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We present a fourth order numerical solution method for the singular Neumann
boundary problem of Poisson equations. Such problems arise in the solution process
of incompressible Navier—Stokes equations and in the time-harmonic wave propaga-
tionin the frequence space with the zero wavenumber. The equation s first discretized
with a fourth order modified Collatz difference scheme, producing a singular discrete
equation. Then an efficient singular value decomposition (SVD) method modified
from a fast Poisson solver is employed to project the discrete singular equation into
the orthogonal complement of the null space of the singular matrix. In the comple-
ment of the null space, the projected equation is uniquely solvable and its solution is
proven to be a solution of the original singular discrete equation when the original
equation has a solution. Analytical and experimental results show that this newly
proposed singular equation solver is efficient while retaining the accuracy of the
high order discretization. « 2001 Academic Press

Key Words:Poisson equation; Neumann boundary condition; SVD; fast Fourier
transform (FFT); high order discretization.

1. INTRODUCTION

In this paper, we consider high-order solutions for the Poisson equation

Pxx + Pyy =T (X, y) (1.1)
on a rectangular domaif with Neumann boundary condition

dp

— =D onoaQ 1.2

g = Py , 1.2)
whered Q2 isthe boundary of the rectangular domg&im is the normal vector of the boundary
of the computational domain, arﬂ(ﬁ indicates the derivative normal to the boundary. This

type of problems arise in the solution of the incompressible Navier—Stokes equation [9,
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and in acoustics, elastics, and electromagnetics in the time-harmonic wave propagatic
the frequency space [1, 12] with the zero wavenumber.

Itis well known [3, 11, 19] that the Neumann problem of the Poisson equation is singul
A singular linear system is solvable if and only if its right hand side is orthogonal to tt
null space of the singular matrix [3, 11]. The condition numbefra singular matrix is
infinity. Thus in general, singular problems are difficult to solve efficiently and accurate
For the singular Neumann problem of the Poisson equation, however, there exist se\
efficient solvers, including Schumann and Sweet’s cyclic reduction [19], Golub, Huar
Simon and Tang's generalized eigen-decomposition [11], Bialecki and Remington’s F
Poisson solver-based eigen-decomposition [3], and the Kaczmarz projection method
Tanabe introduced for singular systems [24].

The cyclic reduction is fast and has a complexityaxn? logn) on a square grid of size
n x n. But Schumann and Sweet did not discuss how the singularity is treated and h
cyclic reduction affects the accuracy of the solution of the discrete system. The generali
eigen-decomposition employed by Golkeital. has a complexity 00 (n®); however, it sin-
gles out the null space of the singular matrix, successfully avoiding error enlargement
thus retaining the discretization accuracy. Their method also allows non-uniform mes
and hence is applicable to more general singular problems. The method of Bialecki
Remington is also an eigen-decomposition method, which is a modification of Hochne
fast Poisson solver with the singularity singled out for special treatment. Their meth
thus retains accuracy of discretization and also achieves a high efficief@gnéfogn).
The Kaczmarz projection method is an iterative method that keeps the solution com
nent in the null space of the matrix fixed for each iteration. Thus, it is also a decomy
sition method which iteratively decomposes the equation into singular and non-singt
problems. The Kaczmarz method was later combined with multigrid procedures [7]
improve its convergence (efficiency of the multigrid Kaczmarz method was analyzed
Shapira [20]).

The singular solver proposed in this paper is similar to that of Bialecki and Remingt
in utilizing FFT for efficient matrix decomposition but with a reduced programming con
plexity for singularity treatment. In Bialecki and Remington’s method, the original discre
singular equation is first perturbed by adding a term to the right hand side of the equat
to ensure the solvability of the perturbed equation. They proved that the solution of
perturbed equation is a least square solution of the original singular problem. Our met
differs from their method in two places. First, we do not perturb the singular discrete eq
tion. We project the singular equation into the orthogonal complement of the null space
the singular matrix. In the orthogonal complement of the null space, the projected equa
is non-singular and always uniquely solvable regardless of the solvability of the origir
singular discrete system. The second difference (see Section 3) is that we ignore the
jected equation in the null space and only solve the projected equation in the orthogc
complement of the null space. We have proven that the solution of the projected equa
in the complement of the null space is a solution of the original singular discrete eqt
tion when the original is solvable, and is a least-squares solution of the original equat
when the original equation is not solvable. Thus, comparing with Bialecki and Remin
ton’s method, our method does not compute the perturbation to ensure the solvability,

1 The condition numbe(A) of an invertible matriXA satisfiedC(A) = |Amax/Aminl, WNEI€Amax aNdA i, denote
the largest eigenvalue in magnitude and smallest eigenvalue in magnitude, respectively.
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also has avoided a process to determine a solution of the projected equation in the
space.

