
To Derive or Not to Derive: I/O Libraries Take
Charge of Derived Quantities Computation

Ana Gainaru, Norbert Podhorszki, Liz Dulac, Qian Gong, Scott Klasky
Oak Ridge National Laboratory

gainarua@ornl.gov

Greg Eisenhauer
Georgia Institute of Technology

Antonios Kougkas, Xian-He Sun
Illinois Institute of Technology

Jay Lofstead
Sandia National Laboratory

Abstract—The ever-increasing volume of data produced by
HPC simulations necessitates scalable methods for data explo-
ration and knowledge extraction. Scientific data analysis often in-
volves complex queries across distributed datasets, requiring ma-
nipulation of multiple primary variables and generating derived
data that needs to be handled efficiently, creating challenges for
applications that need to parse many large datasets. Relying on
individual applications to handle all intermediate data generally
leads to redundant computations across studies and unnecessary
data transfers. In this paper, we investigate the performance of
different approaches where applications define derived variables
as quantities of interest (QoIs) and offload the computation and
transfer of these QoIs to the I/O library. This significantly reduces
redundancy and optimizes data movement across the distributed
storage and processing infrastructure by allowing control over
when and where derived variables are computed. We present a
detailed analysis of the performance-storage trade-offs associated
with different solutions and showcase results for our study on
two large-scale datasets created from climate and combustion
simulations.

Index Terms—Large-scale I/O, Derived Variables, HPC Anal-
ysis, Queries for Scientific Data, HPC Quantities of Interest

I. INTRODUCTION

HPC simulations are rapidly outpacing our ability to store
and analyze the deluge of data they produce. Scientific codes,
like S3D [16] (high-fidelity simulation of turbulent combus-
tion) or XGC [26] (global gyrokinetic particle-in-cell code),
are currently generating several TB of data for each simulation
step. In order to find insights in such large datasets, scientific
workflows often require complex queries to be executed across
these distributed datasets, involving manipulation of multiple
primary variables. For example, domain scientists working
with satellite images might require visualizing portions of data
identified by new variables that capture change events and
trends from the data and that are not directly stored by the
application (e.g. query on the slope of a linear regression of
a vector when only the vector data is generated and saved).
This is an example of derived data, that is, data or quantities
of interest that are not specifically the result of the principal
calculation of the application, but which can be computed
or extrapolated (derived) from that primary result. For the
purposes of this paper derived data is interesting in that it can
conceivably be generated anytime the primary data is available,
from the point at which the primary data is written to the point

(a) Write side solution

(b) Read side solution

Fig. 1: Current solution of computing derived quantities of
interest on the writer (storing primary data and QoIs) and
reader side (storing primary data and computing QoIs).

at which derived data might be queried or consumed. While
this conceptual flexibility is valuable, taking full advantage
of it presents significant challenges, particularly when dealing
with large and numerous datasets.

Current HPC I/O solutions leverage metadata to facilitate
efficient querying of scientific data and only transferring data
of interest to a given study. However, I/O libraries can only
rely on primary data for which metadata is being stored and
cannot be used for derived data. Current methods for handling
derived data are implemented at the application level either on
the writer or reader side (Figure 1). In writer side solutions,
users generate and store all required derived data, allowing
the I/O libraries to generate metadata and thus allowing the
reader to query this data directly. However, these solutions
are leading to significant storage overheads. Conversely, the
reader side solutions involves reading all or most primary data
and generating derived data on-the-fly during analysis, like the
approach implemented in Paraview [3] for visualizing derived
data. Since it is usually difficult to translate from the query
requirements of a derived variable to requirements on primary
data, these solutions typically result in excessive data transfer.

This paper argues for the data management layer to include
logic for computing derived variables and for allowing appli-
cations to offload this task. We investigate the advantages and
limitations of different strategies for where the computation
to take place and for how the I/O layer can use this logic
to speed-up queries. The contributions of the paper are the



following:
• A novel offloading approach where the I/O library stores

statistics about derived variables that can be used at query
time to optimize the amount of data being transferred. This
approach provides a middle ground between the two exist-
ing methods and aims to significantly reduce redundancy
in data generation and optimize data movement.

• A study of the trade-offs between different solutions. For
this purpose, we design a performance model for offloading
derived variables and we offer a detailed performance
analysis.

• Finally, we showcase the effectiveness of our approach
through studies on two large-scale datasets generated by
the S3D combustion simulation and the E3SM climate
simulation [4].

II. RELATED WORK

In scientific analysis, derived variables play a crucial role
in unlocking deeper insights from complex simulation data.
These derived quantities, obtained by mathematical trans-
formations of primary data, allow researchers to focus on
specific aspects of the simulation. For instance, in combustion
simulations, calculating the magnitude of the velocity creates
a derived variable that effectively identifies areas of high
interest, such as regions with intense burning [16]. Similarly,
satellite data often captures time series of environmental
parameters. By applying a linear regression to an entire year’s
peak greenness data, scientists can derive a slope variable. This
slope, not present in the raw data, reveals crucial trends in
vegetation health over time, helping identify areas of potential
environmental change [15], [17]. In climate simulations [4],
[24], calculating the curl of wind velocity data, researchers
can create a new variable representing atmospheric rotation, a
crucial factor in understanding global weather patterns. These
examples showcase how derived variables act as powerful tools
for scientific visualization and analysis, guiding researchers
towards a more nuanced understanding of the phenomena
under study.

The current practice of utilizing derived variables for insight
discovery includes writer side solutions where workflows
include analysis codes running with applications computing
and storing the required derived data (e.g. [8], [14]) or on
the reader side typically by using visualization technology
capable of computing derived variables on the fly (e.g. using
Paraview [21]). We analyze the performance of these two types
of solutions and expose their limitations and advantages in
different situations.

Current I/O libraries for HPC are optimized for large
scientific simulations providing applications with the flexibility
to customize the data structures and support data manage-
ment, metadata management, and data sharing policies across
thousands of processes. Offloading the I/O to a specialized
software has the advantage of applying I/O optimizations
automatically and allowing the application to utilize features
of each system it is running on. This is a common practice for
HPC applications that frequently offload their data access to

Fig. 2: Extended I/O libraries with strategies for dealing with
derived variables can be used by applications to offload their
handling and computation.

