process,

ensuring the �nal output matrix is assembled e�ciently.

3.4 Schedulers

In ACES, two schedulers are introduced: the synchroniza-

tion scheduler, which strives to streamline the immediate

merging process and reduce synchronization delays, and

the merging scheduler, managing the �nal merging stage to

minimize memory accesses.

Synchronization scheduler. Once the partial �bers are

generated by MPEs, they are bu�ered in the SQs. ACES

utilizes the synchronization scheduler to e�ciently assign

�bers to APEs for initiating the immediate merging process.

The synchronization scheduler coordinates with SQs and

APEs. It tracks the rows of partial �bers that the APEs are

currently merging to schedule subsequent merge tasks that

minimize stalls of the APEs due to synchronization issues.

When an APE becomes available, the synchronization

scheduler evaluates the head �ber of the corresponding SQ.

The design of the SQ acts similarly to a normal FIFO, but

allows for selective access to stored �bers, enabling the sched-

uler to select an appropriate �ber to minimize synchroniza-

tion con�icts. If the top �ber in an SQ cannot be processed

due to another MPE currently updating the corresponding

row in the cache, the scheduler selects the next available

�ber that does not have a synchronization issue. This ap-

proach ensures continuous processing and minimizes idle

time for the APEs. In cases where the top �bers in di�erent

SQs correspond to the same row, the scheduler randomly

picks an available APE from the corresponding APEs to �rst

merge these two partial �bers. After this initial merge, the

APE then merges the result with the corresponding partial

�bers stored in the cache. For scenarios without synchro-

nization con�icts, the scheduler assigns the top �bers from

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

5 5 7

42

6

1310

23

5

42

6

117

18

Partial Fibers

Final Output Fiber Final Output Fiber

Partial Fibers

Figure 4. Example of Hu�man trees for two di�erent rows

of the output matrix.

the SQs directly to their corresponding APEs. With the help

of the synchronization scheduler, execution stalls caused by

synchronization issues are mitigated, and the parallelism of

APEs is guaranteed.

Merging scheduler. In the �nal merging stage, the merg-

ing scheduler aims to minimize memory accesses. Drawing

inspiration from SpArch [61], ACES adapts the Hu�man tree,

traditionally used in data compression for minimizing the

total weighted path length of encoded symbols [26], to or-

chestrate the merging process for each row of the output

matrix. Each Hu�man tree in ACES is a binary tree, with

leaf nodes representing partial �bers from a speci�c row of

the output matrix. The weight of each node equates to the

number of non-zero elements in the �ber it represents. The

merging of �bers with the lowest weights forms internal

nodes, each representing a merged result. The root node rep-

resents the fully merged �ber for that row. The bottom-up

construction of the Hu�man tree in ACES prioritizes the

merging of �bers with fewer elements �rst. This approach

not only reduces the number of memory loads and stores re-

quired during the �nal merging phase, but also decreases the

total number of comparisons and operations needed, lead-

ing to a more e�cient merging process. Figure 4 provides

a simpli�ed representation that assumes no intersection of

non-zero elements between the leaf nodes, where the weight

of each internal node is the sum of the weights of its child

nodes. In practice, however, the actual number of non-zero

elements post-merging is often lower due to the presence of

intersections.

In the practical implementation of ACES, the Hu�man tree

is constructed using a priority queue. Initially, weights of

leaf nodes, each representing a partial �ber, are entered into

the queue. In each iteration, the two �bers with the lowest

weights are extracted from the queue and merged, forming a

new task encapsulated as a vector of �bers. With the updated

weight, the merged �ber is then reinserted into the priority

queue for potential future merging operations. This process

repeats until all partial �bers corresponding to an output row

are merged into a single �ber. Upon completing the merging

tasks for one row, the priority queue is e�ciently repurposed

for the next, reducing the need to maintain a separate queue

for each row. The merging scheduler holds the determined

tasks temporarily in a small bu�er, preserving the order in

B0-0 B0-1B0

B1

B2

B3

B4

B2-0

B4-0 B4-1 B4-2 B4-3

B0-0 (5)

B0-1 (5)

B0-0 (4)

B0-1 (4)

B1-0 (3)

B1-1 (3)

B1-2 (3)

B1-3 (3)

B1-4 (3)

B0-0 (3)

B0-1 (3)

B1-0 (2)

B1-1 (2)

B1-2 (2)

B1-3 (2)

B1-4 (2)

B2-0 (4)

B4-1 (In)

B4-2 (In)

B4-3 (In)

B1-1 (1)

B1-2 (1)

B1-3 (1)

B1-4 (1)

B4-0 (In)

B4-1 (In)

B4-2 (In)

B4-3 (In)

B1-1 (In)

B1-2 (In)

B1-3 (In)

B1-4 (In)

B1-0 (In)

B0-0 (3)

B0-1 (3)

B4-3 (In)

B1-1 (In)

B1-2 (In)

B1-3 (In)

B1-4 (In)

B1-0 (In)

B0-0 (2)

B0-1 (2)

B2-0 (In)

B1-1 (In)

B1-2 (In)

B1-3 (In)

B1-4 (In)

B1-0 (In)

B0-0 (1)

B0-1 (1)

B3-5 (In)

B3-1 (In)

B3-2 (In)

B3-3 (In)

B3-4 (In)

B3-0 (In)

B0-0 (In)

B0-1 (In)

B3-5 (In)

B3-1 (In)

B3-2 (In)

B3-3 (In)

B3-4 (In)

B3-0 (In)

Step 0

Fetch B0

Step 1

Fetch B1

Step 2

Fetch B2

Step 3

Fetch B4

Step 4

Fetch B1

Step 5

Fetch B0

Step 6

Fetch B2

Step 7

Fetch B3

Step 8

Fetch B0

Stall Stall Stall

Replace B2

then B0, B1

Stall

Replace B4

Stall

Replace B4

Stall

Replace B4

B1-0 B1-1 B1-2 B1-3 B1-4

B3-0 B3-1 B3-2 B3-3 B3-4 B3-5

Stall Stall

Replace B1

then B2

B0-0 (7)

B0-1 (7)

B0-0 (6)

B0-1 (6)

B1-0 (8)

B1-1 (8)

B1-2 (8)

B1-3 (8)

B1-4 (8)

B0-0 (5)

B0-1 (5)

B1-0 (7)

B1-1 (7)

B1-2 (7)

B1-3 (7)

B1-4 (7)

B2-0 (5)

B0-0 (4)

B0-1 (4)

B4-0 (In)

B4-1 (In)

B4-2 (In)

B4-3 (In)

B1-4 (6)

B2-0 (4)

B0-0 (3)

B0-1 (3)