High-order discretization methods for the Laplace operator have been investigated f
long time. Collatz studied several finite difference methods for the 2-D Laplace operato
1960 [10]. One of the fourth-order methods Collatz studied is a square stencil nine-pc
scheme which is a popular choice for the Dirichlet problem of Possion equations. In 19
Lynch and Rice introduced a systematic procedure called HODIE [16] for calculating t
coefficients of finite difference discretization formulas for general elliptic equations f
almost “any” numerical order. The HODIE procedure was employed by Boisvert in 19
to discretize the Helmholtz equations [5] and was applied in 1985 to the Neumann prob
of the Helmholtz equation (see [18, pp. 199-200]). Another finite difference method
obtaining high-order discretization of the Laplace operator is theefguE high-order
approximation of Singer and Turkel [21]. A different approach to high-order discretizati
is the finite element type schemes, among which are Kaufman and Warner's [14] Raylei
Ritz—Galerkin method with tensor product B-splines and Bialecki and Fairweather’s hig
order orthogonal spline collocation method [2].

In this paper we modify the Collatz’s popular nine-point scheme for Neumann proble
and obtain a fourth order formula which is more general than both the Collatz formula ¢
Boisvert's formula given in ([18, pp. 199—-200]).

While our discussion of the singular Poisson solver is restricted to Poisson equatic
it is readily extendible to singular Helmholtz equations with either Dirichlet or Neumar
boundary conditions. For a Helmholtz equation arising in the time harmonic wave pre
agation, when the square of the wavenumber happens to be equal to an eigenvalue
Laplace operator in magnitude, the equation becomes singular. With the proposed sinc
treatment modified for the non-zero wavenumber cases, singular Helmholtz equations
be solved efficiently and accurately on rectangular domains with uniform meshes cho
or combined with domain decomposition methods [8, 17] to produce fast and accul
subdomain solvers.

This paper is organized as follows. Fourth order discretizations of the equation and
Neumann boundary condition are presented in Section 2. A decomposition, project
and solution method for the singular discrete equation are discussed in Section 3. Sect
contains an error analysis and an efficiency comparison with second order methods. Fir
testing results are presented in Section 5. Section 6 gives the conclusion.

2. DISCRETIZATION

One of the popular high-order discretization schemes for the Laplace operator is
following Collatz [10] formula written in the stencil form,

1
h2l -1 5 —1|pd=-]1% 1 I[ap+0m, (2.1)
1 1 _1 1
4 1 4 8

whereAp = (% + %) p. This high-order method together with others studied by Collat
were later generalized by Lynch and Rice to a method called HODIE [16] for general ellip
equations. For Neumann problems, when scheme (2.1) is applied at boundary grid
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(0, j), the right hand side needs the valuergh—, which is outside the domain. So this
method is not applicable to the Neumann problem of Poisson equations. A modificat
is hence necessary. In 1987 Boisvert successfully calculated fourth order discretiza
coefficients using the HODIE method for the Neumann problem of Helmholtz equations [

In this paper, we use a fourth order discretization formula which is more general th
Boisvert’s formula givenin ([18, pp. 199—-200]). Our discretization formula was first derive
in [22]. For self-containedness, we re-present it here.

The right hand side of (2.1) is equal to

1
1 .
Sapi— 21 4 1)api.
2 8 X

The second term above is obviously an approximatiothdf8)A2p"1 with an error of
h20(h?) = O(h*). So we approximate the second term(by/8)A%p"-I and arrive at the
following modified Collatz method:

1 1
-z 1 -7\ s o
h=2| -1 5 -1 p"JzéAp"J—gAzp"‘—i-O(h“). (2.2)
-1 41 _1
4 4

Applying the above scheme to Eq. (1.1) at grid pd@int ) on a uniformly spaced grid, we
obtain

1 1
i 71 o 3.. h?2 ..
h=2[ -1 5 -1 p'=1=—§r'*l—§m'*J + O(h%). (2.3)
-1 41 _1
4 4

The approximation ofxr'-1 in the above equation only needs to be second order accur:
for the truncation error to remain fourth order. The main advantage of formula (2.3) is tt
it allows people to choose different approximation schemesifor . This flexibility is
especially useful for Neumann problems since for interior grid points, the five-point fini
difference can be used, while for boundary points other approximation formulae can
used to avoid using values afr outside the domain. Formula (2.3) becomes the Collat
formula (2.1) when the five-point finite difference is used to approximate .

We use the following fourth order discretization for the boundary condition,
fi+l _ fi—l

1 )
fi + gh?fs + O(h%, (2.4)

oo T
which is a direct application of Taylor expansion up to the fourth derivative terms. Applyir
(2.4) to the boundary condition at grid poiitt, j), we have

pt) — pt

2 . .
5 = %bg-xl +b% + o). (2.5)

