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We present a fourth order numerical solution method for the singular Neumann
boundary problem of Poisson equations. Such problems arise in the solution process
of incompressible Navier–Stokes equations and in the time-harmonic wave propaga-
tion in the frequence space with the zero wavenumber. The equation is first discretized
with a fourth order modified Collatz difference scheme, producing a singular discrete
equation. Then an efficient singular value decomposition (SVD) method modified
from a fast Poisson solver is employed to project the discrete singular equation into
the orthogonal complement of the null space of the singular matrix. In the comple-
ment of the null space, the projected equation is uniquely solvable and its solution is
proven to be a solution of the original singular discrete equation when the original
equation has a solution. Analytical and experimental results show that this newly
proposed singular equation solver is efficient while retaining the accuracy of the
high order discretization. c© 2001 Academic Press

Key Words:Poisson equation; Neumann boundary condition; SVD; fast Fourier
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1. INTRODUCTION

In this paper, we consider high-order solutions for the Poisson equation

pxx + pyy = r (x, y) (1.1)

on a rectangular domainÄ with Neumann boundary condition

dp

dn
= b(x, y) on ∂Ä, (1.2)

where∂Ä is the boundary of the rectangular domainÄ,n is the normal vector of the boundary
of the computational domain, anddp

dn indicates the derivative normal to the boundary. This
type of problems arise in the solution of the incompressible Navier–Stokes equation [9, 25],

79

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press

All rights of reproduction in any form reserved.



80 ZHUANG AND SUN

and in acoustics, elastics, and electromagnetics in the time-harmonic wave propagation in
the frequency space [1, 12] with the zero wavenumber.

It is well known [3, 11, 19] that the Neumann problem of the Poisson equation is singular.
A singular linear system is solvable if and only if its right hand side is orthogonal to the
null space of the singular matrix [3, 11]. The condition number1 of a singular matrix is
infinity. Thus in general, singular problems are difficult to solve efficiently and accurately.
For the singular Neumann problem of the Poisson equation, however, there exist several
efficient solvers, including Schumann and Sweet’s cyclic reduction [19], Golub, Huang,
Simon and Tang’s generalized eigen-decomposition [11], Bialecki and Remington’s Fast
Poisson solver-based eigen-decomposition [3], and the Kaczmarz projection method that
Tanabe introduced for singular systems [24].

The cyclic reduction is fast and has a complexity ofO(n2 logn) on a square grid of size
n× n. But Schumann and Sweet did not discuss how the singularity is treated and how
cyclic reduction affects the accuracy of the solution of the discrete system. The generalized
eigen-decomposition employed by Golubet al.has a complexity ofO(n3); however, it sin-
gles out the null space of the singular matrix, successfully avoiding error enlargement and
thus retaining the discretization accuracy. Their method also allows non-uniform meshes
and hence is applicable to more general singular problems. The method of Bialecki and
Remington is also an eigen-decomposition method, which is a modification of Hochney’s
fast Poisson solver with the singularity singled out for special treatment. Their method
thus retains accuracy of discretization and also achieves a high efficiency ofO(n2 logn).
The Kaczmarz projection method is an iterative method that keeps the solution compo-
nent in the null space of the matrix fixed for each iteration. Thus, it is also a decompo-
sition method which iteratively decomposes the equation into singular and non-singular
problems. The Kaczmarz method was later combined with multigrid procedures [7] to
improve its convergence (efficiency of the multigrid Kaczmarz method was analyzed by
Shapira [20]).

The singular solver proposed in this paper is similar to that of Bialecki and Remington
in utilizing FFT for efficient matrix decomposition but with a reduced programming com-
plexity for singularity treatment. In Bialecki and Remington’s method, the original discrete
singular equation is first perturbed by adding a term to the right hand side of the equation
to ensure the solvability of the perturbed equation. They proved that the solution of the
perturbed equation is a least square solution of the original singular problem. Our method
differs from their method in two places. First, we do not perturb the singular discrete equa-
tion. We project the singular equation into the orthogonal complement of the null space of
the singular matrix. In the orthogonal complement of the null space, the projected equation
is non-singular and always uniquely solvable regardless of the solvability of the original
singular discrete system. The second difference (see Section 3) is that we ignore the pro-
jected equation in the null space and only solve the projected equation in the orthogonal
complement of the null space. We have proven that the solution of the projected equation
in the complement of the null space is a solution of the original singular discrete equa-
tion when the original is solvable, and is a least-squares solution of the original equation
when the original equation is not solvable. Thus, comparing with Bialecki and Reming-
ton’s method, our method does not compute the perturbation to ensure the solvability, and

1 The condition numberK(A) of an invertible matrixA satisfiesK(A) = |λmax/λmin|, whereλmax andλmin denote
the largest eigenvalue in magnitude and smallest eigenvalue in magnitude, respectively.
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also has avoided a process to determine a solution of the projected equation in the null
space.