B1-0 (In)

B1-1 (In)

B1-2 (In)

B1-3 (In)

B1-4 (In)

B2-0 (3)

B0-0 (5)

B0-1 (5)

B1-0 (In)

B1-1 (In)

B1-2 (In)

B1-3 (In)

B1-4 (In)

B2-0 (2)

B0-0 (4)

B0-1 (4)

B1-0 (In)

B1-1 (In)

B1-2 (In)

B1-3 (In)

B1-4 (In)

B2-0 (In)

B0-0 (3)

B0-1 (3)

B3-0 (In)

B3-1 (In)

B3-2 (In)

B3-3 (In)

B3-4 (In)

B3-5 (In)

B0-0 (In)

B0-1 (In)

B3-0 (In)

B3-1 (In)

B3-2 (In)

B3-3 (In)

B3-4 (In)

B3-5 (In)

Step 0

Fetch B0

Step 1

Fetch B1

Step 2

Fetch B2

Step 3

Fetch B4

Step 4

Fetch B1

Step 5

Fetch B0

Step 6

Fetch B2

Step 7

Fetch B3

Step 8

Fetch B0

Stall Stall Stall

Replace B1

Stall

Replace B4

Stall Stall

Replace B1

then B2

Pure Fiber Pure Fiber Pure Fiber

Pure Fiber

(a)

(b)

C0

C1

C2

C4

C1

C0

C2

C3

C0

RD

RD+FD

Figure 5. Comparison of cache replacement policies: (a) be-

havior of Belady’s OPT policy, and (b) behavior of PureFiber.

which they were created. When an APE becomes available,

the merging scheduler prioritizes selecting the next task that

minimizes synchronization con�icts. The merging scheduler

adheres to the optimal merging order prescribed by the Hu�-

man trees and mitigates synchronization risks, enhancing

the overall processing e�ciency in the �nal stage of SpMM.

3.5 Global Cache and PureFiber Policy

The global cache in ACES, organized as a multi-banked, set-

associative cache, stores �bers of matrix B and partial output

�bers of matrix C, supporting cache line granularity accesses

for �exible capacity sharing among various �bers. During

MPE operation in ACES, multiplying an element frommatrix

A with elements from the corresponding row in matrix B

leads to concurrent requests for cache lines of matrix B. A

single cache miss among these requests can stall the scalar-

vector multiplication process, as the MPE needs all required

data from matrix B to produce a complete partial �ber. We

de�ne pure �ber as a scenario where cache lines of a �ber

are accessed concurrently without any cache misses. Achiev-

ing a high number of pure �bers in SpMM is crucial for

mitigating cache stalls. Contrasting with traditional acceler-

ators [32, 61], which mainly focus on reducing cache misses,

we have developed PureFiber, a concurrency-aware cache

replacement policy designed to prioritize achieving more

pure �bers in SpMM.

PureFiber integrates data locality and concurrency consid-

erations for each cache line when making eviction decisions.

It employs the Next Request Distance (RD), dynamically cap-

turing the reuse distance to the �ber, which indicates the

expected time until the �ber is next requested. The RD value

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

is initialized upon cache line insertion or a cache hit and is

decremented until the line is reused, thereby serving as a

measure of temporal locality. Additionally, PureFiber evalu-

ates the Fiber Density (FD), representing the number of cache

lines in the corresponding �ber and serving as an indica-

tor of potential concurrent accesses. When making eviction

decisions, PureFiber selects the cache line with the highest

combined sum of RD and FD for eviction. If multiple candi-

dates are present, PureFiber prioritizes evicting the line with

higher �ber density. By balancing data locality with con-

currency, PureFiber optimizes cache management, focusing

on increasing the number of pure �bers to support uninter-

rupted computations and enhance overall performance.

Figure 5 presents a simpli�ed case study, all the cache

capacity is used to store lines of matrix B. The leftmost

column represents a condensed column from the condensed

Amatrix. Each element is annotated with its original column

number. For instance, the element labeledÿ0 originates from

column 0 in the original matrix. Figure 5 top displays row

�bers of matrix B, segmented according to the cache line

length, as indicated at the top of the �gure (B0 to B4). In this

example, the cache can store at most 8 lines.

Figure 5(a) illustrates Belady’s OPT policy [4], which fo-

cuses solely on temporal locality. This policy prioritizes evict-

ing cache lines with the largest RD values. From timestamps

0 to 2, lines from B0, B1, and B2 are loaded into the cache.

At timestamp 3, to accommodate lines from B4, the policy

�rst evicts lines from B2 and B0 because they have larger RD

values than those from B1. Then, to fully accommodate B4,

line B1-0 is also evicted. At timestamp 4, the miss of a single

line from B1, despite four hits, leads to a stall in output �ber

production. As demonstrated in Figure 5(a), Belady’s policy

results in only one pure �ber. Figure 5(b) illustrates the cache

replacement decisions made by PureFiber under the same

access pattern. In a non-blocking cache system capable of

handling concurrent misses (detailed in Section 3.6), Pure-

Fiber achieves three pure �bers. By considering data locality

and prioritizing the retention of �bers with lower density,

such as B0 and B2, PureFiber secures two additional pure

�bers at timestamps 5 and 6. This example underscores the

ability of PureFiber to enhance performance by balancing

considerations of locality and concurrency.

In ACES, PureFiber manages the cache lines for �bers in

matrix B as well as the partial output �bers of matrix C. By

prioritizing the retention of output �bers with smaller RD

values, PureFiber increases the probability that correspond-

ing partial results previously generated remain available in

the cache for immediate use. Considering the locality of the

partial output �bers of matrix C, APEs are able to partici-

pate in immediate merging, which enhances their utilization

and reduces the number of tasks needed in the �nal merg-

ing stage. Additionally, the retention of �bers with smaller

FD values helps prevent the APEs from engaging in time-

consuming immediate merging tasks, especially when an

NB Buffer
Tag Subentries

Memory

Global Cache
Tag Data

Cache

Request

A

B

Cache

Miss

C

DE

Memory

RequestReturn DataResponse Pending Misses

Cache

Hit

Figure 6. Organization of the non-blocking cache.

MPE generates a low-density �ber that requires to be merged

immediately with a much denser partial �ber already in the

cache. By prioritizing the eviction of higher-density �bers,

PureFiber improves the overall pipeline e�ciency in ACES.

3.6 Non-Blocking Bu�er

Traditional accelerators strive for speedups through exten-

sive parallel computation. However, the e�ectiveness of par-

allelism is often constrained by the performance limitations

of the memory system. In particular, a conventional block-

ing global cache stalls upon a cache miss, waiting until the

missing cache line is retrieved from memory. This behavior

signi�cantly hinders SpMM performance due to its irregular

access patterns and frequent cache misses.