A difficulty exists in approximating?,) in the above formula. To approximabdy/, it
requires values of boundary conditibrin an x-direction neighborhood of the grid point
©, j), e.g.,b~%1 andb®i. A boundary condition is usually given only on the boundary
not over a small neighborhood of boundary. So, oxatirection boundaryhyy cannot be
directly approximated bubyy, can be approximated directly since on the boundary poir
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(0, j) the Poisson equatiopg;) + pJ,) =r®! holds, which is equivalent tp%) =r®I —
p). Taking x-directional partial derivatives of both sides, we obtafly, =21 — p2},
which is the same as)) =2} — b} by noticing thatp! = b®!. Replacingo.x in (2.5)
with the above formula, we obtain
plsj _ p*lqj h2 . .
T on T E(rx - bgyj) +b% + O(h%). (2.6)
The approximation olbg’;yj in the above equation needs to be only second order for (2.6)
remain fourth order. Through the above discretization and derivation, the Poisson equs

(1.1) and the boundary conditions (1.2) can be incorporated into the linear system

3 h*
AP= _Ehzr - g o+ 2hB + O(h®), (2.7)

where P denotes the solution vector in natural ordering (see [4, p. 62D)e vector cor-
responding to the right hand side of (1.1), aBdhe vector resulting from the boundary
condition (2.6), which vanishes at interior points and is given by

2

. 3 .. n2, . .
0j _ 0 05-1 pe0f 4 (041
B = —2 Xj_ﬂ(rxj + a2 4 dIHh),

3 . n? . ) )
Bm,J — Ep)r(“J + _(r)r(n,J—l+4r)r(TLJ +r)f(n,l+l)’

24
i,0 3 i,0 h2 i—1,0 i,0 i+1,0
B" :_Epy’ _ﬂ(rx THAnT T )’
. 3 . h? ) )
Bl,n — Ep|yn + ﬂ(r)l(—l,n +4r>|<,n +r)|(+l,n)’

forl<i<m-11<j=<n-1,and
5(r20+199) + 191130
24

, (PR B50) 1208+ )+ (B2 55) —2(p°+ p5°)
24

1
B = —7 (B(m°+ ) + P+ py°) —h

’

BMO _ % (5(p21,0 i p;n,0> + pQ”I,l i p;’nfl,O) + h25(r)r<n,0 B r)r/n,O) + r;n,l B r{/n—l,o

24
5RO = p0) = 12(pt - Py tO) +9(p? - P 0) —2(pe — pf39)
24 ’
1 5 rO,n_rO,n +r0,n—1_r1,n
BO,n — _Z(S(DS,n _ pg,n) + p)Cg,nfl _ pi,n) _ h2 ( X y )24 X y
5(pR" — py") —12(pR"t - py") +9(pP" 2 — pP") —2(P2" " - py")

+ 24 ’

5(r" 4yt 4 rp o etn
24
B 5( p)r(n,n + p;/n,n) _ 12( pQ"l,nfl_i_ pgwfl,n) +9(p)r;n,n72+ pymfz,n) _ 2(p)r(n,n—3+ pym—3,n)
24 '

Bm,n — :ZL_ (5(p2”” + pymn) + p)r;n,nfl_’_ pym—l,n) + h2
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The matrixA is an(m + 1)(n + 1) by (m+ 1)(n + 1) matrix given by

A1 —-2A; 0 . 0 0 0
A, A -A, - 0 0 0
A= . . S . . (2.8)
0 0 0o - Ay A A
0 0 o - 0 —2A,  Aq

whereA; andA; are(m + 1) by (m + 1) matrices given by

1
5 -2 0.. 0 0 1320 00

1 5 -1 ... 0 0 o0 113 0 0O

Al = . ) A, ) A, A= .

o 0 0. -1 5 -1 0 0O 13

O 0 0... 0 -2 5 0 0 o 011

Formula (2.7) is not fully discretized. It still contains differential terms suchm|gy, and

ry. This is the main difference between our discretization formula and existing ones wh
are usually fully discretized. But sinagx, y) are given functions with known values
and approximation of these differential terms, ry andry needs to be only(h?) for
maintaining anO(h®) accuracy for formula (2.7), we can easily find many simple secon
order approximations (e.g., 1-D formulae in [15]). We can also obtain Boisvert’s fofmul.
(see [18, p. 200]) by choosing different second-order discretization formulagrfary,
andry at different grid points.

3. SINGULAR VALUE DECOMPOSITION AND PROJECTION

After further discretizing the termar, ry, andry on the right-hand side of (2.7), we
obtain a linear system of the form

AP =R (3.1)

in spaceRM D™D “whereA is given by (2.8). For notational simplicity, we l&t =
(m+ 1)(n+ 1). Itis easy to verify that the matriX is singular and its rank isl — 1. Let
N(A) denote the null space of matrixandN(A)* the orthogonal complement &f(A),
namely,

NA) ={PeRV:AP =0}, and
NAL =(PeRV:P'Q=0 forall Qe N(A)},

whereP! denotes the transpose of column vedot.etF be anN x (N — 1) matrix whose
(N — 1) column vectors are chosen to form an orthonormal basis of the dpatg’.