High-order discretization methods for the Laplace operator have been investigated for a
long time. Collatz studied several finite difference methods for the 2-D Laplace operator in
1960 [10]. One of the fourth-order methods Collatz studied is a square stencil nine-point
scheme which is a popular choice for the Dirichlet problem of Possion equations. In 1975,
Lynch and Rice introduced a systematic procedure called HODIE [16] for calculating the
coefficients of finite difference discretization formulas for general elliptic equations for
almost “any” numerical order. The HODIE procedure was employed by Boisvert in 1981
to discretize the Helmholtz equations [5] and was applied in 1985 to the Neumann problem
of the Helmholtz equation (see [18, pp. 199–200]). Another finite difference method for
obtaining high-order discretization of the Laplace operator is the Pad´e-type high-order
approximation of Singer and Turkel [21]. A different approach to high-order discretization
is the finite element type schemes, among which are Kaufman and Warner’s [14] Rayleigh–
Ritz–Galerkin method with tensor product B-splines and Bialecki and Fairweather’s high-
order orthogonal spline collocation method [2].

In this paper we modify the Collatz’s popular nine-point scheme for Neumann problems
and obtain a fourth order formula which is more general than both the Collatz formula and
Boisvert’s formula given in ([18, pp. 199–200]).

While our discussion of the singular Poisson solver is restricted to Poisson equations,
it is readily extendible to singular Helmholtz equations with either Dirichlet or Neumann
boundary conditions. For a Helmholtz equation arising in the time harmonic wave prop-
agation, when the square of the wavenumber happens to be equal to an eigenvalue of the
Laplace operator in magnitude, the equation becomes singular. With the proposed singular
treatment modified for the non-zero wavenumber cases, singular Helmholtz equations can
be solved efficiently and accurately on rectangular domains with uniform meshes chosen,
or combined with domain decomposition methods [8, 17] to produce fast and accurate
subdomain solvers.

This paper is organized as follows. Fourth order discretizations of the equation and the
Neumann boundary condition are presented in Section 2. A decomposition, projection,
and solution method for the singular discrete equation are discussed in Section 3. Section 4
contains an error analysis and an efficiency comparison with second order methods. Finally,
testing results are presented in Section 5. Section 6 gives the conclusion.

2. DISCRETIZATION

One of the popular high-order discretization schemes for the Laplace operator is the
following Collatz [10] formula written in the stencil form,

h−2

−
1
4 −1 − 1

4

−1 5 −1

− 1
4 −1 − 1

4

pi, j = −


1
8

1
8 1 1

8

1
8

4pi, j + O(h4), (2.1)

where4p = ( ∂2

∂x2 + ∂2

∂y2 )p. This high-order method together with others studied by Collatz
were later generalized by Lynch and Rice to a method called HODIE [16] for general elliptic
equations. For Neumann problems, when scheme (2.1) is applied at boundary grid point



82 ZHUANG AND SUN

(0, j), the right hand side needs the value of4p−1, j , which is outside the domain. So this
method is not applicable to the Neumann problem of Poisson equations. A modification
is hence necessary. In 1987 Boisvert successfully calculated fourth order discretization
coefficients using the HODIE method for the Neumann problem of Helmholtz equations [6].

In this paper, we use a fourth order discretization formula which is more general than
Boisvert’s formula given in ([18, pp. 199–200]). Our discretization formula was first derived
in [22]. For self-containedness, we re-present it here.

The right hand side of (2.1) is equal to

3

2
4pi, j − 1

8

 1
1 −4 1

1

4pi, j .

The second term above is obviously an approximation of(h2/8)42 pi, j with an error of
h2O(h2) = O(h4). So we approximate the second term by(h2/8)42 pi, j and arrive at the
following modified Collatz method:

h−2

−
1
4 −1 − 1

4

−1 5 −1

− 1
4 −1 − 1

4

pi, j = 3

2
4pi, j − h2

8
42 pi, j + O(h4). (2.2)

Applying the above scheme to Eq. (1.1) at grid point(i, j ) on a uniformly spaced grid, we
obtain

h−2

−
1
4 −1 − 1

4

−1 5 −1

− 1
4 −1 − 1

4

pi, j = −3

2
r i, j − h2

8
4r i, j + O(h4). (2.3)

The approximation of4r i, j in the above equation only needs to be second order accurate
for the truncation error to remain fourth order. The main advantage of formula (2.3) is that
it allows people to choose different approximation schemes for4r i, j . This flexibility is
especially useful for Neumann problems since for interior grid points, the five-point finite
difference can be used, while for boundary points other approximation formulae can be
used to avoid using values of4r outside the domain. Formula (2.3) becomes the Collatz
formula (2.1) when the five-point finite difference is used to approximate4r i, j .

We use the following fourth order discretization for the boundary condition,

f i
x +

1

6
h2 f i

xxx =
f i+1− f i−1

2h
+ O(h4), (2.4)

which is a direct application of Taylor expansion up to the fourth derivative terms. Applying
(2.4) to the boundary condition at grid point(0, j ), we have

p1, j − p−1, j

2h
= h2

6
b0, j

xx + b0, j + O(h4). (2.5)

A difficulty exists in approximatingb0, j
xx in the above formula. To approximateb0, j

xx , it
requires values of boundary conditionb in an x-direction neighborhood of the grid point
(0, j ), e.g.,b−1, j andb1, j . A boundary condition is usually given only on the boundary
not over a small neighborhood of boundary. So, on anx-direction boundary,bxx cannot be
directly approximated butbyy can be approximated directly since on the boundary point
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(0, j ) the Poisson equationp0, j
xx + p0, j

yy = r 0, j holds, which is equivalent top0, j
xx = r 0, j −

p0, j
yy . Takingx-directional partial derivatives of both sides, we obtainp0, j

xxx = r 0, j
x − p0, j

xyy,
which is the same asb0, j

xx = r 0, j
x − b0, j

yy by noticing thatp0, j
x = b0, j . Replacingbxx in (2.5)

with the above formula, we obtain

p1, j − p−1, j

2h
= h2

6

(
rx − b0, j

yy

)+ b0, j + O(h4). (2.6)