I/O libraries such as HDF5 [25], ADIOS [13], PnetCDF [20],
and MPI-IO [5]. These libraries support a rich variety of
data structures and optimizations for high throughput by
tuning the parameters across multiple I/O layers. In [6], the
authors integrate the ADIOS2 I/O library with Hermes [18],
an hierarchical buffering, which enables data placement and
prefetching across the spectrum of I/O devices. They compute
basic derived quantities required by I/O applications and
showed the performance implications of using the memory
hierarchy to buffer data and metadata on the I/O hierarchy or
in metadata databases, like Empress [19]. However, as far as
we know, no general purpose HPC I/O libraries specifically
deal with derived data as a separate conceptual class of data,
at least not beyond allowing its inclusion as an undifferentiated
addition to the primary data. The MDSplus [22], a data
acquisition and management software package specifically for
the fusion community, is the only library that provides basic
mathematical expressions to its applications. Very similar to
Paraview, the library does not save data or statistic information
and it is used as a read time solution. In this paper we
will show advantages of treating derived data as conceptually
different than primary data. We use I/O libraries to provide
an implementation for three strategies that deal with derived
variables and seek to understand the performance trade-offs
between different strategies.

III. APPROACH

Our methodology is described in Figure 2. We extended
an I/O library to include strategies for dealing with derived
variables, allowing applications to use simple APIs to offload
the task of handling derived data. A simple example is
presented in the upper right side of the figure, where the
application is defining a derived variable for Curl over velocity
data. During the simulation, the application computes new
values for velocity in every loop and gives this data to the
I/O library. With our method, the I/O library decides when to
compute and how to store the curl data.

I/O libraries designed for HPC (e.g. ADIOS2, HDF5) divide
data into blocks to be able to efficiently handle them. For this,



Fig. 3: Stages of three strategies of writing (top bars) and
reading (bottom bars) primary and derived variables.

the libraries save metadata together with data to indicate where
these blocks are saved in storage. Most libraries, compute and
store basic statistics about blocks (like min and max values
for the entire block) together with the data. This is useful
when reading the data if applications are interested in values
with certain properties (e.g. values over a threshold will be
stored only in blocks with min values above the threshold).
Since analysis codes are relaying more on complex queries
that involve math expressions over derived variables, we argue
in this paper that it is becoming important to have access to
block-based statistics for these derived variables. For example,
if an analysis detects cyclones in atmospheric data, it will focus
on areas of high atmospheric rotation. Primary data includes
velocity but not rotation. The analysis would have to compute
the curl of wind velocity data in order to detect the area of
interest. If the I/O layer would be aware of this quantity of
interest (for e.g. through APIs like the CreateDerived
method in Figure 2), it could save statistics or data for the
curl and, thus the analysis would only transfer the blocks of
interest. For this, applications need to offload their derived data
handling to an I/O library. We implemented such an abstraction
and used it with several derived variables.

Through this abstraction applications can: i) define derived
variables on the writer side as mathematical expressions on
primary data (specifying that these variables are quantities
of interest for the analysis); ii) query data based on values
for derived variables on the reader side. We investigate the
performance of three strategies that I/O library can take by
using the information provided by applications (illustrated in
Figure 3):
• Writer side strategy (named Store): The derived variables

are computed during the write operation and both statistics
and data for derived variables are stored on storage. This
strategy is the equivalent of write side solutions from
literature where the application treats the derived data as
primary data. Storage will increase based on how much
data the derived function generates and the write operation
performance will encounter a hit. However, the reader will
be able to query the derived data and transfer only the
areas of interest.

• Reader side strategy (named Expression): Only the math
expression is being saved during the write operation and

TABLE I: Notations used in the performance model

Notation Description
TW Total write time
TR Total read time

TC{op} Total time for computing operation op
TW{data} Total time for writing data
TR{data} Total time for reading data
Tmeta Time to compute/update metadata
Tfilter Time to filter irrelevant data for a query
Bop Bandwidth for operation op

Oexp(f) Number of ops in computing exp(f)
Dexp(f) Amount of data accessed for exp(f)

Qi Percentage of data that query i will read
S Size of a variable
D Storage footprint

nV ar Number of variables required by the derived Op

the derived variables are computed during the read opera-
tion. This strategy is the equivalent of read side solutions,
like the one implemented in Paraview. There is no overhead
in storage and the writer performance is unaffected. The
read operation however needs to read all the primary data
necessary for computing the derived variables for every
query that requires derived data.

• Statistics based strategy (named Stats): We propose a new
strategy where the derived variables are computed during
the write operation and only metadata is stored (statistics
about blocks of data). This information will allow readers
to transfer only the data relevant to a query, but not have
access to derived data directly. If the derived data is needed,
the read operation will include the time to read the primary
data and compute the derived variables but only for the
amount of relevant data.

In this section, we design a performance model to under-
stand the implications that different system characteristics and
application requirements have on the performance of these
three strategies. We look at the trade-offs between reader and
writer performance for each scenario and at the total time to
write and read between the three strategies.

This section includes three parts: 1) write side model; 2)
query model when including derived variables; and 3) storage
model. We start by defining the items involved in the model.
Primary variables represent N dimensional data structures
that are being generated and stored by scientific simulations.
Derived variables are represented by a math expression applied
on primary data (e.g. magnitude is a derived variable over
a vector (xi, yi, zi) given by equation

√
x2
i + y2i + z2i where

x, y, z are primary variables).
We denote with Vi(Si) a list of variables, where variable

i has size Si. Our observations showed that the shape of
the variables does not change the performance of our im-
plementations, so the model only considers the total size
(Si = d0∗d1∗...∗dnumDim) where di is the size for dimension
i. Experiments are done with 3D arrays since this structure is
the most used by applications but we measured 2D and 4D
and the performance characteristics are similar. Table I shows
the notations used throughout this paper when defining our
model.