2 The right hand side of the Boisvert formula as given in Table 1 in ([18, p. 200) seems to have printing errc
The first row should bé,g + h~*J,u, instead ofl,g + J,u, to be consistent with the equation on p. 199, and
the termauy, uy in the last two rows should be multiplied y*. When these corrections are made to Boisvert's
formula, our discretization formula (2.7) contains the Boisvert's formula as a special case.
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ThenF'F = I y_1, Wherel y_; denotes the identity matrix in spaB&' L. Define a matrix
IT = FF. Itis easy to check thd is the projection matrix from spad® to N(A)*: i.e.,
IIP € N(A)!L for P € RN andIIP = P for P € N(A)~L.

Now we project Eqg. (3.1) ontdl (A)* and obtain the projected equatibPAP = IIR.
SinceAP e N(A)+L, we have thalIAP = AP. Hence the projected equation becomes

AP =TIR. (3.2)

The solvability of a singular linear system, as stated below, is known [3, 11].

ProPosITION3.1. A singular linear system of forrg8.1) is solvable if and only if its
right hand side is orthogonal to MA), i.e. Re N(A)*L.

However, the projected equation (3.2), as we shall show below, is always solvable €
when the original singular equation (3.1) has no solution.

THEOREM3.1.

(i) The projected equatio(8.2) has a unique solution in BA)*.

(i) If P € N(A)* is the solution of the projected equati@®2), then P is a solution of
(3.1) when Eq(3.1) is solvable and P is a least-squares solution@1) when Eq(3.1)
is not solvablewhere a least-squares solution P @&f1) is defined as

(AP - RYAP - R) = gnLnN(AQ— R'(AQ — R).

Proof.

(i) SinceIIR € N(A)*, by Proposition 3.1 the projected equation (3.2) has a solutic
P e RN.ButAP = ATIP, so we have thaaIIP = IIR, which means thdlIP € N(A)+
is a solution of (3.2).

To prove the uniqueness of the solution, we RetQ € N(A)* satisfying Eq. (3.2).
Thus,A(P — Q) = 0, which means thatP — Q) € N(A). But (P — Q) € N(A)* since
bothP, Q € N(A). So(P — Q) = 0, which proves the uniqueness.

(i) Let P € N(A)* be the solution of (3.2). We first show that if the original singular
equation (3.1) is solvable is also a solution of (3.1). By Proposition 3.1, the solvability
of Eq. (3.1) implies thaR € N(A)*. HencellIR = R. ThenAP = R, which shows that
P is a solution of (3.1).

Now we shall show that when Eq. (3.1) has no solutiens a least-squares solution of
(3.1). Since for allQ € RN, AQ € N(A)*, we have that

min (AQ — R'(AQ—-R) < min (U—-R'WU — R)=TIR- R'TIR-R). (3.3)
QeRN UeN(A)+

SinceP is the solution of (3.2), we have thdIR — R)'(IIR - R) = (AP — R'(AP —
R), which, together with (3.3), leads to mjmrv(AQ — R'(AQ — R) = (AP — R)!
(AP — R). Q.E.D.

Due to the relation between the solution of the projected equation and the original sing
equation established in the theorem above, our solution algorithm is designed to solve
projected equation (3.2) regardless of the solvability of the original singular equation. T
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is one of the differences between our algorithm and Bialecki and Remington’s solver, wh
the right hand side of the original singular equation is perturbed to guarantee the solvab
of the perturbed equation.

SinceIl = FF!, the projected equation (3.2) is the same as

AFF'P = FF'R. (3.4)

The column vectors df form an orthonormal basis M (A)+, so for any vectoQ € RN,
the matrix—vector produd® Q gives the coefficients of with respect to the orthonormal
basisF. Our algorithm starts by multiplying' to both sides of (3.4), yielding

(F'AF)(F'P) = (F'F)F'R.
SinceF'F = Iy_1, the above equation is equivalent to
(F'AF)(F'P) = F'R. (3.5)

Then we solve the above equation for the coefficient ve€ltr. Finally, we multiplyF by
F'P to recover the solutioRF' P = TTP of the projected equation (3.2).

The decomposition and projection method discussed above works for all singular lin
systems, not just for singular discrete Poisson equations. For general problems, how:
the main difficulty is how to find a matrik that can efficiently accomplish the projection
and recovery operations. For the singular Poisson problem, utilizing the eigenvectors c
we construct matri¥ by

1
1 | | |
slm  Coalm Co,2lm Conlm Coi O 0 0
%Im C1,1|m C1A,2|m e Cl,nlm 0 Im 0 0
F= . ’
\%lm Cn—l,llm Cn—1,2|m ce Cn—l.nI m 0 0 te Im 0
0 0 0 |
\%lm cn,llm Cn,2|m ce Cn,nlm m
(3.6)
wherec; = ,/ﬁcos(”%) fori=0,12...,n, j=12,...,n Cn1=(G,j) is an
mx (m—1) matrix withi =0,1,2,...,mandj =1,2,...,m, andl, is the identity

matrix in the spacdR™. With the choice of this matri¥, we can accomplish the two
matrix—vector multiplication operatofs R and F(F! P) efficiently using FFT, and at the
same time tridiagonalize the matexinto F'AF in Eq. (3.5).