In response, ACES integrates an NB bu�er with the global

cache, creating an e�cient non-blocking cache system. The

non-blocking cache [29], widely adopted in modern proces-

sors, ensures that cache misses do not stall subsequent cache

accesses. A non-blocking cache can handle a number of out-

standing misses, signi�cantly improving data concurrency

[2, 38, 46]. Figure 6 shows the organization and work�ow

of the non-blocking cache in ACES. For each global cache

request (A), when a miss occurs, the corresponding miss

information is stored in an entry of the NB bu�er (B). NB

bu�er tracks all outstanding cache misses, with each entry

referring to one missing cache line and containing multiple

subentries for handling multiple misses to the same line. If

it is the �rst miss to a speci�c cache line, a memory request

is issued (C); subsequent misses for the same line are con-

solidated within the corresponding entry. While the cache

continues to service other requests, the NB bu�er fetches

the missing data from the main memory. Once the data is re-

trieved, the bu�er updates the global cache with the new data

and resolves all associated misses (D). Once the misses are

resolved, the corresponding entry in the NB bu�er is released

for future cache misses. All PEs or fetchers waiting for that

cache line are then noti�ed that the data is available in the

cache (E). By allowing the cache to handle other requests

during miss processing concurrently, the non-blocking de-

sign in ACES signi�cantly reduces memory stall cycles and

enhances concurrency.

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Con�guration of ACES.

MPEs 16 MPEs (multipliers); 1 GHz

APEs 16 APEs (merger); 1 GHz

SQs 16 SQs, 2 KB per queue

Global Bu�er 0.5 KB, 32-entry bu�er

Global Cache 1 MB, 16 banks, 16-way associative

Crossbar 16×16 and 16×16, swizzle-switch based

NB bu�er 0.5 KB, 64 subentries

Memory 128 GB/s, 16 64-bit HBM channels, 8GB/s per channel

Table 2. Evaluated workloads.

Workload Density Workload Density

2cubes_sphere (cs) 1.6e-04 o�shore (of) 6.3e-05

amazon0312 (az) 2.0e-05 p2p-Gnutella31 (pg) 3.8e-05

ca-CondMat (cc) 3.5e-04 patents_main (pm) 9.7e-06

cage12 (cg) 1.2e-04 poisson3Da (p3) 1.9e-03

cop20k_A (ca) 1.8e-04 roadNet-CA (rc) 1.4e-06

email-Enron (ee) 2.7e-04 scircuit (sc) 3.3e-05

�lter3D (f3) 2.4e-04 web-Google (wg) 6.1e-06

m133-b3 (mb) 2.0e-05 webbase-1M (w1) 3.1e-06

mario002 (m2) 1.4e-05 wiki-Vote (wv) 1.5e-03

4 Evaluation Methodology

Table 1 presents the detailed con�guration of ACES. The area

of ACES is measured by writing RTL for core components, in-

cluding MPEs, APEs, the condensing adapter, and schedulers,

and synthesizing them using Synopsys Design Compiler on

the TSMC 28 nm technology. CACTI 7.0 [3] is used to model

the overhead of global cache, global bu�er, and NB bu�er.

For interconnections, we follow the approach used in pre-

vious work [32] and model swizzle-switch networks [48] to

connect banks of the global cache with PEs, thereby facil-

itating concurrent accesses. Furthermore, a cycle-accurate

simulator is built to accurately measure performance, PE

utilization, and memory tra�c. This simulator is utilized

to model interactions between hardware components and

implement ACES adaptive execution �ow.

We evaluate the performance of ACES using the SuiteS-

parse matrix collection [12], which is a widely recognized

benchmark in prior works [32, 61]. Table 2 presents a selec-

tion of 18 sparse matrices from this dataset, chosen for their

wide range of sparse patterns and densities. The diverse set

of matrices provides a comprehensive basis for evaluating

the adaptability and e�ciency of ACES across varyingmatrix

characteristics. To construct SpMM workloads, we adhere

to the methodology outlined in SPADA, wherein a square

matrix is multiplied by itself and a non-square matrix is mul-

tiplied by its transpose, ensuring consistency and fairness in

our evaluation.

For comparison, we selected three state-of-the-art SpMM

accelerators: SIGMA [45], SpArch [61], and SPADA [32].

SIGMA, an InP-based accelerator, and SpArch, which adopts

the OutP execution �ow, are chosen to represent two fun-

damental execution �ows in SpMM accelerators. SPADA

is included for its adaptive execution �ow, which incorpo-

rates the ROW execution �ow as one of its modes, o�ering

a comprehensive perspective for comparison. To ensure fair

comparisons among all accelerators, we standardized the

hardware con�gurations. The number of multipliers was

aligned to 16, following the con�gurations of SpArch and

SPADA. For SIGMA, we scale down the Flex-DPE to a width

of 16, reduce the SRAM bu�er size to 1.5 MB, and increase

the operating frequency to 1 GHz. Furthermore, each acceler-

ator utilizes the same HBM module for o�-chip data storage.

The data precision across all accelerators is standardized

to 64-bit double-precision, which is a common requirement

in scienti�c computing applications [32]. Regarding input

formats, while ACES processes inputs in the CSR format,

the other accelerators use their respective recommended

formats, ensuring optimal operational conditions for each.

When evaluating the performance of ACES, we include the

cost associated with the sampling phases, ensuring a com-

prehensive and transparent performance comparison.

5 Experiment Results

5.1 Performance Comparisons

Figure 7 illustrates the performance of various SpMM ac-

celerators, normalized to that of SpArch, across all evalu-

ated workloads. We make four major observations. First,

ACES consistently outperforms all state-of-the-art acceler-

ators across every workload, highlighting its exceptional

adaptability to diverse sparse patterns. On average, ACES

achieves signi�cant performance gains of 25.5×, 8.9×, and

2.1× over SIGMA, SpArch, and SPADA, respectively. Second,

SIGMA faces challenges in most workloads, despite utiliz-

ing a bitmap format for sparse matrix representation. Third,

SpArch achieves a 2.9× speedup over SIGMA on average,

which is attributed to the better input reuse of OutP execu-

tion �ow and its e�orts to reduce o�-chip tra�c during the

merging phase. Fourth, SPADA, with its WA execution �ow,

provides an adaptive execution �ow and better performance

compared with accelerators with a �xed execution �ow. On

average, SPADA leads to a 4.2× speedup over SpArch and a

12.0× speedup over SIGMA.