The approximation ofb0, j
yy in the above equation needs to be only second order for (2.6) to

remain fourth order. Through the above discretization and derivation, the Poisson equation
(1.1) and the boundary conditions (1.2) can be incorporated into the linear system

A P = −3

2
h2r − h4

8
4r + 2hB + O(h5), (2.7)

whereP denotes the solution vector in natural ordering (see [4, p. 62]),r the vector cor-
responding to the right hand side of (1.1), andB the vector resulting from the boundary
condition (2.6), which vanishes at interior points and is given by

B0, j = −3

2
p0, j

x −
h2

24

(
r 0, j−1

x + 4r 0, j
x + r 0, j+1

x

)
,

Bm, j = 3

2
pm, j

x + h2

24

(
r m, j−1

x + 4r m, j
x + r m, j+1

x

)
,

Bi,0 = −3

2
pi,0

y −
h2

24

(
r i−1,0

x + 4r i,0
x + r i+1,0

x

)
,

Bi,n = 3

2
pi,n

y +
h2

24

(
r i−1,n

x + 4r i,n
x + r i+1,n

x

)
,

for 1≤ i ≤ m− 1, 1≤ j ≤ n− 1, and

B0,0 = −1

4

(
5
(

p0,0
x + p0,0

y

)+ p0,1
x + p1,0

y

)− h2 5
(
r 0,0

x + r 0,0
y

)+ r 0,1
x + r 1,0

y

24

+ 5
(

p0,0
x + p0,0

y
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(

p0,1
x + p1,0

y

)+ 9
(
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x + p2,0

y
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(
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y

)
24

,
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4
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5
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y
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y
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y
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y
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y
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.
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The matrixA is an(m+ 1)(n+ 1) by (m+ 1)(n+ 1) matrix given by

A =


A1 −2A2 0 · 0 0 0

−A2 A1 −A2 · 0 0 0

· · · · · · ·
0 0 0 · −A2 A1 −A2

0 0 0 · 0 −2A2 A1

 , (2.8)

whereA1 andA2 are(m+ 1) by (m+ 1) matrices given by

A1 =


5 −2 0 · · · 0 0 0

−1 5 −1 · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · −1 5 −1

0 0 0 · · · 0 −2 5

 , A2 =



1 1
2 0 · · · 0 0 0

1
4 1 1

4 · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · 1

4 1 1
4

0 0 0 · · · 0 1
2 1

 .

Formula (2.7) is not fully discretized. It still contains differential terms such as4r , rx, and
r y. This is the main difference between our discretization formula and existing ones which
are usually fully discretized. But sincer (x, y) are given functions with known values
and approximation of these differential terms4r , rx andr y needs to be onlyO(h2) for
maintaining anO(h5) accuracy for formula (2.7), we can easily find many simple second
order approximations (e.g., 1-D formulae in [15]). We can also obtain Boisvert’s formula2

(see [18, p. 200]) by choosing different second-order discretization formulae for4r , rx,
andr y at different grid points.

3. SINGULAR VALUE DECOMPOSITION AND PROJECTION

After further discretizing the terms4r , rx, andr y on the right-hand side of (2.7), we
obtain a linear system of the form

A P = R (3.1)

in spaceR(m+1)(n+1), whereA is given by (2.8). For notational simplicity, we letN =
(m+ 1)(n+ 1). It is easy to verify that the matrixA is singular and its rank isN − 1. Let
N(A) denote the null space of matrixA andN(A)⊥ the orthogonal complement ofN(A),
namely,

N(A) = {P ∈ RN : A P = 0}, and

N(A)⊥ = {P ∈ RN : Pt Q = 0 for all Q ∈ N(A)},

wherePt denotes the transpose of column vectorP. LetF be anN × (N − 1)matrix whose
(N − 1) column vectors are chosen to form an orthonormal basis of the spaceN(A)⊥.

2 The right hand side of the Boisvert formula as given in Table 1 in ([18, p. 200) seems to have printing errors.
The first row should beIhg+ h−1 Jhun instead ofIhg+ Jhun to be consistent with the equation on p. 199, and
the termsux, uy in the last two rows should be multiplied byh−1. When these corrections are made to Boisvert’s
formula, our discretization formula (2.7) contains the Boisvert’s formula as a special case.
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ThenFtF = I N−1, whereI N−1 denotes the identity matrix in spaceRN−1. Define a matrix
Π = FFt . It is easy to check thatΠ is the projection matrix from spaceRN to N(A)⊥; i.e.,
ΠP ∈ N(A)⊥ for P ∈ RN andΠP = P for P ∈ N(A)⊥.

Now we project Eq. (3.1) ontoN(A)⊥ and obtain the projected equationΠA P = ΠR.
SinceA P ∈ N(A)⊥, we have thatΠA P = A P. Hence the projected equation becomes

A P = ΠR. (3.2)

The solvability of a singular linear system, as stated below, is known [3, 11].

PROPOSITION3.1. A singular linear system of form(3.1) is solvable if and only if its
right hand side is orthogonal to N(A), i.e. R∈ N(A)⊥.