Denote the first matrix on the right hand side of (3.6) Byand the second matrix
by F,, namely,F = F1F,. The N x N matrix F; is the cosine transform matrix Boisvert
used in the FFT solver for the nonsingular Neumann problem of Helmholtz equatic
[6]. For the singular Poisson probler; tridiagonalizes (and also block-diagonalizes)
A into F{AF, resulting inn + 1 independent subequations with one subequation beir
singular. As mentioned in the Introduction, a difference exists between our algorithm &
Bialecki and Remington’s solver in the treatment of the discrete singular subequation . In
algorithm, further applying thil x (N — 1) matrixF, to the already tridiagonalized matrix
F! AF; completes the projection operation so that the projected equation is uniquely solve
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in N(A)*, while in Bialecki and Remington’s solver, after obtaining- 1 independent
discrete subequations (one of them singular) by using a cosine transform, to handle
singular discrete subequation they return to the continuous (nondiscrete) equation w
the singular discrete subequation approximates at collocation points and impose a Diric
boundary condition at one boundary point for the continuous subequation, thus turnin
into a non-singular subequation.

Returning to our algorithm, we summarize below the solution process of our solver.

1. Compute the right hand side of (2.7).

2. Multiply F* to the right hand side of Eq. (3.1) to obtain (3.5).

3. Compute the entries in matrix F'AF and solve the tridiagonal system (3.5) for
the coefficient vector F'P.

4. Recover IIP by multiplying F to the coefficients F'P.

The operation count of each step of the algorithm on a square domair ofis

1. 5n? 4+ O(n) floating point operations;

2. 25n?log, n + 1.5n? + O(nlog, n) operations;
3. 82 + O(n) operations;

4. 25n2log, n 4 2.5n% + O(nlog, n) operations.

The total operation count of the algorithm, the sum of the work of the four steps, is
5nlog, n + 17n? + O(nlog, n). (3.7)

Since the second order finite difference approximation of the Laplace operator produ
a matrix with the same eigenvectors as that produced by the fourth order discretization (:
the decomposition and projection-based SVD method discussed above is also applicat
the discrete system obtained via the second order discretization. A second order solver
this SVD treatment goes through the same four steps as the fourth order method, ant
operation counts only differ in step 1—the second order solver needsidalyerations in
approximating the right hand side of the discrete matrix equation, resulting a total coun

5n°log, n + 13n° + O(nlog, n), (3.8)
for the second order method.

4. ERROR AND EFFICIENCY

Assuming that the solutiop(x, y) is sufficiently smooth, the truncation error of (2.7)
when all differential operators replaced by their respective discrete versions is

h6 36 86 h6 36 36 h6 34 a4 N
.5 = | 22 ety * ) ~ 200 * 355 * 58 ot * ) 4] P
: he / a° 9° he / 98 b
0= | gzt * ) ~ 20l * )

hé / 9% 94 ; 1 9° 198 1 9° -
(11 AP | e b S A | pO
+ 6<8y4 + 8x4) } P [408x5 + 6 ax3 + 248x8y4] P
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t(0,0) = h® L o +8—6 34 ot Al p®°
144\ 9x49y? ' Ix2oy* 240 8x6 8y6 96 8y4 ax4 P
I S A S O (A UL A A A O

240\ ax Ay 60\ x5  ay° 36\ ax3  9y3
L 00
24\ 9xay* = 9x*ay P

e 1a+1a3A+1 a° 01
2409x5 3603 | 1449xayt )P

5( 19 iigA_{_i )pl,o
2408y5 369y3 14493x49y ’
wheret (i, j) denotes the truncation error at grid pointj).

The solution erroe, defined as the difference between the true solution and the comput
solution, satisfiesA e = t. Since the solution of a singular system has total freedom in it
null space, so no error exists with respect to the zero eigenvalue. Thus, the relation betv

solution errore and truncation errar satisfiesA ; e = t, whereA ; denotes the projection
of matrix A in spaceN (A)*. SinceA | is invertable, we obtain

e=AT. (4.1)

Matrix A has eigenvalues

Akl =5— 2005(%) — 2005(%) — cos(%) cos(%n) 4.2)

fori =0,1,...,m,j =0,1,...,nwith (i, j) # (0, 0).

Matrix Af has the same eigenvectors A&s with corresponding eigenvaluegil;.
Since there arémn+ m + n) distinct eigenvalues in thenn+ m + n)-dimensional dis-
crete spac®l (A)*, the(mn+ m + n) eigenvectors are mutually orthogonal and thus spa
the (mn+ m+ n) dimensional space in which we are solving the equation. Therefo
the truncation errot can be expanded in terms of the orthonormal eigenvedatgror
i=01....,mandj=1,...,nas

t=> cjVi. (4.3)
N

Since the truncation errdris of O(h®), (4.3) means tha}; ; G;j Vi is of O(h°). And by
(4.1) and (4.3)

lellz = AT ]2 = (4.4)

Therefore,

(4.5)
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The eigenvalues (4.2) &, are positive and satisfy
A1 < A, and Aij—1 < Ajj-

Sincerg1 andiy o are of O(h?), Ao,/ anda s o are of O(h), anda, ; is of O(1) for all
(i, j) pairs such thait > 3 or j > £, itis clear from (4.5) that the order efranges from
0O(h®) to O(h®). The distribution of the truncation err@i’j Gj Vij depends mainly on
the problem (i.e, solutiom) and discretization methods. For the solution to b&©gh®),
the truncation errot must concentrate on the near-zero low frequence in the sense t
coefficientsg; j in (4.3) are close to O fdr, j not near zero. Assuming uniform distribution
for the coefficients;; ;’s, this solution method is in average case fourth order.