Figure 8 presents a comparison of the total o�-chip mem-

ory tra�c for matrix B and partial outputs across various

workloads. The memory tra�c associated with matrix B is

crucial for the e�ectiveness of multiplications. Similarly, ef-

�cient handling of reads and writes for partial outputs is

vital for the merging processes. Figure 8 demonstrates that

ACES incurs the lowest o�-chip memory tra�c compared to

recent SpMM accelerators. On average, the o�-chip memory

tra�c of SIGMA is 11.6× higher than that of ACES, while

the tra�c for SpArch and SPADA is 4.4× and 3.1× higher,

respectively. SIGMA achieves e�cient output reuse but faces

signi�cant challenges in input memory tra�c. SpArch strives

to reduce o�-chip tra�c during the merging phase through

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

0.0

2.0

4.0

6.0

8.0

10.0

12.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

N
o
rm

a
li
ze
d
S
p
e
e
d
u
p

SIGMA

SpArch

SPADA

ACES

13.0 15.9

Figure 7. Performance comparison among SIGMA, SpArch, SPADA, and ACES.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

N
o

rm
a

li
ze

d
 T

ra
ff

ic

SIGMA

SpArch

SPADA

ACES

3.4 3.2 12.0

Figure 8. Memory tra�c comparison among SIGMA, SpArch, SPADA, and ACES.

0.0

0.2

0.4

0.6

0.8

1.0

cs az cc cg ca ee f3 mb m2 of pg pm p3 rc sc wg w1 wv GM

P
E

 U
ti

li
za

ti
o

n

SIGMA

SpArch

SPADA

ACES

Figure 9. PE utilization comparison among SIGMA, SpArch, SPADA, and ACES.

an aggressive condensing representation of matrix A. How-

ever, it disrupts input reuse, leading to excessive fetching

of di�erent rows of matrix B and causing cache thrashing.

SPADA, relying on its adaptive execution �ow, reduces mem-

ory tra�c compared with SIGMA and SpArch; however, it

still exhibits a signi�cant gap when compared with ACES.

ACES, with its adaptive execution �ow, e�ectively balances

input and output reuse. The design of immediate merging,

in conjunction with the PureFiber cache replacement policy,

ensures �ner granularity in merging partial results. Further-

more, the merging scheduler e�ciently manages the �nal

merging stage, collectively contributing to optimal tra�c

management.

Figure 9 compares PE utilization among four SpMM accel-

erators. On average, GAMMA, SpArch, SPADA, and ACES

exhibit PE utilization rates of 54.8%, 80.0%, 86.9%, and 95.1%,

respectively. Notably, ACES consistently maintains PE uti-

lization rates above 90.0% in 15 of the 18 evaluated work-

loads. The high PE utilization of ACES is attributable to two

main factors: First, its adaptive execution �ow e�ectively

mitigates synchronization risks. Second, the architecture of

ACES features a one-to-one pairing of MPEs with APEs. This

architecture, combined with e�cient task scheduling by the

synchronization scheduler during the immediate merging

phase, reduces the collective dependency of MPEs and en-

hances the parallelism of APEs.

5.2 Performance with Di�erent Condensing Degrees

To assess the e�ectiveness of the novel adaptive execution

�ow designed for ACES, we conduct a performance com-

parison across three static condensing degrees: none (No),

aggressive (Ag), and moderate (Mo), complemented by adap-

tive condensing (Ad). For each condensing degree, we imple-

ment two distinct cache replacement policies: the traditional

Least Recently Used (LRU) policy and the PureFiber (PF) pol-

icy. Figure 10 depicts the overall speedup of various ACES

implementations over SpArch, highlighting the performance

for each speci�c combination of condensing degrees and

cache replacement policies, such as Ag-LRU (aggressive con-

densing with LRU policy) and Mo-PF (moderate condensing

with PureFiber policy). Importantly, as the original ACES

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0.0

2.0

4.0

6.0

8.0

10.0

No-LRU Ag-LRU Mo-LRU Ad-LRU No-PF Ag-PF Mo-PF ACES

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

Figure 10. Average performance improvement of implemen-

tations with di�erent static condensing degrees compared

with adaptive condensing, across LRU and PureFiber cache

replacement policies.

incorporates adaptive condensing with the PureFiber pol-

icy, the performance of the Ad-PF combination is distinctly

identi�ed as ACES in Figure 10.

The results presented in Figure 10 demonstrate the supe-

rior performance of adaptive condensing when compared

with static condensing con�gurations under di�erent cache

replacement policies. Speci�cally, with the traditional LRU

policy, adaptive condensing (Ad-LRU) achieves a 7.6× speedup

over SpArch, outperforming No-LRU, Ag-LRU, and Mo-LRU

by 29.6%, 13.8%, and 11.7%, respectively. Similarly, when uti-

lizing the concurrency-aware PureFiber cache replacement

policy, adaptive condensing (ACES) achieves an 8.9× speedup

over SpArch, surpassing the No-PF, Ag-PF, and Mo-PF con-

�gurations by 27.4%, 12.6%, and 7.4%, respectively.

Adaptive condensing, whether working with the LRU or

the PureFiber cache replacement policy, consistently delivers

signi�cant speedup gains over static condensing con�gura-

tions. This performance advantage highlights the e�ective-

ness of adaptive condensing in dynamically balancing data

reuse and parallelism e�ciency, providing an optimal execu-

tion �ow �nely tuned to the diverse sparse patterns of matri-

ces. Such adaptability not only enhances the computational

e�ciency of ACES, but also establishes adaptive condensing

as a pivotal feature for its versatility in diverse applications

and system con�gurations. The ability of adaptive condens-

ing to work e�ectively with various cache policies further

underscores its broad applicability and �exibility in di�erent

system con�gurations.

5.3 Performance with Di�erent Cache Replacement

Policies

To highlight the innovation of the concurrency-aware cache

replacement policy PureFiber in ACES, we compare it with

two conventional cache replacement policies, LRU and RD,

for managing the global cache. Speci�cally, the RD policy is

designed to focus exclusively on the next request distance,

prioritizing the eviction of cache lines that are furthest from

being requested again. Both the LRU and RD policies aim

to enhance data locality with the primary objective of mini-

mizing cache misses. This comparative analysis is intended

0.0

2.0

4.0

6.0

8.0

10.0

No-LRU No-RD No-PF Ag-LRU Ag-RD Ag-PF Mo-LRU Mo-RD Mo-PF

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

Figure 11. Average performance improvement of imple-

mentations with di�erent cache replacement policies, across

various static condensing degrees.

to showcase the distinctive advantages and potential of the

concurrency-aware cache replacement strategy embodied

by PureFiber. Unlike conventional policies that focus mainly

on data locality, PureFiber considers both data locality and

concurrency, potentially o�ering a more nuanced approach

to cache management.