However, the projected equation (3.2), as we shall show below, is always solvable even
when the original singular equation (3.1) has no solution.

THEOREM3.1.

(i) The projected equation(3.2) has a unique solution in N(A)⊥.
(ii) If P ∈ N(A)⊥ is the solution of the projected equation(3.2), then P is a solution of

(3.1) when Eq.(3.1) is solvable; and P is a least-squares solution of(3.1) when Eq.(3.1)
is not solvable, where a least-squares solution P of(3.1) is defined as

(A P − R)t (A P − R) = min
Q∈RN

(AQ− R)t (AQ− R).

Proof.

(i) SinceΠR ∈ N(A)⊥, by Proposition 3.1 the projected equation (3.2) has a solution
P ∈ RN . ButA P = AΠP, so we have thatAΠP = ΠR, which means thatΠP ∈ N(A)⊥

is a solution of (3.2).
To prove the uniqueness of the solution, we letP, Q ∈ N(A)⊥ satisfying Eq. (3.2).

Thus,A(P − Q) = 0, which means that(P − Q) ∈ N(A). But (P − Q) ∈ N(A)⊥ since
both P, Q ∈ N(A)⊥. So(P − Q) = 0, which proves the uniqueness.
(ii) Let P ∈ N(A)⊥ be the solution of (3.2). We first show that if the original singular

equation (3.1) is solvable,P is also a solution of (3.1). By Proposition 3.1, the solvability
of Eq. (3.1) implies thatR ∈ N(A)⊥. HenceΠR= R. ThenA P = R, which shows that
P is a solution of (3.1).

Now we shall show that when Eq. (3.1) has no solution,P is a least-squares solution of
(3.1). Since for allQ ∈ RN , AQ ∈ N(A)⊥, we have that

min
Q∈RN

(AQ− R)t (AQ− R) ≤ min
U∈N(A)⊥

(U − R)t (U − R) = (ΠR− R)t (ΠR− R). (3.3)

SinceP is the solution of (3.2), we have that(ΠR− R)t (ΠR− R) = (A P − R)t (A P −
R), which, together with (3.3), leads to minQ∈RN (AQ− R)t (AQ− R) = (A P − R)t

(A P − R). Q.E.D.

Due to the relation between the solution of the projected equation and the original singular
equation established in the theorem above, our solution algorithm is designed to solve the
projected equation (3.2) regardless of the solvability of the original singular equation. That
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is one of the differences between our algorithm and Bialecki and Remington’s solver, where
the right hand side of the original singular equation is perturbed to guarantee the solvability
of the perturbed equation.

SinceΠ = FFt , the projected equation (3.2) is the same as

AFFt P = FFt R. (3.4)

The column vectors ofF form an orthonormal basis ofN(A)⊥, so for any vectorQ ∈ RN ,
the matrix–vector productFt Q gives the coefficients ofQ with respect to the orthonormal
basisF. Our algorithm starts by multiplyingFt to both sides of (3.4), yielding

(FtAF)(Ft P) = (FtF)Ft R.

SinceFtF = I N−1, the above equation is equivalent to

(FtAF)(Ft P) = Ft R. (3.5)

Then we solve the above equation for the coefficient vectorFt P. Finally, we multiplyF by
Ft P to recover the solutionFFt P = ΠP of the projected equation (3.2).

The decomposition and projection method discussed above works for all singular linear
systems, not just for singular discrete Poisson equations. For general problems, however,
the main difficulty is how to find a matrixF that can efficiently accomplish the projection
and recovery operations. For the singular Poisson problem, utilizing the eigenvectors ofA
we construct matrixF by

F =



1√
2
Im c0,1Im c0,2Im · · · c0,nIm

1√
2
Im c1,1Im c1,2Im · · · c1,nIm

· · · · · · ·
1√
2
Im cn−1,1Im cn−1,2Im · · · cn−1,nIm

1√
2
Im cn,1Im cn,2Im · · · cn,nIm




Cm−1 0 · · · 0 0

0 Im · · · 0 0
· · · · · · ·
0 0 · · · Im 0

0 0 · · · 0 Im

 ,

(3.6)

whereci j =
√

2
n+1 cos( i j π

n ) for i = 0, 1, 2, . . . ,n, j = 1, 2, . . . ,n, Cm−1 = (ci, j ) is an

m× (m− 1) matrix with i = 0, 1, 2, . . . ,m and j = 1, 2, . . . ,m, and Im is the identity
matrix in the spaceRm. With the choice of this matrixF, we can accomplish the two
matrix–vector multiplication operatorsFt R andF(Ft P) efficiently using FFT, and at the
same time tridiagonalize the matrixA into FtAF in Eq. (3.5).

Denote the first matrix on the right hand side of (3.6) byF1 and the second matrix
by F2, namely,F = F1F2. The N × N matrix F1 is the cosine transform matrix Boisvert
used in the FFT solver for the nonsingular Neumann problem of Helmholtz equations
[6]. For the singular Poisson problem,F1 tridiagonalizes (and also block-diagonalizes)
A into Ft

1AF1, resulting inn+ 1 independent subequations with one subequation being
singular. As mentioned in the Introduction, a difference exists between our algorithm and
Bialecki and Remington’s solver in the treatment of the discrete singular subequation . In our
algorithm, further applying theN × (N − 1)matrixF2 to the already tridiagonalized matrix
Ft

1AF1 completes the projection operation so that the projected equation is uniquely solvable
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in N(A)⊥, while in Bialecki and Remington’s solver, after obtainingn+ 1 independent
discrete subequations (one of them singular) by using a cosine transform, to handle the
singular discrete subequation they return to the continuous (nondiscrete) equation which
the singular discrete subequation approximates at collocation points and impose a Dirichlet
boundary condition at one boundary point for the continuous subequation, thus turning it
into a non-singular subequation.