A. Write performance model

Writing a variable Vi includes at most four main stages (top
bars for each strategy in Figure 3):

1) computing the values of derived variable
2) computing statistics for variables
3) updating the metadata structure to include information

about each written variable and statistic
4) move the data, stats and metadata to consumers (either by

writing it to storage or streaming it directly to consumer
applications)

In this section we will define and model the performance
of each stage. The following equation covers all the costs
enumerated above for one variable:

(1)
TW = TC{derOp} + TC{stats} + Tmeta

+ TW{data} + TW{stats} + TW{meta}

a) Computing the values of the variable: Derived vari-
ables are not directly provided by user applications so they
need to be computed on the fly based on the the values of other
variables. The cost to compute is usually given by roofline
models (like the ones in [11]) that take into consideration
the complexity of the derived expression, the FLOPS of the
architecture used to compute the operations and the memory
bandwidth. The first term of Eq. 1) includes this cost for
computing derived variables (TC{derOp}. For example, the
addition derived expression requires nV ar ∗ S ops where
nV ar is the number of variables being added and S the
total size of the variable (for addition all variables have the
same size Si=0:nV ar = S). The speed of the computation is
dependent on the memory bandwidth (e.g. between host and
device Bmem{GPU}) to load the data needed by the derived
expression and the peak FLOPS of the architecture.

TC{exp} = min(
Dexp(nV ar, S)

Bmem{arch}
,
Oexp(nV ar, S)

FLOPS{arch}
)

The time to compute the derived variable is given either by
the time it takes to load the operands or the time to compute the
operation. The first term divides the amount of data required
by an operation (e.g. Dexp(nV ar, S) = nV ar ∗ S + S for
loading nV ar ∗ S and storing S for the add expression) by
the memory bandwidth of the platform. The second term is the
ratio between the complexity of the operation which defines
the amount of operations required to compute the variable over
the FLOPS of the platform. For primary variables this cost is
0 (TC{derOp} = 0).

b) Computing statistics:: Statistics need to be computed
for variables in order to be able to query parts of data without
having to read the entire dataset. For example, having min/max
for blocks of data, allows readers to only bring blocks that
guarantee to have values over (or below) a given threshold,
thus reducing the data that needs to be transferred to a
consumer (either from storage or from a producer). The same
as for computing the derived variables, computing the statistics

depends the number of operations required to compute the
statistics and on the bandwidth of the computation unit. The
number of operations required to compute the statistics of one
variable depends on how many statistics are computed (for
example, the stats computed by ADIOS2 are min and max for
the data on each rank) and on the size of the variable. For
example, the number of operations required to compute stats
for ADIOS2 would be 2 ∗ log(S) where S is the size of the
variable since reductions require log(S) operations.

TC{stats} = min(
S

Bmem{arch}
,

log(S)

FLOPS{arch}
)

We use a simple roofline model to profile the computational
performance of different stages since we want to understand
the most important factors affecting the performance trade-
off between the three strategies and not to predict the exact
performance of each strategy. In the future we plan to extend
our analysis to more complex performance models, like the
ones in CARM [7], MaRM [23].

c) Updating the metadata:: Most modern I/O libraries
require to compute and store metadata to be able to locate
data and stats related to data during reading. The cost to update
the metadata is usually fixed per variable, or per statistic so it
only depends on the number of variables and amount of stats
computed for each variable. We measured this time and it is
negligible compared to the other term, so for the rest of the
paper we consider this cost 0.

d) Moving the data:: Writing to storage or streaming
the data directly to consumers requires moving data, stats and
metadata. The time for writing depends on the amount of data
that needs to be transferred, the transferring bandwidth/latency
and the strategy used by the I/O library. The first three terms
of Eq. 1 typically do not require for ranks to synchronize or
exchange any information. Computing the derived variables,
statistics and updating the metadata are typically done per
rank since synchronization would incur prohibitive costs. Data
transfers usually required to aggregate the metadata, stats
and/or data to a number of designated writers depending on
the strategy each I/O library implements. This costs can be
significant so it needs to be included in the model.

TW{d} =
Sd

Bwrite
+ Tadditional

The cost includes an additional overhead for preparing the
data to be transferred Tadditional that is depended on the I/O
algorithm. The data, metadata and stats have different sizes
(Section III-B). In addition, each might have different I/O
algorithms and thus will have different costs. We model the
ADIOS2 library since our implementations rely on the writing
algorithms in ADIOS2. For data, each rank is separately writ-
ing their local data (Bwrite = min(peakBIO, peakBnetwork)
and there is no overhead (Tadditional = 0). For stats and
metadata, the information is aggregated on rank 0 and then
transferred to storage. The aggregation step is using MPI
Gather with a delay of Tadditional = log(ranks). Since the



amount of stats and metadata data is usually small (MBs), the
transferred time is usually limited by latency.

e) Performance model: We use Eq. 1 to model all
variables, both derived and normal. The following table sum-
marizes the different way the equation is used by each case.

For primary variables: TC{derOp} = 0
For derived variables:

• Expression strategy: Nothing needs to be com-
puted or written except metadata: TW = Tmeta +
TW{meta}

• Stats strategy: The data for the derived variable is
not written: TW{data} = 0

• Store strategy: All terms of the equation will be used.

B. Storage model

The storage size for a primary variable is given by the
aggregated local size for each rank for each variable with its
corresponding stats, in addition to the size of the metadata. The
total storage footprint Di of primary variable i is represented
by:

(2)Di = (SstatsVi
+ SdataVi

+ SmetaVi
) ∗ numRanks

For derived variables, if only the expression is saved, only
the metadata needs to be updated to include the quantity of
interest information. The size of the metadata holding the
expression is small (in the range of a few bytes) but it increases
linearly with the number of ranks (Di = k1 ∗ ranks for this
case).

If a derived variable requires saving stats but not data,
SdataVi

= 0 in Eq. 2. Typically the statistics size does not
increase linearly with the size of the variables used to compute
the derived value. The data is usually divided in equal number
of blocks and stats are computed per block (for example, the
default behavior in ADIOS2 is to use one block per rank and
thus compute min and max values for all the data in one
rank). This means that the size of the storage space taken
by derived variables in this scenario has a complexity of
O(blocks). The metadata size increases for this variable since
it needs to hold information about the block stats. For ADIOS2
Di = k2 ∗ranks, with k1 < k2 are constants and we estimate
them based on metadata file sizes of several runs.