Figure 11 illustrates the overall speedup of various ACES

implementations compared with SpArch, emphasizing the

performance enhancements achieved with three distinct

cache replacement policies: LRU, RD, and PureFiber. These

policies are evaluated across three static condensing degrees:

none, moderate, and aggressive, providing a comprehensive

view of their impact on the performance of ACES. The key

observation from Figure 11 is that across all static condensing

degrees, the PureFiber cache replacement policy consistently

leads to the highest speedups. Speci�cally, without condens-

ing, the PureFiber policy (No-PF) achieves a speedup of 6.9×,

which exceeds the performance of No-LRU and No-RD by

18.0% and 10.7%, respectively. With aggressive condensing,

a 7.9× speedup of PureFiber (Ag-PF) is observed, surpass-

ing Ag-LRU and Ag-RD by 17.2% and 10.0%, respectively.

When utilizing the moderate condensing degree, PureFiber

(Mo-PF) shows the most signi�cant improvement with an

8.2× speedup, outperforming Mo-LRU and Mo-RD by 20.5%

and 10.0%, respectively. These results indicate that utilizing

the concurrency-aware PureFiber policy in cache replace-

ment not only o�ers the best performance in the absence of

condensing, but also provides superior results when work-

ing with both moderate and aggressive static condensing,

underscoring its e�ectiveness.

Figure 12 displays the performance of ACES implementa-

tions with adaptive condensing across various cache replace-

ment policies: LRU, RD, and PureFiber. Figure 12(a) illustrates

the speedup achieved by the original ACES implementation

employing the PureFiber policy, as well as the speedup of

Ad-RD, both in comparison with Ad-LRU. We observe that,

when working with adaptive condensing, the consideration

of both data locality and concurrency enables ACES with the

PureFiber policy to achieve an average improvement of 15.9%

over the LRU baseline. In contrast, the average speedup for

Ad-RD, which does not consider data concurrency, is 14.8%.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

0

4

8

12

16

Ad-RD ACES

S
p

e
e

d
u

p
 o

v
e

r
A

d
-L

R
U

(%
)

(a)

0

5

10

15

20

25

Ad-RD ACES

C
a

ch
e

 S
ta

ll
s

R
e

d
u

ct
io

n

o
v

e
r

A
d

-L
R

U
 (

%
)

(b)

Figure 12. Average performance of implementations with

adaptive condensing using di�erent cache replacement poli-

cies, showcasing (a) speedup over Ad-LRU, and (b) reduction

in cache stalls over Ad-LRU.

0

10

20

30

40

8 16 32 64 96 128

S
p

e
e

d
u

p
 o

v
e

r
n

o
 N

B

B
u

ff
e

r
(%

)

Figure 13. Performance of ACES across various NB bu�er

sizes.

Figure 12(b) o�ers a detailed analysis of the PureFiber per-

formance. This �gure highlights that the PureFiber policy

e�ectively reduces cache stalls compared with other policies.

Speci�cally, ACES with the PureFiber policy, achieves an

average cache stall reduction of 21.8% over Ad-LRU, whereas

Ad-RD, which considers only reuse distance, sees a cache

stall reduction of 13.0%. These observations highlight that al-

though reuse distance considerations can improve the global

cache performance, the integration of concurrency aware-

ness into the global cache management can yield additional

bene�ts. By considering both data locality and concurrency,

the PureFiber policy substantially diminishes cache stalls,

thereby enhancing the overall e�ciency of the cache system

in SpMM accelerators like ACES.

5.4 Performance with Di�erent NB Bu�er Sizes

To showcase the e�ectiveness of integrating a NB bu�er with

the global cache in ACES, Figure 13 illustrates the overall

speedup of ACES with varying sizes of the NB bu�er, rang-

ing from 8 to 64 subentries. Performance is normalized to a

version of ACES that uses a blocking cache, without integrat-

ing the NB bu�er with the global cache. Two key observa-

tions emerge from the results. First, integrating an NB bu�er

with the global cache signi�cantly enhances performance.

Even with a minimal 8-subentry NB bu�er, ACES achieves a

7.2% performance improvement over the blocking baseline.

Moreover, an ACES con�guration with a 16-subentry NB

bu�er further achieves a 22.8% speedup. These results val-

idate the critical role of the non-blocking cache in SpMM

accelerator performance. The design of the NB bu�er not

Table 3. Area breakdown of ACES.

Components Area (mm2) Components Area (mm2)

2 Fetchers 0.22 Global Bu�er 0.06

16 MPEs 0.28 Global Cache 2.09

16 APEs 0.24 16 SQs 0.25

2 Schedulers 0.14 NB bu�er 0.08

Crossbars 0.16 Total 3.52

only mitigates global cache stalls due to cache misses but

also enables the global cache to support higher concurrency,

thereby increasing parallelism. Second, Figure 13 reveals that

the performance of ACES tends to stabilize once the number

of subentries of the NB bu�er reaches 64. At this point, a

substantial performance improvement of 35.8% is observed.

Additionally, it is important to consider that a larger NB

bu�er also introduces additional overhead. Therefore, in bal-

ancing performance gains with potential overheads, we set

the default number of subentries in the NB bu�er for ACES

to 64.

5.5 Area and Power

In ACES, the breakdown of the area is detailed in Table 3,

showing a total area of 3.52mm2. Similar to other SpMM ac-

celerators, a signi�cant portion of the area is occupied by the

global cache. Speci�cally, the 1MB global cache in ACES con-

stitutes 59.4% of the total area. Compared to existing works

like SPADA and SpArch, the global cache capacity in ACES

is relatively modest. By integrating a lightweight NB bu�er

with the global cache, ACES achieves reduced area overhead

while improving performance relative to accelerators with

larger caches. For comparison, the total areas of SPADA and

SpArch at 28 nm technology are 6.32mm2 and 13.96mm2, re-

spectively. Additionally, the power consumption evaluation

of ACES reveals that it consumes a total of 2.83W of power.

6 Additional Related Works

Accelerating SpMM on CPU and GPU. Prior research

has focused on accelerating SpMM on both CPU and GPU

architectures [9, 10, 34, 41, 55]. MKL [55] o�ers math rou-

tines optimized for parallel computation using OpenMP on

CPUs. For GPUs, cuSPARSE [41] enhances SpMM e�ciency

by parallelizing computations across matrix rows and us-

ing a hash table for merging partial results. CUSP [9] also

adopts a parallel approach but employs a sorting algorithm

for merging computations from di�erent rows.