Returning to our algorithm, we summarize below the solution process of our solver.

1. Compute the right hand side of (2.7).
2. Multiply Ft to the right hand side of Eq. (3.1) to obtain (3.5).
3. Compute the entries in matrix FtAF and solve the tridiagonal system (3.5) for

the coefficient vector Ft P.
4. Recover ΠP by multiplying F to the coefficients Ft P.

The operation count of each step of the algorithm on a square domain ofn× n is

1. 5n2+ O(n) floating point operations;
2. 2.5n2 log2 n+ 1.5n2+ O(n log

2
n) operations;

3. 8n2+ O(n) operations;
4. 2.5n2 log2 n+ 2.5n2+ O(n log

2
n) operations.

The total operation count of the algorithm, the sum of the work of the four steps, is

5n2 log
2
n+ 17n2+ O(n log

2
n). (3.7)

Since the second order finite difference approximation of the Laplace operator produces
a matrix with the same eigenvectors as that produced by the fourth order discretization (2.2),
the decomposition and projection-based SVD method discussed above is also applicable to
the discrete system obtained via the second order discretization. A second order solver with
this SVD treatment goes through the same four steps as the fourth order method, and the
operation counts only differ in step 1—the second order solver needs onlyn2 operations in
approximating the right hand side of the discrete matrix equation, resulting a total count of

5n2 log
2
n+ 13n2+ O(n log

2
n), (3.8)

for the second order method.

4. ERROR AND EFFICIENCY

Assuming that the solutionp(x, y) is sufficiently smooth, the truncation error of (2.7)
when all differential operators replaced by their respective discrete versions is

t (i, j ) =
[

h6

144

(
∂6

∂x4∂y2
+ ∂6

∂x2∂y4

)
− h6

240

(
∂6

∂x6
+ ∂6

∂y6

)
+ h6

96

(
∂4

∂y4
+ ∂4

∂x4

)
4
]

pi, j ,

t (0, j ) =
[

h6

144

(
∂6

∂x4∂y2
+ ∂6

∂x2∂y4

)
− h6

240

(
∂6

∂x6
+ ∂6

∂y6

)

+ h6

96

(
∂4

∂y4
+ 11

∂4

∂x4

)
4
]

p0, j − h5

[
1

40

∂5

∂x5
+ 1

6

∂3

∂x3
4+ 1

24

∂5

∂x∂y4

]
p0, j ,
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t (0, 0) = h6

[
1

144

(
∂6

∂x4∂y2
+ ∂6

∂x2∂y4

)
− 1

240

(
∂6

∂x6
+ ∂6

∂y6

)
+ 11

96

(
∂4

∂y4
+ ∂4

∂x4

)
4
]

p0,0

− h5

[
1

240

(
∂

∂x
+ ∂

∂y

)5

+ 1

60

(
∂5

∂x5
+ ∂5

∂y5

)
+ 5

36

(
∂3

∂x3
+ ∂3

∂y3

)
4

+ 11

24

(
∂5

∂x∂y4
+ ∂5

∂x4∂y

)]
p0,0

− h5

(
1

240

∂5

∂x5
+ 1

36

∂3

∂x3
4+ 1

144

∂5

∂x∂y4

)
p0,1

− h5

(
1

240

∂5

∂y5
+ 1

36

∂3

∂y3
4+ 1

144

∂5

∂x4∂y

)
p1,0,

wheret (i, j ) denotes the truncation error at grid point(i, j ).
The solution errore, defined as the difference between the true solution and the computed

solution, satisfiesA e= t . Since the solution of a singular system has total freedom in its
null space, so no error exists with respect to the zero eigenvalue. Thus, the relation between
solution errore and truncation errort satisfiesA⊥e= t , whereA⊥ denotes the projection
of matrixA in spaceN(A)⊥. SinceA⊥ is invertable, we obtain

e= A−1
⊥ t. (4.1)

Matrix A⊥ has eigenvalues

λk,l = 5− 2 cos

(
iπ

m

)
− 2 cos

(
jπ

n

)
− cos

(
iπ

m

)
cos

(
jπ

n

)
(4.2)

for i = 0, 1, . . . ,m, j = 0, 1, . . . ,n with (i, j ) 6= (0, 0).
Matrix A−1

⊥ has the same eigenvectors asA⊥ with corresponding eigenvalues 1/λi j .
Since there are(mn+m+ n) distinct eigenvalues in the(mn+m+ n)-dimensional dis-
crete spaceN(A)⊥, the(mn+m+ n) eigenvectors are mutually orthogonal and thus span
the (mn+m+ n) dimensional space in which we are solving the equation. Therefore
the truncation errort can be expanded in terms of the orthonormal eigenvectorsVi j for
i = 0, 1, . . . ,m and j = 1, . . . ,n as

t =
∑
i, j

ci j Vi j . (4.3)

Since the truncation errort is of O(h5), (4.3) means that
∑

i, j ci j Vi j is of O(h5). And by
(4.1) and (4.3)

‖e‖2 = ‖A−1
⊥ t‖2 =

√√√√∑
i, j

c2
i j

λ2
i j

. (4.4)

Therefore, √√√√∑
i, j

c2
i j

λ2
max

≤ ‖e‖2 ≤
√√√√∑

i, j

c2
i j

λ2
min

. (4.5)



A SINGULAR POISSON EQUATION SOLVER 89

The eigenvalues (4.2) ofA⊥ are positive and satisfy

λi−1, j < λi, j , and λi, j−1 < λi, j .