If both data and metadata are saved for a derived variable,
all terms in Eq. 2 are greater than zero and the metadata size
needs to include information about where data blocks are being
stored. Typically the size of the derived data increases with the
size of the variables used to compute the derived value (for
example, for adding existing variables, the derived variable
ADD can be used and will have the same size as the input
variables). We will look at different derived variables in the
following sections.

C. Read performance model

The consumer application typically has a list of queries with
each query reading Qi percentage of the data (i.e. Si∗Qi total
size per rank for variable Vi). If all data needs to be read, the

request is equivalent in our model for a query with Qi = 1.
Querying a variable Vi includes the following stages:

1) Read the metadata and stats of the variable
2) Read the data that fits the query
3) Compute the derived variable (if there is no data stored

for the variable)
4) Filter out values that do not fit the variable.
In a similar way to the write performance model, we define

and model the performance of each stage in the querying pro-
cess. The following equation covers all the costs enumerated
above for variable Vi:

TR = TR{meta} + TR{stats} +

nV ari∑
k=0

TR{data}(Sk ∗Qi)

+ TC{derOp} + Tfilter

(3)

a) Read the metadata, stats and data: All read times
follow the same logic as the write equation, by taking into
consideration the amount of data to be read, the read band-
width of the system and properties of the reading algorithm
used by the I/O library. Same as for the write cost, the read
cost includes the additional cost Tadditional given by the I/O
algorithm used for dealing with the data.

TR{b} =
Sb

Bread
+ Tadditional

Metadata needs to be read to be able to access stats and
data. Typically, one rank reads the entire metadata then scatter
to the other ranks. The stats and data are read only for the
chunks of data belonging to the local rank. Once stats have
been read, they can be used to identify the blocks of data that
fit the query requirements. If the derived variable is storing
data in addition to the stats and expression, from the read
perspective it becomes a primary variable. In this case, reading
the data includes fetching from storage only the blocks of data
identified by the stats for the given variable.

For derived variables that only contain the expression, the
primary data needed for computing the derived variable are
identified based on the expression. Data for all variable block
need to be read (Qi = 1). Is stats are also available, the block
of data needed to compute the derived variables are identified
and data is being fetched only for those blocks, for all the
variables needed to compute the derived variable (Qi < 1).

b) Compute the derived variable: If data is not available,
the derived variables need to be computed once all the needed
primary variables are read. Similar to the write side, the cost
for computing the derived variable depends on the number of
variables required by the expression (nV ar) the number of
blocks returned by a query and the derived expression as well
as on characteristics of the computational unit used to compute
the derived values (FLOPS and Bmem{arch}). Similar to
reading the data, if only the expression is stored for a derived
variable, the values for the entire dataset needs to be computed
(Qi = 1).



c) Filter the data: If stats are stored for a given variable,
there is no need for filtering since only the blocks that fit the
query would be fetched from storage. If only the expression
is provided for a derived variable, after computing the values,
the query engine will identify the blocks that fit the query and
will filter everything else. Typically, this step can be merged
with the computation of the derived values, in which case the
filtering cost is completely negligible. For the rest of the paper
we consider Tfilter = 0.

d) Performance model: We will use Eq. 3 to model
all variables, both derived and primaryThe following table
summarizes the different way the equation is used by each
case.

For primary variables, the stats and data are saved to
storage, so the cost required by the query consists of: 1)
reading the metadata and stats to decide which blocks to
read and 2) reading only the block that fits the query. In
Eq. 2:

• nV ari = 1 and TC{derOp} = 0

Derived variables that have data stored are identical to
normal variables. For the other derived variables, all terms
of the equation will be used and variables required to
compute the derived values will need to be read.

• Stats strategy: use stats to chose blocks (Qi < 1)
• Expression strategy: need to read all data (Qi = 1)

D. Main factors influencing the performance

We measured the performance of each step of our imple-
mentation on the Frontier and Perlmutter systems.Frontier [1]
is an HPC system at OLCF consisting of over 9,408 compute
nodes, each with an AMD EPYC ”Trento” CPUs (56 usable
cores), eight compute dies of AMD MI250X, and 512 GB of
DDR4 memory. Perlmutter [2] is a system at NERSC consist-
ing of 3,072 CPU-only and 1,792 GPU-accelerated nodes. It
uses AMD EPYC ”Milan” CPUs and Nvidia A100 GPUs and
256 GB of DDR4 memory. We ran small tests to capture the
network bandwidths, and the compute performance numbers
for both Frontier and Perlmutter and used the numbers to
instantiate the model.

We implemented the three strategies for writing and query-
ing derived variables using ADIOS2 as our underlying I/O
implementation. We use ADIOS2 with the default file en-
gine [10] and with an aggregation strategy where all processes
are concurrently writing to the PFS in a similar manner as our
model (EveryoneWritesSerial). Our implementation is
on top of ADIOS2 but we kept our algorithms and analysis
generic and could be used with HDF5 or NetCDF or any other
I/O library. Our experiments show that the time to compute
the stats and metadata is negligible compared to computing
the derived values, the time to gather and write/read the
stats/metadata is negligible compared to writing/reading data
and the time to filter out values that do not fit a query is
negligible compared to reading. If we remove these terms from
the equations in the previous section, we get the following
simplified equations for the total time (that includes writing

and reading Q percentage of a derived variable) for one derived
variable D and k primary variables P :

T{Store} = TC{D} + k ∗ TW{P} + TW{D} +Qi ∗ TR{D}

T{Exp} = k ∗ TW{P} + k ∗ TR{P} + TC{D}

T{Stats} = (1 +Qi) ∗ TC{D} + k ∗ TW{P} +Qi ∗ k ∗ TR{P}

The time for the Store strategy includes computing the
derived variables and writing the primary and derived data on
the writer side, and reading the percentage of derived data on
the reader side. The Expression strategy includes the time
to write the primary data, the time to read all primary data and
compute the derived variables. The Stats strategy computes
the derived data twice (on the write and on the percentage
of read data) and includes the time to write all the primary
data and read the primary data that fits the query. Removing
the terms that exist in all three scenarios leaves us with the
following main costs:

T{Store} = TW{D} +Qi ∗ TR{D}

T{Exp} = k ∗ TR{P}

T{Stats} = Qi ∗ TC{D} +Qi ∗ k ∗ TR{P}

The Store strategy is mainly influenced by the write band-
width (and the storage cost). The Expression performance
will heavily depend on the read bandwidth and on how many
primary variables are needed to compute the derived one. The
Stats strategy is mainly influenced by how fast derived
variables can be computed and how much data is returned
by the query. To better understand these trade-off, we make
experiments in the next section to quantify just how much the
following factors influence the performance of each strategy:

• The computing performance and the complexity of the
derived expression

• The write to read bandwidth ratio
• The query characteristics

IV. PERFORMANCE ANALYSIS

We analyze in this section the trade-offs given by different
system and application characteristics. Based on the model
in the previous section, we have identify five main factors
that influences the performance of writers and readers namely:
computing capacity, the derived kernel complexity, query size,
the number of readers accessing the data and the network
bandwidth (write to read bandwidth performance). We analyze
each in the following subsections and highlight limitations and
advantages of our three strategies.



Fig. 4: Time spent in each Writer and Reader building block
for one node of Perlmutter when: writing 3 primary variables
and one derived variable, each of 11.7GB; and reading the
entire dataset

Fig. 5: Total time for writing 3 primary variables and one
derived variable, each of 11.7GB, and reading the entire
dataset when simulating different compute capabilities on
Perlmutter

A. Compute characteristics

a) Computing performance of the processing unit: The
computing performance influences the length of the dark
orange bars in Figure 3 and thus the total execution time for
the writer and reader. As seen in the previous section, how fast
derived variables can be computed can make the Stats strategy
very expensive (since it needs to compute the derived variable
twice). In this sub-section, we assume the analysis is reading
the entire dataset.

Figure 4 shows the breakdown of time spent in each stage
for both the writer and the reader for Perlmutter when either
the CPU or the GPU are used as the compute platform. In this
example 3 primary variables are written and magnitude is the
derived variable computed by the I/O strategy. The compute
time for both the derived variable and stats is negligible
compared to the I/O time when the GPU is used. In this case,
the performance difference between the strategies is given by
the time to write more statistics for Stats and the time
to write stats and the derived data for Store. The Store
strategy has a 1.33x increase in storage since the derived
variable has the same size as the primary data. The Stats
strategy has similar size with Expression with the stats and

TABLE II: Performance of derives kernels for 1.6 GB data
size

Kernel Frontier
CPU

Perlmutter
CPU

Frontier
GPU

Perlmutter
GPU

Add 0.27 s 2.37 s 4.33 ms 3.74 ms
Magnitude 0.79 s 4.49 s 4.61 ms 3.75 ms
Curl 7.2 s 42.17 s 53.11 ms 43.53 ms

metadata difference typically accounting for only KB (MB at
scale) compared to GB for data.

Figure 5 shows the predicted execution time for Perlmutter
for our previous example when controlling the FLOPS of
the compute platform. The left side of the figure (<0.1
TFLOP) represent the Perlmutter CPU case and the right side
(>9 TFLOPS) the GPU case presented in Figure 4. We are
interested in seeing what is the point where the total execution
time of the three strategies become equivalent. Starting with as
early as 0.3 TFLOPS the execution time between the strategies
is within 10% of each other, with Store requiring more
storage. While our example reads the entire dataset, analysis
can use the statistics to query and read only the parts of the
data that are needed for a study, decreasing the reader time
for Stats and Store.

The Stats strategy has similar performance with the
other strategies when fast computing platforms are used
(GPUs or CPUs with hundreds of GFLOPS performance)
without paying the storage cost of Store and allowing
queries to optimize the read process.

b) Derived kernel complexity.: Different derived func-
tions will have different complexities and will require access-
ing more or less primary variables, changing the compute
time and the trade-off between the three strategies. We test in
this paper two derived variables: magnitude used by S3D and
curl used by the E3SM applications and we implement Add
as a baseline since it has the simplest implementation. The
complexity of all the derived variables used in this paper are
O(N), however, the number of total floating point operations
differs significantly between the functions. Table II shows
the execution time for different derived kernels on Frontier
and Perlmutter. Longer compute times for derived variables
influence the moment when the writer using a Stats strat-
egy becomes as fast as the others. Updating the Figure 5
for curl for example shows that Stats is within 10% of
Expression only for compute platforms of over 1 TFLOPS
(due to lack of space we omit the figure).

Heavyweight kernels wanting to use the Stats strategy
will have to pay the price of a less performant write
operation. If the analysis code typically reads the entire
data set, the Expression strategy will be a better
choice.

More complex derived variables that require data from
multiple steps (like derivatives) or that require stencil type
of computations will increase the cost of computing the
derived variable and will offset the advantage of using fast
processing units like the GPU. Offloading the derived variable



Fig. 6: Total execution time on Perlmutter for the three
strategies when only a percentage of the data is analyzed by
the reader.

computation to I/O libraries allows the I/O layer to choose the
best strategy for each derived expression.

B. Reader characteristics

a) Query size.: The amount of data that needs to be
accessed by a reader will influence the overall execution time
of the entire ensemble. Figure 6 explores the performance
implications of querying for parts of interest in the dataset.
The figure shows the total execution time when the reader
analyzes only a percentage of the entire dataset on Perlmutter.
We assume the study requires the derived data, so for the
Stats strategy, the reader needs to read a percentage of
the primary data and compute the derived data for the given
subset. In this example, queries that parse less than 30%
of data on the CPU will benefit from using the Stats
strategy. Otherwise, the other two strategies are equivalent.
The Expression strategy (light blue line) is horizontal since
it needs to read the entire dataset regardless of the query (there
are no stats for derived variables). The Stats (dark blue
line) and the Store (orange line) strategies move down with
better compute capabilities or with lightweight kernels (on the
GPU both dark blue and orange lines are completely below
the Expression strategy performance).