SpMM Accelerators. In this work, ACES is compared

against three state-of-the-art SpMMaccelerators: SIGMA [45],

SpArch [61], and SPADA [32]. Additionally, a variety of

other accelerators have been designed speci�cally to op-

timize SpMM [17, 22, 25, 39, 43, 50, 60]. Most of these ac-

celerators adopt a �xed execution �ow: for instance, Ex-

Tenor [22] utilizes an InP execution �ow; OuterSPACE [43]

and Spaghetti [25] adopt an OutP execution �ow, while

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

GAMMA [60] and MatRaptor [50] employ a ROW execu-

tion �ow. ACES distinguishes itself by dynamically adjusting

its execution �ow in response to the sparsity patterns of

the input matrices. Moreover, ACES innovatively leverages

concurrent data accesses to develop a cache replacement

policy speci�cally designed for the global cache of an SpMM

accelerator. These novel features, including the adaptive ex-

ecution �ow and concurrency-aware cache management,

signi�cantly accelerate SpMM processing.

Sparse DNN Accelerators. As the processing of diverse

sparse matrices in DNNs becomes increasingly critical, the

e�ciency of sparse DNN accelerators [13, 18, 31, 39, 49, 62]

grows more paramount. Flexagon [39], a con�gurable DNN

accelerator, adapts its matrix multiplication execution �ow

to accommodate various DNN layers. It introduces a Merger-

Reduction Network (MRN) to modify the execution �ow

across InP, OutP, and ROWbased on o�ine analysis ofmatrix

dimensions and sparsity patterns. CANDLES [18] adopts

a channel-�rst architecture that traverses activations and

weights to enhance the temporal locality of partial sums

updated for an output neuron. It also incorporates a pixel-

�rst compression method where matrices are segmented

into groups for compression, storing non-zero values in tiles.

Unlike Flexagon [39], which determines the execution �ow

through o�ine analysis, and CANDLES [18], which employs

a static strategy, ACES dynamically adjusts its execution �ow

in response to the sparsity patterns of incoming matrices.

This real-time adaptability allows ACES to balance parallel

computing e�ciency with data reuse, while simultaneously

reducing overhead.

Systolic Array-based Sparse DNN Accelerators. The

success of the Tensor Processing Unit (TPU) [27], which in-

troduces the systolic array architecture, has inspiredmany re-

cent systolic array-based DNN accelerators [11, 16, 21, 30, 56].

In order to enhance the utilization and computational e�-

ciency of systolic arrays in handling matrices with diverse

sparsity and sizes, column packing has been proposed. Kung

et al. [30] address this by grouping the columns of a sparse

matrix, combining multiple sparse columns into a single

dense column, and mapping each group to a single col-

umn of the systolic array, signi�cantly improving utiliza-

tion e�ciency. Inspired by [30], Sparse-TPU [21] introduces

partition-wise packing, which divides the matrix into bands

and packs columns within each band to minimize data con-

�icts. Moreover, Sparse-TPU employs a collision-aware algo-

rithm to enhance the packing density, even in the presence of

con�icts. While column packing signi�cantly enhances the

computational e�ciency, it requires sparse matrix reordering

and is performed o�ine, introducing extra pre-processing

overhead. Conversely, ACES determines and adjusts adaptive

condensing degrees dynamically during runtime, eliminating

the need for pre-processing and the associated overheads.

Concurrent Data Accesses.Modern architectures now

widely support data concurrency. For example, out-of-order

execution [53] and simultaneous multithreading [54] have

been instrumental in improving pipeline utilization. Addi-

tionally, advancements in memory and cache design like

multi-port [63], pipelined [1], and non-blocking [28] caches

allow more access to coexist within the same cycle, which

substantially improves throughput and reduce memory ac-

cess delays. Concurrent data accesses are utilized for perfor-

mance modeling [40, 51, 52] and optimizations [35, 36, 38, 46,

58]. The C-AMATmodel [52] enhances the traditional AMAT

model [23] by quantitatively evaluating the combined im-

pact of memory access locality and concurrency, accounting

for data access overlaps. In the realm of cache management,

the MLP-aware cache replacement policy [46] and the CARE

framework [38] analyze the cost of each cachemiss amidmul-

tiple concurrent outstanding accesses, guiding cache replace-

ment decisions to reduce stalls and enhance performance.

CHROME [35] o�ers a holistic solution by integrating cache

replacement and bypassing with pattern-based prefetching,

applying concurrency-aware system-level feedback to re�ne

decision-making. In contrast to these concurrency-aware

cache management studies [35, 37, 38, 46] that focus on gen-

eral cache management enhancements, PureFiber is speci�-

cally designed for SpMM, leveraging the unique data access

patterns of SpMM to optimize global cache usage in acceler-

ators.

7 Conclusion

In this paper, we introduced ACES, an innovative SpMM ac-

celerator. ACES supports an adaptive execution �ow, adept

at e�ciently processing matrices with a wide range of sparse

patterns. It also integrates co-optimizations of data locality

and concurrency within its global cache, e�ectively reducing

memory stalls and enhancing data access concurrency. The

hardware architecture of ACES is meticulously tailored to

complement its adaptive execution capabilities and cache

optimizations, facilitating �ne-granularity parallelism. Our

comprehensive evaluations indicate that ACES consistently

outperforms current state-of-the-art SpMM accelerators, un-

derscoring its signi�cant potential in enabling e�cient com-

puting solutions for diverse applications.

Acknowledgments

We thank the anonymous reviewers for their helpful feed-

back. This research is supported in part by the National Sci-

ence Foundation under Grants CNS-2310422, CNS-2152497,

CCF-2029014, and CCF-2008907, and by the NSF-supported

Chameleon testbed facility. Additional support comes from

theNational Key R&DProgram of China (Grant 2018YFA0701500),

the Strategic Priority Research Program of the Chinese Acad-

emy of Sciences (CAS) (Grant XDB44000000), the National

Natural Science Foundation of China (Grants 62122076 and

62025404), and the Key Research Program of Frontier Sci-

ences, CAS (Grant ZDBS-LY-JSC012).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, Xian-He Sun

References
[1] Amit Agarwal, Kaushik Roy, and TN Vijaykumar. Exploring high

bandwidth pipelined cache architecture for scaled technology. In

Proceedings of the conference on Design, Automation and Test in Europe-

Volume 1, page 10778. IEEE Computer Society, 2003.

[2] Mikhail Asiatici and Paolo Ienne. Stop crying over your cache miss

rate: Handling e�ciently thousands of outstanding misses in fpgas.

In Proceedings of the 2019 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pages 310–319, 2019.

[3] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar,

Ali Sha�ee, and Vaishnav Srinivas. CACTI 7: New tools for intercon-

nect exploration in innovative o�-chip memories. ACM Transactions

on Architecture and Code Optimization (TACO), 14(2):1–25, 2017.