Sinceλ0,1 andλ1,0 are ofO(h2), λ0,
√

n andλ√m,0 are ofO(h), andλi, j is of O(1) for all
(i, j ) pairs such thati ≥ m

10 or j ≥ n
10, it is clear from (4.5) that the order ofe ranges from

O(h3) to O(h5). The distribution of the truncation error
∑

i, j ci j Vi j depends mainly on
the problem (i.e, solutionp) and discretization methods. For the solution to be ofO(h3),
the truncation errort must concentrate on the near-zero low frequence in the sense that
coefficientsci, j in (4.3) are close to 0 fori , j not near zero. Assuming uniform distribution
for the coefficientsci, j ’s, this solution method is in average case fourth order.

With the error estimation given above, we can proceed to give a comparison of efficiency
for fourth and second order methods in terms of execution time.

Execution time in general is approximately proportional to the number of operations. For a
given error tolerance, a high-order method allows much larger mesh sizes than a lower order
method, resulting in significant reduction in the number of grid points and consequently
execution time if the high-order method has the same computation complexity as that of the
second order method for the same grid size. Such time reduction can be seen clearly from
the discussion below for a fourth order method against a second order method of the same
complexity.

For the sake of brevity, we restrict our discussion on the unit square domain [0, 1]× [0, 1].
With slight modifications, the same analysis can be conducted for general rectangular
domains. We introduce the following notations:E(Mthd) denotes the difference between
the true solution and the numerical solution computed by methodMthd; ε > 0 is the error
tolerance, i.e., the difference between the computed numerical solution and the true solution
must be less than or equal toε. With these notations, the error of our fourth order method can
be denoted byE(order4), and the error of the second order Poisson solver will beE(order2).
The solution error of the fourth order direct method in general satisfies

E(order4) = a · h4 for some problem-dependent coefficienta.

The error of a second order solution method in general satisfies

E(order2) = b · h2 for some problem-dependent coefficientb.

To meet the error tolerance, the fourth and second order methods need to take different
mesh sizes and partition sizes, say partition sizeN and mesh sizeh for the fourth order
solver, and partition sizeN ′ and mesh sizeh′ for the second order method. Then

a · h4 ≤ ε and b · h′2 ≤ ε.

Roughly we can equate them to yield

a · h4 = b · h′2. (4.6)

Sinceh = 1/N andh′ = 1/N ′, (4.6) is equivalent to

N ′ =
√

b

a
N2 = C N2, (4.7)
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where

C =
√

b

a
. (4.8)

Thus, if our fourth order solver can satisfy the error tolerance by taking a partition of size
N, then it requires the second order solver to take a partition size ofC N2 to achieve the
same accuracy. LetT4 andT2 denote the time needed by the order 4 and order 2 methods
respectively to solve a problem within a given error tolerance. Then (3.8), (3.7), and (4.7)
imply that

T2 : T4 =
C2N2(5 log

2
C N2+ 13)

(5 log
2

N + 17)
. (4.9)

The parameterC in general could vary largely from problem to problem. For Poisson
equations which have only twice differentiable solutions, the fourth order method has only
second order accuracy, and probably has no gain in reducing execution time for a given
error tolerance. But for problems with at least three times differentiable solutions, the fourth
order can take advantage of the smoothness of the solution and reduce the computation cost
for a given error tolerance.

5. EXPERIMENT RESULTS

To test the accuracy and efficiency of the high-order fast singular Poisson solver (HFSPS),
we choose four testing problems with solutions of different orders of differentiability; they
are:

1. p(x, y) = (xy)3.5[1− cos(xy)], which is five times differentiable;
2. p(x, y) = x4.5+ y4.5, which is four times differentiable;
3. p(x, y) = (x + y)2.5 sin(x), which is three times differentiable;
4. p(x, y) = (x + y)2.5, which is twice differentiable;

The testing problem domain is chosen to be the unit square [0, 1]× [0, 1], and uniform
mesh sizeh = 1/N is chosen on each dimension, whereN is the number of grid points
on eachx- andy-dimension. We tested the HFSPS on an IBM RS/6000 machine running
operating system AIX 3.2.5, and the test results are listed in Tables I to V. For the comparison
of accuracy, on the same machine we also tested a second-order method (FSPS) with the
same decomposition and projection-based SVD method described in Section 3 and the
traditional five-point second order discretization. The test data of FSPS are also listed in
the tables.