Typically studies do now know the amount of data the
queries will bring. Having statistics stored for derived
variables allows the flexibility of querying without bring-
ing the entire datasets.

b) Number of readers accessing data.: When the number
of readers accessing the same data increases, the read time
becomes much more important. We isolate from Figure 6 only
the read time of each strategy and plot it in Figure 7. The
Store strategy is the lower limit since all it does on the read
side is to access the percentage of required derived data. The
Expression strategy presents the upper limit since it has no
information about the derived variables and needs to read all
the primary data and compute the derived variables in order
to choose the desired subset. The two limits become closer
together as the compute capability of the platform increases,
but the shape remains the same. The time difference between
each strategy is decreased from the writer time with every new

Fig. 7: Read time on Perlmutter for the three strategies when
only a percentage of the data is analyzed by readers.

Fig. 8: Total time to write and read two types of derived
variables (Add and Curl) when simulating different reading
bandwidth

reader. In our example, for queries that access 50% of the data
in average, the Store strategy will save 2 seconds at each
read compared to Stats and 8 compared to Expression.
The time difference between the write side using the CPU for
each strategy is less than 10s. Thus, with only two readers,
the Store strategy gets much better performance.

The Store strategy might be worth the cost in storage
when multiple readers are analyzing the same dataset (e.g.
hyperparameter search on derived data).

c) Network bandwidth.: A code writing data, typically
stores the data on local storage. However, the reader code
can be executed remote for wide area network access (e.g.
if the analysis is executed on the scientist’s laptop). Figure 8
shows the total time to write and read for different reading
bandwidths when the 40% of the derived data is required for
analysis. The figure looks at two kernels, lightweight Add and
heavyweight Curl. The performance of the Stats strategy is
better for limited bandwidth since it reduces the data transfer
(in our e.g., less than 0.5 GB/s read bandwidth is the turning
point). A decrease in kernel complexity or an increase in
compute capability influences this turning point by moving it
towards a higher bandwidth (e.g. on the GPU on Frontier the
Stats strategy is a better choice for read bandwidths lower
than 3 GB/s even if the entire derived dataset is read).

The percentage of data transferred by a query as well as
the number of readers requiring the data decreases the ratio



between the write time and the read time and influences the
results in Figure 8 in the same way as an increase in compute
capacity. For example, a query that requires only 10% of the
derived dataset will show that the Stats strategy is a better
choice for read bandwidths lower than 2.3 GB/s.

The Expression strategy is not efficient for remote
access due to its high cost and can only be used for
analysis on local clusters with the data being accessed.

Overall, this section shows that the performance difference
between the strategies can be significant depending on the
system and application characteristics. Current solutions (write
or read side dealing with derived variables) can be used out of
the box in some situations but could have an exorbitant price
in others. In the next section we investigate the performance
of two HPC applications in different scenarios.

V. APPLICATION PERFORMANCE

The performance model presented in the previous sections
highlights the importance of understanding what is the ratio
between the time to access data and the time to compute de-
rived variables for a platform and a given derived expression.
If the derived function does not produce much data or if the
derived data is accessed extensively, the Store strategy will
show the best performance (and derived variables should be
treated in fact as primary data). However, if this is not the
case, careful attention should be placed on what is the limiting
factor for the analysis. If compute is cheap (e.g. GPUs can be
used to compute the derived variables) or the data is analyzed
remotely, dealing with derived variables on the read side (e.g.
Paraview) will have a low performance. Our hybrid solution,
the Stats strategy, offers a flexible alternative that shows
similar (or better) performance with Store without having a
high overhead on storage. The Expression strategy shows
better results for heavyweight kernels for which compute is
expensive and analysis parse entire datasets of local data (e.g.
in-situ visualization should use this strategy when plotting
derived variables). In this section, we look at two use cases and
measure their performance on Frontier for in-situ and remote
visualization to test the validity of the findings in this paper.

A. S3D

The S3D simulation [16] is a direct numerical simulation of
turbulent combustion that solves compressible reacting Navier-
Stokes total energy and species continuity equations using
high-order finite-difference methods. S3D generates 1.5 TB of
data in each step through 24 primary variables. Particles are
stored in 3D arrays of 1280x1280x1280 size and their velocity
is stored using 3 separate variables, each requiring 64 GB of
storage space. We ran on 900 ranks on Frontier, in sequence,
a writer and a reader generating and querying S3D data, each
rank accessing around 75 MB of data for each variable. We ran
the experiments for 4 steps and we report the average values.
Scientists analyzing S3D data are interested in querying the
magnitude of the velocity to identify areas of intense burning.
Figure 9 shows a typical analysis workflow, with scientists
plotting 2D slices of the temperature data, identifying regions

Fig. 9: Visualization of the S3D data: from 2D slices of the
temperature, identify areas of interest (the red square) and
creating queries for 3D blocks based on derived variables

of interest and querying for 3D blocks of temperature data in
the region of interest where the magnitude is below a given
threshold.

By simply adding one line in the S3D simulation code to
define the magnitude derived variable in the underlying I/O
library, we were able to query using magnitude as if it is a
primary variable, regardless of the I/O and compute strategy
used underneath. The magnitude derived variable has a size
equal to the number of particles for which velocity contains
values. Thus, the Store strategy adds 64 GB of data for each
simulated step. The statistics and metadata, when 900 ranks
are writing data, is using 12 MB and the difference between
the strategies represents less than 10% of the metadata size,
negligible compared to the data size. We made two types
of experiments: 1) in-situ analysis running the query code
on Frontier; and 2) remote analysis running the query and
visualization codes on a local laptop and accessing the remote
data on Frontier.

Due to the huge storage cost of the Store strategy, we
only use the Stats and Expression strategies for in-
situ analysis. For remote analysis, the Expression strategy
would require storing around 256 GB of primary data on
the remote site to compute the derived variable which is
prohibitively expensive. For this reason, we only ran the
Stats and Store strategies for this scenario.