[4] Laszlo A. Belady. A study of replacement algorithms for a virtual-

storage computer. IBM Systems journal, 5(2):78–101, 1966.

[5] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoe-

�er. Slimsell: A vectorizable graph representation for breadth-�rst

search. In 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 32–41. IEEE, 2017.

[6] Aydin Buluç and Kamesh Madduri. Parallel breadth-�rst search on

distributed memory systems. In Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–12, 2011.

[7] Andrew Canning, Giulia Galli, Francesco Mauri, Alessandro De Vita,

and Roberto Car. O (n) tight-binding molecular dynamics on massively

parallel computers: an orbital decomposition approach. Computer

Physics Communications, 94(2-3):89–102, 1996.

[8] Timothy M Chan. More algorithms for all-pairs shortest paths in

weighted graphs. In Proceedings of the thirty-ninth annual ACM sym-

posium on Theory of computing, pages 590–598, 2007.

[9] Steven Dalton, Nathan Bell, Luke Olson, and Michael Garland. Cusp:

Generic parallel algorithms for sparse matrix and graph computations,

2014.

[10] Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse ma-

trix—matrix multiplication for the gpu. ACM Transactions on Mathe-

matical Software (TOMS), 41(4):1–20, 2015.

[11] Saptarsi Das, Arnab Roy, Kiran Kolar Chandrasekharan, Ankur Desh-

wal, and Sehwan Lee. A systolic data�ow based accelerator for CNNs.

In 2020 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 1–5. IEEE, 2020.

[12] Timothy A Davis and Yifan Hu. The University of Florida sparse

matrix collection. ACM Transactions on Mathematical Software (TOMS),

38(1):1–25, 2011.

[13] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K Parhi, Xuehai Qian, and

Bo Yuan. PermDNN: E�cient compressed DNN architecture with per-

muted diagonal matrices. In 2018 51st Annual IEEE/ACM international

symposium on microarchitecture (MICRO), pages 189–202. IEEE, 2018.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[15] Jianhua Gao, Weixing Ji, Fangli Chang, Shiyu Han, Bingxin Wei, Zem-

ing Liu, and Yizhuo Wang. A systematic survey of general sparse

matrix-matrix multiplication. ACM Computing Surveys, 55(12):1–36,

2023.

[16] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer,

Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard

Mao, et al. Gemmini: Enabling systematic deep-learning architecture

evaluation via full-stack integration. In 2021 58th ACM/IEEE Design

Automation Conference (DAC), pages 769–774. IEEE, 2021.

[17] Gerasimos Gerogiannis, Serif Yesil, Damitha Lenadora, Dingyuan Cao,

Charith Mendis, and Josep Torrellas. SPADE: A Flexible and Scalable

Accelerator for SpMM and SDDMM. In Proceedings of the 50th Annual

International Symposium on Computer Architecture, pages 1–15, 2023.

[18] Sumanth Gudaparthi, Sarabjeet Singh, Surya Narayanan, Rajeev Bala-

subramonian, and Visvesh Sathe. CANDLES: Channel-aware novel

data�ow-microarchitecture co-design for low energy sparse neural

network acceleration. In 2022 IEEE International Symposium on high-

performance computer architecture (HPCA), pages 876–891. IEEE, 2022.

[19] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A

Horowitz, and William J Dally. EIE: E�cient inference engine on com-

pressed deep neural network. ACM SIGARCH Computer Architecture

News, 44(3):243–254, 2016.

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quantization and

hu�man coding. arXiv preprint arXiv:1510.00149, 2015.

[21] Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon

Park, Austin Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski,

and Trevor Mudge. Sparse-TPU: Adapting systolic arrays for sparse

matrices. In Proceedings of the 34th ACM international conference on

supercomputing, pages 1–12, 2020.

[22] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal

Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W

Fletcher. Extensor: An accelerator for sparse tensor algebra. In Pro-

ceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 319–333, 2019.

[23] John L Hennessy and David A Patterson. Computer Architecture: A

Quantitative Approach. Elsevier, 2019.

[24] Torsten Hoe�er and Marc Snir. Generic topology mapping strategies

for large-scale parallel architectures. In Proceedings of the international

conference on Supercomputing, pages 75–84, 2011.

[25] Reza Hojabr, Ali Sedaghati, Amirali Shari�an, Ahmad Khonsari, and

Arrvindh Shriraman. Spaghetti: Streaming accelerators for highly

sparse gemm on fpgas. In 2021 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), pages 84–96. IEEE, 2021.

[26] David A Hu�man. A method for the construction of minimum-

redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[27] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, et al. In-datacenter performance analysis of a tensor pro-

cessing unit. In Proceedings of the 44th annual international symposium

on computer architecture, pages 1–12, 2017.

[28] David Kroft. Lockup-free instruction fetch/prefetch cache organization.

In Proceedings of the 8th annual symposium on Computer Architecture,

pages 81–87. IEEE Computer Society Press, 1981.

[29] David Kroft. Lockup-free instruction fetch/prefetch cache organization.

In 25 years of the international symposia on Computer architecture

(selected papers), pages 195–201, 1998.

[30] HT Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse

convolutional neural networks for e�cient systolic array implementa-

tions: Column combining under joint optimization. In Proceedings of

the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 821–834, 2019.

[31] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob

Brennan, and Yuan Xie. Drisa: A dram-based recon�gurable in-situ

accelerator. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 288–301, 2017.

[32] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng,

Yuan Xie, and Mingyu Gao. Spada: Accelerating Sparse Matrix Mul-

tiplication with Adaptive Data�ow. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2, pages 747–761, 2023.

[33] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-

anna Pensky. Sparse convolutional neural networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages

806–814, 2015.

[34] Weifeng Liu and Brian Vinter. An e�cient GPU general sparse matrix-

matrix multiplication for irregular data. In 2014 IEEE 28th International

ACES: Accelerating SpMM with Adaptive Flow and Concurrency-Aware Cache Optimizations ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Parallel and Distributed Processing Symposium, pages 370–381. IEEE,

2014.

[35] Xiaoyang Lu, Hamed Naja�, Jason Liu, and Xian-He Sun. CHROME:

Concurrency-aware holistic cache management framework with on-

line reinforcement learning. In 2024 IEEE International Symposium on

High-Performance Computer Architecture (HPCA). IEEE, 2024.

[36] Xiaoyang Lu, Rujia Wang, and Xian-He Sun. Apac: An accurate and

adaptive prefetch framework with concurrent memory access analysis.

In 2020 IEEE 38th International Conference on Computer Design (ICCD),

pages 222–229. IEEE, 2020.