With the error estimation given above, we can proceed to give a comparison of efficiel
for fourth and second order methods in terms of execution time.

Executiontimein generalis approximately proportional to the number of operations. Fc
given error tolerance, a high-order method allows much larger mesh sizes than alower ¢
method, resulting in significant reduction in the number of grid points and consequer
execution time if the high-order method has the same computation complexity as that of
second order method for the same grid size. Such time reduction can be seen clearly
the discussion below for a fourth order method against a second order method of the s
complexity.

For the sake of brevity, we restrict our discussion on the unit square domain{do, 1].
With slight modifications, the same analysis can be conducted for general rectang
domains. We introduce the following notatiorigMthd) denotes the difference between
the true solution and the numerical solution computed by melthitbd; ¢ > O is the error
tolerance, i.e., the difference between the computed numerical solution and the true solt
must be less than or equaldowith these notations, the error of our fourth order method ca
be denoted b¥(order4), and the error of the second order Poisson solver witi(oeder?).
The solution error of the fourth order direct method in general satisfies

E(order4) = a - h* for some problem-dependent coefficient
The error of a second order solution method in general satisfies
E(order2) = b - h? for some problem-dependent coefficiént

To meet the error tolerance, the fourth and second order methods need to take diffe
mesh sizes and partition sizes, say partition $izand mesh sizé for the fourth order
solver, and partition sizBl” and mesh sizk’ for the second order method. Then

a-h*<e and b-h?<e.
Roughly we can equate them to yield
a-h*=b-h2 (4.6)

Sinceh = 1/N andh’ = 1/N’, (4.6) is equivalent to

N’ = ENZ = C N?, 4.7)
a
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where

b
C=,/-. 4.8

S (4.8)
Thus, if our fourth order solver can satisfy the error tolerance by taking a partition of si
N, then it requires the second order solver to take a partition sigeNfto achieve the
same accuracy. L& andT, denote the time needed by the order 4 and order 2 metho
respectively to solve a problem within a given error tolerance. Then (3.8), (3.7), and (4
imply that

C2N?(5log, CN? + 13)

T Ty =
2e (5log, N + 17)

(4.9)

The paramete€ in general could vary largely from problem to problem. For Poissol
equations which have only twice differentiable solutions, the fourth order method has o
second order accuracy, and probably has no gain in reducing execution time for a gi
error tolerance. But for problems with at least three times differentiable solutions, the fou
order can take advantage of the smoothness of the solution and reduce the computatior
for a given error tolerance.

5. EXPERIMENT RESULTS

To test the accuracy and efficiency of the high-order fast singular Poisson solver (HFSF
we choose four testing problems with solutions of different orders of differentiability; the
are:

1. p(x, y) = (xy)>°[1 — cogxy)], which is five times differentiable;
2. p(x, y) = x*® 4+ y*°, which is four times differentiable;

3. p(x, y) = (x + y)?°sin(x), which is three times differentiable;
4. p(x, y) = (x + y)?°, which is twice differentiable;

The testing problem domain is chosen to be the unit squadg [0 [0, 1], and uniform
mesh sizeh = 1/N is chosen on each dimension, whe\eis the number of grid points
on eachx- andy-dimension. We tested the HFSPS on an IBM RS/6000 machine runni
operating system AIX 3.2.5, and the test results are listed in Tables | to V. For the compari
of accuracy, on the same machine we also tested a second-order method (FSPS) wit
same decomposition and projection-based SVD method described in Section 3 anc
traditional five-point second order discretization. The test data of FSPS are also liste
the tables.

Tables | to IV present the time-accurate comparison between the HFSPS solver
the second order FSPS solver for the four test problems. Measured experimental re:
show that the HFSPS method is much more accurate and achieves high accuracy wit
increasing execution time as compared with the second order solver. In the tables, we
a metric Order [23, 26] to indicate the numerical order of a solver, which is calculated
follows:

Error(n)

Orderf, 2n) = log, Errorzn)”
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TABLE |