Tables I to IV present the time-accurate comparison between the HFSPS solver and
the second order FSPS solver for the four test problems. Measured experimental results
show that the HFSPS method is much more accurate and achieves high accuracy without
increasing execution time as compared with the second order solver. In the tables, we use
a metric Order [23, 26] to indicate the numerical order of a solver, which is calculated as
follows:

Order(n, 2n) = log2
Error(n)

Error(2n)
.
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TABLE I

Problem 1: pxx + pyy = (xy)3.5[1− cos (xy)], Five Times Differentiable

Method n 16 32 64 128 256 512 1024

Error 1.54–04 1.00–05 6.36–07 3.99–08 2.50–09 1.56–10 9.65–12
HFSPS Order 3.9 4.0 4.0 4.0 4.0 4.0

Time 0.01 s 0.02 s 0.11 s 0.45 s 1.74 s 7.23 s 30.2 s

Error 6.07–03 1.51–03 3.76–04 9.41–05 2.35–05 5.88–06 1.47–06
FSPS Order 2.0 2.0 2.0 2.0 2.0 2.0

Time 0.01 s 0.02 s 0.11 s 0.40 s 1.76 s 7.23 s 30.5 s

TABLE II

Problem 2: p (x, y) = x4.5 + y4.5, Four Times Differentiable

Method n 16 32 64 128 256 512 1024

Error 2.39–04 2.13–05 1.89–06 1.68–07 1.49–08 1.32–09 1.23-10
HFSPS Order 3.5 3.5 3.5 3.5 3.5 3.4

Time 0.01 s 0.03 s 0.10 s 0.44 s 1.84 s 7.43 s 31.1 s

Error 1.15–02 2.89–03 7.21–04 1.80–04 4.51–05 1.l3–05 2.82–06
FSPS Order 2.0 2.0 2.0 2.0 2.0 2.0

Time 0.01 s 0.02 s 0.11 s 0.43 s 1.75 s 7.15 s 31.5 s

TABLE III

Problem 3: p(x, y) = (x + y)2.5 sin (x), Three Times Differentiable

Method n 16 32 64 128 256 512 1024

Error 8.12–05 7.30–06 6.96–07 6.81–08 6.78–09 6.68–10 7.30–11
HFSPS Order 3.5 3.4 3.4 3.3 3.3 3.2

Time 0.01 s 0.02 s 0.11 s 0.43 s 1.76 s 7.25 s 31.0 s

Error 3.94–03 9.78–04 2.45–04 6.12–05 1.53–05 3.83–06 9.57–07
FSPS Order 2.0 2.0 2.0 2.0 2.0 2.0

Time 0.01 s 0.03 s 0.11 s 0.50 s 1.80 s 7.19 s 31.0 s

TABLE IV

Problem 4: p(x, y) = (x + y)2.5, Twice Differentiable

Method n 16 32 64 128 256 512 1024

Error 1.00–03 2.03–04 4.04–05 7.94–06 1.55–06 2.98–07 5.72–08
HFSPS order 2.3 2.3 2.3 2.4 2.4 2.4

Time 0.01 s 0.02 s 0.11 s 0.43 s 1.80 s 7.28 s 30.9 s

Error 6.23–03 1.54–03 3.79–04 9.36–05 2.31–05 5.72–06 1.42–06
FSPS order 2.0 2.0 2.0 2.0 2.0 2.0

Time 0.01 s 0.03 s 0.11 s 0.43 s 1.78 s 7.30 s 30.6 s
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TABLE V

Computation Time of the Two Methods for the Same Accuracy

Problem Method n Error Time (sec.) Time ratio

1 HFSPS 16 1.54–04 0.01
FSPS 64 3.76–04 0.11 11

1 HFSPS 32 1.00–05 0.02
FSPS 256 2.35–05 1.76 88

2 HFSPS 32 2.13–05 0.03
FSPS 256 4.51–05 1.75 58

2 HFSPS 64 1.89–06 0.10
FSPS 1024 2.82–06 31.5 315

3 HFSPS 16 8.12–05 0.01
FSPS 128 2.05–04 0.45 45

3 HFSPS 64 6.96–07 0.11
FSPS 1024 9.57–07 30.1 273

4 HFSPS 32 2.03–04 0.02
FSPS 64 3.79–04 0.11 5

4 HFSPS 256 1.55–06 1.80
FSPS 1024 1.42–06 30.6 17

The definition of this metric is based on the observation that for a numerical method of
orders, the error will decrease at a rate of

(
1
2

)s
when a uniformly spaced grid doubles its

grid points. The log plot of error against grid size (or mesh size) is usually used to measure
the order of a numerical method. The metricOrder used here gives the value of the slope
of the log plot of the error vs grid size between each two neighboring testing grid sizes.
Since the slope of a curve is difficult to exactly visually determine, the metricOrder is
a clearer quantitative indication of the order of a numerical method. The error analysis
given in Section 4 shows that the HFSPS method is fourth order in the average case if the
true solution is five times differentiable, and the order of our numerical method decreases
as the differentiability of the solution falls below the order of 5. This is matched by the
experimental results shown.

Table V compares the measured execution times of the two tested solvers. The four test
problems are solved by the high-order HFSPS method. Then the same problems are solved
with the second order method to match the achieved accuracy with an increased number of
grid points and execution time. The execution times of the HFSPS and the FSPS algorithms
are listed side-by-side in Table V for each of the testing problems. Table V shows that
the high-order method is 5 to 300 times faster depending upon problem and grid size, as
indicated by the column of time ratios for the two solvers. Notice that the performance gain
increases when the problem size increases.