[37] Xiaoyang Lu, Rujia Wang, and Xian-He Sun. Premier: A concurrency-

aware pseudo-partitioning framework for shared last-level cache. In

2021 IEEE 39th International Conference on Computer Design (ICCD),

pages 391–394. IEEE, 2021.

[38] Xiaoyang Lu, Rujia Wang, and Xian-He Sun. CARE: A concurrency-

aware enhanced lightweight cache management framework. In 2023

IEEE International Symposium on High-Performance Computer Archi-

tecture (HPCA), pages 1208–1220. IEEE, 2023.

[39] Francisco Muñoz-Martínez, Raveesh Garg, Michael Pellauer, José L

Abellán, Manuel E Acacio, and Tushar Krishna. Flexagon: A Multi-

Data�ow Sparse-Sparse Matrix Multiplication Accelerator for E�-

cient DNN Processing. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 3, pages 252–265, 2023.

[40] Hamed Naja�, Jason Liu, Xiaoyang Lu, and Xian-He Sun. A general-

ized model for modern hierarchical memory system. In 2022 Winter

Simulation Conference (WSC), pages 2178–2188. IEEE, 2022.

[41] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi.

Cusparse library. In GPU Technology Conference, 2010.

[42] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu

Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit

Gupta, Carole-JeanWu, Alisson G Azzolini, et al. Deep learning recom-

mendation model for personalization and recommendation systems.

arXiv preprint arXiv:1906.00091, 2019.

[43] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-

nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,

Trevor Mudge, and Ronald Dreslinski. Outerspace: An outer product

based sparse matrix multiplication accelerator. In 2018 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA),

pages 724–736. IEEE, 2018.

[44] Cosmin G Petra, Olaf Schenk, Miles Lubin, and Klaus Gärtner. An

augmented incomplete factorization approach for computing the Schur

complement in stochastic optimization. SIAM Journal on Scienti�c

Computing, 36(2):C139–C162, 2014.

[45] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudar-

shan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna.

Sigma: A sparse and irregular gemm accelerator with �exible intercon-

nects for dnn training. In 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 58–70. IEEE, 2020.

[46] Moinuddin K Qureshi, Daniel N Lynch, Onur Mutlu, and Yale N Patt.

A case for MLP-aware cache replacement. ACM SIGARCH Computer

Architecture News, 34(2):167–178, 2006.

[47] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted

undirected graphs. Journal of computer and system sciences, 51(3):400–

403, 1995.

[48] Korey Sewell, Ronald G Dreslinski, Thomas Manville, Sudhir Satpathy,

Nathaniel Pinckney, Geo�rey Blake, Michael Cieslak, Reetuparna Das,

Thomas F Wenisch, Dennis Sylvester, et al. Swizzle-switch networks

for many-core systems. IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, 2(2):278–294, 2012.

[49] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian

Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,

Nathaniel Pinckney, Priyanka Raina, et al. Simba: Scaling deep-

learning inference with multi-chip-module-based architecture. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 14–27, 2019.

[50] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru

Zhang. Matraptor: A sparse-sparse matrix multiplication accelerator

based on row-wise product. In 2020 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 766–780. IEEE,

2020.

[51] Xian-He Sun and Xiaoyang Lu. The Memory-Bounded Speedup Model

and Its Impacts in Computing. Journal of Computer Science and Tech-

nology, 38(1):64–79, 2023.

[52] Xian-He Sun and Dawei Wang. Concurrent average memory access

time. Computer, 47(5):74–80, 2013.

[53] Robert M Tomasulo. An e�cient algorithm for exploiting multiple

arithmetic units. IBM Journal of research and Development, 11(1):25–33,

1967.

[54] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous

multithreading: Maximizing on-chip parallelism. In ACM SIGARCH

Computer Architecture News, volume 23, pages 392–403. ACM, 1995.

[55] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,

Qing Wu, and Yajuan Wang. High-performance computing on the

intel xeon phi. Springer, 5:2, 2014.

[56] Rui Xu, Sheng Ma, Yaohua Wang, Xinhai Chen, and Yang Guo. Con�g-

urable multi-directional systolic array architecture for convolutional

neural networks. ACM Transactions on Architecture and Code Opti-

mization (TACO), 18(4):1–24, 2021.

[57] Ichitaro Yamazaki and Xiaoye S Li. On techniques to improve robust-

ness and scalability of a parallel hybrid linear solver. In International

Conference on High Performance Computing for Computational Science,

pages 421–434. Springer, 2010.

[58] Liang Yan, Mingzhe Zhang, Rujia Wang, Xiaoming Chen, Xingqi Zou,

Xiaoyang Lu, Yinhe Han, and Xian-He Sun. Copim: a concurrency-

aware pim workload o�oading architecture for graph applications. In

2021 IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED), pages 1–6. IEEE, 2021.

[59] Raphael Yuster and Uri Zwick. Detecting short directed cycles using

rectangular matrix multiplication and dynamic programming. In

SODA, volume 4, pages 254–260. Citeseer, 2004.

[60] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez.

Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix

multiplication. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 687–701, 2021.

[61] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch:

E�cient architecture for sparse matrix multiplication. In 2020 IEEE

International Symposium on High Performance Computer Architecture

(HPCA), pages 261–274. IEEE, 2020.

[62] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang,

Xuehai Zhou, Ling Li, Tianshi Chen, and Yunji Chen. Cambricon-S:

Addressing irregularity in sparse neural networks through a cooper-

ative software/hardware approach. In 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 15–28.

IEEE, 2018.

[63] Zhaomin Zhu, Koh Johguchi, Hans Jürgen Mattausch, Tetsushi Koide,

Tai Hirakawa, and Tetsuo Hironaka. A novel hierarchical multi-port

cache. In Solid-State Circuits Conference, 2003. ESSCIRC’03. Proceedings

of the 29th European, pages 405–408. IEEE, 2003.

	Abstract
	1 Introduction
	2 Background
	2.1 Execution Flows for SpMM
	2.2 SpMM Accelerators
	2.3 Challenges and Opportunities

	3 ACES Architecture
	3.1 Overview of ACES
	3.2 Adaptive Execution Flow
	3.3 Processing Elements
	3.4 Schedulers
	3.5 Global Cache and PureFiber Policy
	3.6 Non-Blocking Buffer

	4 Evaluation Methodology
	5 Experiment Results
	5.1 Performance Comparisons
	5.2 Performance with Different Condensing Degrees
	5.3 Performance with Different Cache Replacement Policies
	5.4 Performance with Different NB Buffer Sizes
	5.5 Area and Power

	6 Additional Related Works
	7 Conclusion
	References