Problem 1:p.« + pyy = (xy)3°[1 — cos &y)], Five Times Differentiable

91

Method n 16 32 64 128 256 512 1024
Error  1.54-04 1.00-05 6.36-07 3.99-08 2.50-09 1.56-10 9.65-12
HFSPS Order 3.9 4.0 4.0 4.0 4.0 4.0
Time 0.01s 0.02s 0.11s 0.45s 1.74s 7.23s 30.2s
Error 6.07-03 1.51-03 3.76-04 9.41-05 2.35-05 5.88-06 1.47-06
FSPS Order 2.0 2.0 2.0 2.0 2.0 2.0
Time 0.01s 0.02s 0.11s 0.40s 1.76s 7.23s 30.5s
TABLE I
Problem 2:p (X, y) = x*° + y*5, Four Times Differentiable
Method n 16 32 64 128 256 512 1024
Error  2.39-04 2.13-05 1.89-06 1.68-07 1.49-08 1.32-09 1.23-10
HFSPS Order 35 3.5 35 35 35 34
Time 0.01s 0.03s 0.10s 0.44s 1.84s 7.43s 31.1s
Error 1.15-02 2.89-03 7.21-04 1.80-04 4.51-05 1.13-05 2.82-06
FSPS Order 2.0 2.0 2.0 2.0 2.0 2.0
Time 0.01s 0.02s 0.11s 0.43s 1.75s 7.15s 315s
TABLE 11l
Problem 3:p(x, y) = (x + y)?® sin (x), Three Times Differentiable
Method n 16 32 64 128 256 512 1024
Error 8.12-05 7.30-06 6.96-07 6.81-08 6.78-09 6.68-10 7.30-11
HFSPS Order 3.5 34 3.4 3.3 3.3 3.2
Time 0.01s 0.02s 0.11s 0.43s 1.76s 7.25s 31.0s
Error  3.94-03 9.78-04 2.45-04 6.12-05 1.53-05 3.83-06 9.57-07
FSPS Order 2.0 2.0 2.0 2.0 2.0 2.0
Time 0.01s 0.03s 0.11s 0.50s 1.80s 7.19s 31.0s
TABLE IV
Problem 4:p(x, y) = (x +y)?°, Twice Differentiable
Method n 16 32 64 128 256 512 1024
Error 1.00-03 2.03-04 4.04-05 7.94-06 1.55-06 2.98-07 5.72-08
HFSPS  order 2.3 2.3 2.3 2.4 2.4 2.4
Time 0.01s 0.02s 0.11s 0.43s 1.80s 7.28s 309s
Error 6.23-03 1.54-03 3.79-04 9.36-05 2.31-05 5.72-06 1.42-06
FSPS order 2.0 2.0 2.0 2.0 2.0 2.0
Time 0.01s 0.03s 0.11s 0.43s 1.78s 7.30s 30.6s
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TABLE V
Computation Time of the Two Methods for the Same Accuracy

Problem Method n Error Time (sec.) Time ratio

1 HFSPS 16 1.54-04 0.01

FSPS 64 3.76-04 0.11 11
1 HFSPS 32 1.00-05 0.02

FSPS 256  2.35-05 1.76 88
2 HFSPS 32 2.13-05 0.03

FSPS 256 4.51-05 1.75 58
2 HFSPS 64 1.89-06 0.10

FSPS 1024 2.82-06 315 315
3 HFSPS 16 8.12-05 0.01

FSPS 128  2.05-04 0.45 45
3 HFSPS 64 6.96-07 0.11

FSPS 1024 9.57-07 30.1 273
4 HFSPS 32 2.03-04 0.02

FSPS 64 3.79-04 0.11 5
4 HFSPS 256 1.55-06 1.80

FSPS 1024 1.42-06 30.6 17

The definition of this metric is based on the observation that for a numerical method
orders, the error will decrease at a rate @)S when a uniformly spaced grid doubles its
grid points. The log plot of error against grid size (or mesh size) is usually used to meas
the order of a numerical method. The met@aer used here gives the value of the slope
of the log plot of the error vs grid size between each two neighboring testing grid siz:
Since the slope of a curve is difficult to exactly visually determine, the métriter is

a clearer gquantitative indication of the order of a numerical method. The error analy
given in Section 4 shows that the HFSPS method is fourth order in the average case if
true solution is five times differentiable, and the order of our numerical method decrea
as the differentiability of the solution falls below the order of 5. This is matched by tt
experimental results shown.

Table V compares the measured execution times of the two tested solvers. The four
problems are solved by the high-order HFSPS method. Then the same problems are st
with the second order method to match the achieved accuracy with an increased numb
grid points and execution time. The execution times of the HFSPS and the FSPS algorit
are listed side-by-side in Table V for each of the testing problems. Table V shows tl
the high-order method is 5 to 300 times faster depending upon problem and grid size
indicated by the column of time ratios for the two solvers. Notice that the performance g
increases when the problem size increases.

6. CONCLUSION

We present a fourth order fast solver for the singular Neumann boundary problem
Poisson equations on a rectangular domain. A modified Collatz finite difference sche
is used to discretize the Laplace operator. This discretization produces a singular disc
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equation which is projected into the orthogonal complement of the null space of the sing
matrix and solved in the complement of the null space. It is proven that the solution of
projected equation is a solution of the original singular discrete equation when the origi
equation is solvable. The projection of the singular equation into the complement of
null space utilizes the fast Fourier transform whose application to Poisson equations
pioneered by Hockney. As both analytical and testing results show, our proposed S
keeps the accuracy obtained from the high-order discretization while maintaining h
efficiency.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foundation (NSF) under NSF Grant CCR-997
and by the Office of Naval Research (ONR) under the PET program. We also thank the anonymous referee
their comments and suggestions.