Figure 10 shows the I/O performance results for our runs
on Frontier for the workflow presented in Figure 9. For in-
situ, both the writer and reader are running on 900 nodes and
the reader is parsing the entire dataset. For remote analysis,
the scientists are visualizing the data on their laptop so,
since all data will not fit into memory, the reader queries
for a subset of the data. The scientists are interested in
visualizing the temperature where magnitude is below a
threshold. This means the magnitude value is not needed on the
reader side, only the stats.The Stats strategy stores statistics



(a) Execution time on Frontier for writing S3D data and reading
in-situ a small portion of the data (around 1.5%)

(b) In-situ and remote analysis of S3D data when the study includes
querying multiple areas of interest

Fig. 10: Execution time of writing one step of S3D data and
reading one or multiple areas of interest

about magnitude, so the reader transfers only the desired
blocks for temperature (which makes the read performance
negligible compared to the rest as seen in Figure 10a) while
the Expression strategy will need to bring the velocity
data (which is 3x the size of temperature data) to compute
magnitude in order to know which temperature blocks to bring.

For remote access, the reader is using one process (the
laptop) and based on our experience, typically needs to read
between 1-2 GB of temperature data for each study that looks
at one area of interest. The read time dominates the total
time which makes the two strategies equivalent. The Store
strategy, however, still needs to store 64 GB of derived data
on Frontier. Figure 10b shows how the cost of Stats increases
as more areas of interest are investigated in the analysis.

The performance is typical of S3D since the scientists are
plotting primary data (temperature) and only query the derived
data (magnitude). In this case, the Stats strategy is similar in
size to Expression for in-situ and in performance to Store
for remote access. It performs better than the other strategies
for both total time (up to 15% better than Expression for
in-situ ) and total storage (25% better than Store strategy).
However, the balance will change when we need to compute
the derived variable on the reader side (next section will
investigate this).

B. E3SM

The earth system models (ESMs) [4] provide state of the
art simulations of the global climate. They include general
circulation and thermodynamic models for ocean and atmo-
sphere, and models for land, sea ice, and land ice processes.

(a) Total time as the analysis is querying more data

(b) Breakdown of the cost for 1GB of data

Fig. 11: Total execution time on Frontier for writing and
reading magnitude of the curl over the wind velocity E3SM
data.

In the simulations made on Frontier, E3SM outputs model
data at the 6-hourly interval generating around 24 GB data
through 9 primary variables on 96 ranks. There are several
analysis codes that can analyze the E3SM data. We focus on
the tropical cyclone track code as our analysis test cases, where
scientists detected from data outputted at an hourly interval,
cyclone location and movement. One typical derived variable
needed by the study is the curl of wind velocity data or the
magnitude of the curl, to detect the atmospheric rotation. The
study is done on the same cluster, either in situ or sequential
within the same workflow. In our analysis, we use 10 ranks
for the analysis where the data is queried for areas of high
atmospheric rotation returning in average 12% of the total
generated blocks of data.

Figure 11 presents the total execution time of the 3 strategies
for the described test cases. The size of the curl variable is
around 4 GB and 3GB for magnitude increasing the total
dataset size to 28 GB or 27 GB for the Store strategy. The
metadata and statistics for 96 ranks is around 1 MB. Since the
query is usually returning a small subset of the data, the read
time for the Stats and Store strategy is negligible. The
write time for the Store strategy is around 30% higher than
the other strategies. As more data is read by the queries and
as derived variables become more complex (e.g. magnitude
of curl compared to simply curl), the Stats strategy will
have an increase cost. If the GPU is used, the Stats strategy
performs 25% faster than the other strategies.

Our experiments were ran up to 900 processes (17 nodes)
on Frontier, which is still a relatively small size. Scalability
is important not only when computing the application perfor-
mance but also for the I/O libraries performance since typically



the aggregation scheme for data/stats/metadata is to apply a
gather on all nodes. The MPI gather performance can become
important and can change the balance between the strategies.
We plan to investigate more complex performance models in
the future to profile the scalability of each strategy.

VI. CONCLUSIONS

In this paper, we investigated the benefits of offloading
the computation of derived variables to an I/O layer and the
performance trade-offs of different strategies of when and
where is best to compute this data. Each strategy needs to be
well understood to get the best performance when querying.
We argue in this paper that offloading this task to the I/O
library would allow for the best strategy to be chosen in
each scenario since all the information necessary to choose
between the trade-off is present at this level. Offloading the
derived computation also allows for hybrid strategies that can
balance between the other two strategies (especially if the
derived computation can be triggered in transit or on storage
compute units, completely hiding their computation). There
are two typical analysis modes in HPC, either sequential by
analyzing datasets stored to storage or concurrent by having
the reader run in parallel to the writer. This paper focuses
on the first. We plan to extend this paper using data staging
models [9], [12] to study the impact of derived variables on
the performane of staging strategies.

REFERENCES

[1] Frontier user guide. https://docs.olcf.ornl.gov/systems/frontier user
guide.html. Accessed: 2024-04-28.

[2] Perlmutter architecture. https://docs.nersc.gov/systems/perlmutter/
architecture. Accessed: 2024-04-28.

[3] Utkarsh Ayachit, Andrew C. Bauer, Ben Boeckel, Berk Geveci, Kenneth
Moreland, Patrick O’Leary, and Tom Osika. Catalyst revised: Rethinking
the paraview in situ analysis and visualization api. In Heike Jagode,
Hartwig Anzt, Hatem Ltaief, and Piotr Luszczek, editors, High Perfor-
mance Computing, pages 484–494, Cham, 2021. Springer International
Publishing.

[4] S. M. Burrows, M. Maltrud, X. Yang, Q. Zhu, N. Jeffery, X. Shi,
D. Ricciuto, S. Wang, G. Bisht, J. Tang, J. Wolfe, B. E. Harrop,
B. Singh, and Brent. The doe e3sm v1.1 biogeochemistry configuration:
Description and simulated ecosystem-climate responses to historical
changes in forcing. Journal of Advances in Modeling Earth Systems,
12(9), 2020.

[5] Rajkumar Buyya, Toni Cortes, and Hai Jin. Overview of the MPIIO
Parallel I/O Interface, pages 476–487. 2002.