6. CONCLUSION

We present a fourth order fast solver for the singular Neumann boundary problem of
Poisson equations on a rectangular domain. A modified Collatz finite difference scheme
is used to discretize the Laplace operator. This discretization produces a singular discrete
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equation which is projected into the orthogonal complement of the null space of the singular
matrix and solved in the complement of the null space. It is proven that the solution of the
projected equation is a solution of the original singular discrete equation when the original
equation is solvable. The projection of the singular equation into the complement of the
null space utilizes the fast Fourier transform whose application to Poisson equations was
pioneered by Hockney. As both analytical and testing results show, our proposed SVD
keeps the accuracy obtained from the high-order discretization while maintaining high
efficiency.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foundation (NSF) under NSF Grant CCR-9972251
and by the Office of Naval Research (ONR) under the PET program. We also thank the anonymous referees for
their comments and suggestions.

REFERENCES

1. H. M. Atassi, Unsteady aerodynamics of vortical flows: Early and recent developments, inAerodynamics and
Aeroacoustics,edited by K. Y. Fung (World Scientific, Singapore 1994), pp. 119–169.

2. B. Bialecki and G. Fairweather, Matrix decomposition algorithms in orthogonal spline collocation for separable
elliptic boundary value problems,SIAM J. Sci. Comput.16, 330 (1995).

3. B. Bialecki and K. A. Remington, Fourier matrix decomposition methods for the least squares solution of
singular Neumann and periodic Hermite bicubic collocation problems,SIAM J. Sci. Comput.16, 431 (1995).

4. G. Birkhoff and R. Lynch,Numerical Solution of Elliptic Problems(SIAM, Philadelphia, 1984).

5. R. F. Boisvert, Families of high order accurate discretizations of some elliptic problems,SIAM J. Sci. Stat.
Comput.2, 268 (1981).

6. R. F. Boisvert, A fourth-order-accurate Fourier method for the Helmholtz equation in three dimensions,ACM
Trans. Math. Software13, 221 (1987).

7. A. Brandt and S. Ta’asan, Multigrid methods for nearly singular and slightly indefinite problems, inLecture
Notes in Mathematics 1228: Multigrid Methods II, edited by W. Hackbusch and U. Trottenberg (Springer-
Verlag, Berlin/New York, 1985) pp. 100–122.

8. X. Cai, M. A. Cassarin, F. W. Elliott, and J. O. B. Widlund, Overlapping Schwarz algorithms for solving
Helmholtz equations,Contemp. Math.218, 437 (1998).

9. A. J. Chorin, Numerical solution of the Navier–Stokes equations,Math. Comput. 22, 745 (1968).

10. L. Collatz,The Numerical Treatment of Differential Equation,(Springer-Verlag, New York, 1960).

11. G. H. Golub, L. C. Huang, H. Simon, and W. Tang,A Fast Solver for Incompressible Navier–Stokes Equations
with Finite Difference Methods.Stanford University SCCM Technical Report, Stanford University Scientific
Computing and Computational Mathematics Program (1994).

12. I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propogation ,J. Comput.
Phys.119, 252 (1995).

13. R. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis,J. ACM12, 95 (1965).

14. L. Kaufman and D. Warner,A program for solving separable elliptic equations, ACM Trans Math. Software
16, 325 (1990).

15. S. Lele, Compact finite difference schemes with spectral-like resolution,J. Comput. Phys.103, 16 (1992).

16. R. E. Lynch and J. R. Rice, High accuracy finite difference approximation to solutions of elliptic partial
differential equations,Proc. Nat. Acad. Sci.75, 2541 (1978).

17. L. C. McInnes, R. Susan-Resiga, D. E. Keyes, and H. M. Atassi, Additive schwarz methods with nonreflecting
boundary conditions for the parallel computation of Helmholtz problems,Contemp. Math.218, 349 (1998).

18. J. R. Rice and R. F. Boisvert,Solving Elliptic Problems Using ELLPACK(Springer-Verlag, New York, 1985).



94 ZHUANG AND SUN

19. U. Schumann and R. Sweet, A direct method for the solution of Poisson equation with Neumann boundary
conditions on a staggered grid of arbitrary sizes,J. Comput. Phys.20, 171 (1976).

20. Y. Shapira, Multigrid methods for 3-D definite and indefinite problems,Appl. Numer. Math.26, 165 (1998).

21. I. Singer and E. Turkel, High order finite differnce methods for the Helmholtz equation,Comput. Meth. Appl.
Mech. Eng.163, 533 (1998).

22. X.-H. Sun and Y. Zhuang,A high-order direct solver for Helmholtz equations with Neumann boundary
conditions.NASA ICASE Technical Report No. 97-11, NASA Langley Research Center Hampton, VA 23681-
0001 (1997).

23. X.-H. Sun and Y. Zhuang, A highly accurate fast solver for helmholtz equations, inProc. ACM International
Conference on Supercomputing(July 1997).

24. K. Tanabe, Projection methods for solving a singular system of linear,Numer. Math.17, 203 (1971).

25. R. Temem,Navier–Stokes Equations, Theory and Numerical Analysis(Elsevier, New York, 1984).

26. Y. Zhuang and X.-H. Sun, A high-order ADI solver for separable generalized Helmholtz equations,Advances
in Engineering Software31, 585 (2000).


	1. INTRODUCTION
	2. DISCRETIZATION
	3. SINGULAR VALUE DECOMPOSITION AND PROJECTION
	4. ERROR AND EFFICIENCY
	5. EXPERIMENT RESULTS
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