REFERENCES

1. H. M. Atassi, Unsteady aerodynamics of vortical flows: Early and recent developmehéspiynamics and
Aeroacousticsedited by K. Y. Fung (World Scientific, Singapore 1994), pp. 119-169.

2. B.Bialeckiand G. Fairweather, Matrix decomposition algorithms in orthogonal spline collocation for separa
elliptic boundary value problemS§JIAM J. Sci. Compufl6, 330 (1995).

3. B. Bialecki and K. A. Remington, Fourier matrix decomposition methods for the least squares solutior
singular Neumann and periodic Hermite bicubic collocation probl&tsy J. Sci. Compui.6, 431 (1995).

4. G. Birkhoff and R. LynchNumerical Solution of Elliptic Problem(&IAM, Philadelphia, 1984).

5. R. F. Boisvert, Families of high order accurate discretizations of some elliptic prolfaAdd, J. Sci. Stat.
Comput2, 268 (1981).

6. R. F. Boisvert, A fourth-order-accurate Fourier method for the Helmholtz equation in three dimeA§&ibhs,
Trans. Math. Softwaré3, 221 (1987).

7. A.Brandt and S. Ta'asan, Multigrid methods for nearly singular and slightly indefinite problebesgture
Notes in Mathematics 1228: Multigrid Methods édited by W. Hackbusch and U. Trottenberg (Springer-
Verlag, Berlin/New York, 1985) pp. 100-122.

8. X. Cai, M. A. Cassarin, F. W. Elliott, and J. O. B. Widlund, Overlapping Schwarz algorithms for solvin
Helmholtz equationsContemp. Math218 437 (1998).

9. A.J. Chorin, Numerical solution of the Navier—Stokes equatibtagh. Comput22, 745 (1968).
10. L. Collatz,The Numerical Treatment of Differential Equati¢8pringer-Verlag, New York, 1960).

11. G.H.Golub, L. C. Huang, H. Simon, and W. TaAdrast Solver for Incompressible Navier—Stokes Equations
with Finite Difference Methodstanford University SCCM Technical Report, Stanford University Scientific
Computing and Computational Mathematics Program (1994).

12. I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propogat@amput.
Phys.119, 252 (1995).

13. R. Hockney, A fast direct solution of Poisson’s equation using Fourier analy$i€M12, 95 (1965).

14. L. Kaufman and D. WarneA program for solving separable elliptic equatiod€CM Trans Math. Software
16, 325 (1990).

15. S. Lele, Compact finite difference schemes with spectral-like resoldti@omput. Physl03 16 (1992).

16. R. E. Lynch and J. R. Rice, High accuracy finite difference approximation to solutions of elliptic part
differential equationsProc. Nat. Acad. Scif5, 2541 (1978).

17. L.C. Mclnnes, R. Susan-Resiga, D. E. Keyes, and H. M. Atassi, Additive schwarz methods with nonreflec
boundary conditions for the parallel computation of Helmholtz probléoesitemp. Math218 349 (1998).

18. J. R. Rice and R. F. Boisve8plving Elliptic Problems Using ELLPAC{Springer-Verlag, New York, 1985).



94

19.

20.
21.

22.

23.

24.
25.

26.

ZHUANG AND SUN

U. Schumann and R. Sweet, A direct method for the solution of Poisson equation with Neumann bount
conditions on a staggered grid of arbitrary size<Comput. Phys20, 171 (1976).

Y. Shapira, Multigrid methods for 3-D definite and indefinite problespgl. Numer. Math26, 165 (1998).

I. Singer and E. Turkel, High order finite differnce methods for the Helmholtz equ&tnput. Meth. Appl.
Mech. Eng163 533 (1998).

X.-H. Sun and Y. Zhuang high-order direct solver for Helmholtz equations with Neumann boundary
conditionsNASA ICASE Technical Report No. 97-11, NASA Langley Research Center Hampton, VA 2368:
0001 (1997).

X.-H. Sun and Y. Zhuang, A highly accurate fast solver for helmholtz equatioRsp@ ACM International
Conference on Supercomputi@uly 1997).

K. Tanabe, Projection methods for solving a singular system of liNeaner. Math17, 203 (1971).

R. TememNavier—Stokes Equations, Theory and Numerical Ana(§&igevier, New York, 1984).

Y. Zhuang and X.-H. Sun, A high-order ADI solver for separable generalized Helmholtz equativaaces

in Engineering Softwar81, 585 (2000).



	1. INTRODUCTION
	2. DISCRETIZATION
	3. SINGULAR VALUE DECOMPOSITION AND PROJECTION
	4. ERROR AND EFFICIENCY
	5. EXPERIMENT RESULTS
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