[6] J. Cernuda, L. Logan, A. Gainaru, J. Lofstead, A. Kougkas, and X.-H.
Sun. Hades: A context-aware active storage framework for accelerating
large-scale data analysis. In The 24th IEEE/ACM international Sympo-
sium on Cluster, Cloud and Internet Computing, 2024.

[7] Afonso Coutinho, Diogo Marques, Leonel Sousa, and Aleksandar Ilic.
Sparse-aware carm: Rooflining locality of sparse computations. In
Demetris Zeinalipour, Dora Blanco Heras, George Pallis, Herodotos
Herodotou, Demetris Trihinas, Daniel Balouek, Patrick Diehl, Terry
Cojean, Karl Fürlinger, Maja Hanne Kirkeby, Matteo Nardelli, and
Pierangelo Di Sanzo, editors, Euro-Par 2023: Parallel Processing Work-
shops, pages 97–109, Cham, 2024. Springer Nature Switzerland.

[8] Paulo De Marco, Júnior and Caroline Corrêa Nóbrega. Evaluating
collinearity effects on species distribution models: An approach based
on virtual species simulation. PLoS One, 13(9), September 2018.

[9] Shaohua Duan, Pradeep Subedi, Keita Teranishi, Philip Davis, Hemanth
Kolla, Marc Gamell, and Manish Parashar. Scalable data resilience
for in-memory data staging. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 105–115, 2018.

[10] Greg Eisenhauer, Norbert Podhorszki, Ana Gainaru, Scott Klasky, Jun-
min Gu, Vicente Bolea, Liz Dulac, Dmitry Ganyushin, and William
Godoy. Hpc i/o innovations in the exascale era. In Internatinal Journal
of High Performance Applications, pages 1–13, 2024.

[11] Iksoo Eo, Woojong Han, and Yoomi Park. Roofline model and profiling
of hpc benchmarks. In 2022 International Conference on Electronics,
Information, and Communication (ICEIC), pages 1–4, 2022.

[12] Ana Gainaru, Wan Lipeng, Ruonan Wang, Eric Suchyta, Jieyang Chen,
James Kress, Dave Pugmire, Norbert Podhorszki, and Scott Klasky. Un-
derstanding the impact of data staging for coupled scientific workflows.
IEEE Transactions on Parallel and Distributed Systems, 33(4):878–890,
2022.

[13] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins,
Greg Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Ger-
maschewski, Kevin Huck, Axel Huebl, Mark Kim, James Kress, Tahsin
Kurc, Qing Liu, Jeremy Logan, and Kshitij Mehta et al. Adios 2: The
adaptable input output system. a framework for high-performance data
management. SoftwareX, 12:100561, 2020.

[14] Zakia Hammouch, Mehmet Yavuz, and Necati Özdemir. Numerical so-
lutions and synchronization of a variable-order fractional chaotic system.
Mathematical Modelling and Numerical Simulation with Applications,
1(1):11–23, 2021.

[15] Jennifer N. Hird, Guillermo Castilla, Greg J. McDermid, and Inacio T.
Bueno. A simple transformation for visualizing non-seasonal landscape
change from dense time series of satellite data. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 9(8):3372–
3383, 2016.

[16] Hong G Im, Arnaud Trouve, Christopher J Rutland, and Jacqueline H
Chen. Terascale high-fidelity simulations of turbulent combustion with
detailed chemistry. 8 2012.

[17] D. Kao, J.L. Dungan, and A. Pang. Visualizing 2d probability dis-
tributions from eos satellite image-derived data sets: a case study. In
Proceedings Visualization, 2001. VIS ’01., pages 457–589, 2001.

[18] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. Hermes:
a heterogeneous-aware multi-tiered distributed i/o buffering system. In
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, page 219–230, 2018.

[19] Margaret Lawson, Craig Ulmer, Shyamali Mukherjee, Gary Templet, Jay
Lofstead, Scott Levy, Patrick Widener, and Todd Kordenbrock. Empress:
extensible metadata provider for extreme-scale scientific simulations. In
The International Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems, page 19–24. ACM, 2017.

[20] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev
Thakur, William Gropp, Rob Latham, Andrew Siegel, Brad Gallagher,
and Michael Zingale. Parallel netcdf: A high-performance scientific
i/o interface. In Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, SC ’03, page 39. ACM, 2003.

[21] Drishti Maharjan and Peter Zaspel. Toward data-driven filters in par-
aview. Journal of Flow Visualization and Image Processing, 29(3):55–
72, 2022.

[22] G. Manduchi, T. Fredian, and J. Stillerman. A new object-oriented
interface to mdsplus. Fusion Engineering and Design, 85(3):564–567,
2010. Proceedings of the 7th IAEA Technical Meeting on Control, Data
Acquisition, and Remote Participation for Fusion Research.

[23] Diogo Marques, Aleksandar Ilic, and Leonel Sousa. Mansard roofline
model: Reinforcing the accuracy of the roofs. ACM Trans. Model.
Perform. Eval. Comput. Syst., 6(2), October 2021.

[24] J. Jake Nichol, Matthew G. Peterson, Kara J. Peterson, G. Matthew
Fricke, and Melanie E. Moses. Machine learning feature analysis
illuminates disparity between e3sm climate models and observed cli-
mate change. Journal of Computational and Applied Mathematics,
395:113451, 2021.

[25] Kenneth A. Philbrick, Alexander D. Weston, Zeynettin Akkus, Tim-
othy L. Kline, Panagiotis Korfiatis, Tomas Sakinis, Petro Kostandy,
Arunnit Boonrod, Atefeh Zeinoddini, Naoki Takahashi, and Bradley J.
Erickson. Ril-contour: a medical imaging dataset annotation tool for
and with deep learning. Journal of Digital Imaging, 32(4):571–581,
Aug 2019.

[26] Eric Suchyta, Jong Youl Choi, Seung-Hoe Ku, David Pugmire, Ana
Gainaru, Kevin Huck, Ralph Kube, Aaron Scheinberg, Frédéric Suter,
Choongseock Chang, Todd Munson, Norbert Podhorszki, and Scott
Klasky. Hybrid analysis of fusion data for online understanding of com-
plex science on extreme scale computers. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pages 218–229, 2022.


