
Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

1

A Fast Restart Mechanism for Checkpoint/Recovery Protocols
in Networked Environments

Yawei Li and Zhiling Lan

Department of Computer Science
 Illinois Institute of Technology, IL 60626, USA

{liyawei,lan}@iit.edu

Abstract

Checkpoint/recovery has been studied extensively,
and various optimization techniques have been
presented for its improvement. Regardless of the
considerable research efforts, little work has been
done on improving its restart latency. The time spent
on retrieving and loading the checkpoint image during
a recovery is non-trivial, especially in networked
environments. With the ever-increasing application
memory footprint and system failure rate, it is
becoming more of an issue. In this paper, we present a
Fast REstart Mechanism called FREM. It allows fast
restart of a failed process without requiring the
availability of the entire checkpoint image. By
dynamically tracking the process data accesses after
each checkpoint, FREM masks restart latency by
overlapping the computation of the resumed process
with the retrieval of its checkpoint image. We have
implemented FREM with the BLCR checkpointing tool
in Linux systems. Our experiments with the SPEC
benchmarks indicate that it can effectively reduce
restart latency by 61.96% on average in networked
environments.

1. Introduction

Checkpoint/recovery (C/R) has been widely used
for fault tolerance in networked computing
environments, such as parallel and distributed systems
[4, 9, 18]. It periodically stores a snapshot of the
running program, including CPU registers, signals, file
caches, and process address space, on stable storage
and uses it to restart execution in case of failure. A
networked system is generally composed of abundant
resources, thereby making it possible to restart the
crashed program on an alternative resource from the
checkpoint image, rather than waiting for the repair of
the failed resource. As a matter of fact, such a
remote-restart mechanism is common in Grid
computing [24] as well as in high performance
computing [20].

Existing research on C/R has mainly focused on
reducing checkpoint overhead, whereas little work has

been done on reducing its restart latency. Here, restart
latency refers to the time that elapses between the
initiation of the checkpoint image retrieval and the
restart of the failed process. In the current C/R practice,
a restart requires the checkpoint image to be
completely available on the destination machine before
it can proceed. In networked environments where the
checkpoint image is accessed via interconnected
networks, restart latency can be substantial. This is
especially problematic in the field of high performance
computing where applications typically are memory
demanding. Research has determined that the memory
footprint is a major contributor to the checkpoint image
size [7, 20]. Further, due to the ever-increasing system
size and complexity [4], failures occur more frequently
than before, thereby making restart latency a critical
concern in networked environments.

The recovery problem has been previously studied
in various fields including operating systems,
databases, and internet services [1, 14, 15]. However,
existing solutions are either specific to particular
problem domains or hardly applicable to improve
checkpoint based restart. As mentioned earlier, the
research on C/R mainly focuses on runtime
optimization of checkpointing, with little attention to
process recovery. Therefore, reducing restart latency
for general C/R protocols remains an open problem.

In this paper, we present FREM, a Fast REstart
Mechanism, to enhance general C/R protocols by
concentrating on reducing restart latency. The core
idea of FREM is to enable quick restart on a partial
checkpoint image by recording the process data
accesses after each checkpoint. More specifically, at
runtime, through a user-transparent system support, it
tracks the memory access information of the process
(denoted as the touch set) following each checkpoint
within a specific time period (denoted as the tracking
window). At recovery time, rather than retrieving the
entire checkpoint image for restart, FREM only
requires the touch set on the destination machine for
quick restart. The remainder of the checkpoint image is
then transferred after the process is restarted on the
destination machine. By doing so, FREM intends to
overlap application execution with the retrieval of the

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2

checkpoint data which is not immediately needed,
thereby reducing restart latency.

While the idea may be straightforward, the design
and implementation of FREM is challenging. The key
issues include how to accurately identify the touch set,
how to appropriately set the tracking window, and how
to effectively load the partial image on the destination
machine. To address these challenges, in this paper we
propose:
• A post-checkpoint tracking method for capturing

the touch set. Hardware and software complexities
in real systems introduce numerous complications to
the identification of the touch set. The proposed
method monitors the memory access pattern of the
process during the tracking window by considering
the underlying hardware and software features, and
records the precise access pattern as the touch set
along with the checkpoint image. More importantly,
such support is provided through a user-transparent
system implementation.

• A heuristic method for estimating the tracking
window. The tracking window, which determines
the size of the touch set, plays a crucial role in
FREM. The ideal scenario is such that the execution
time of the resumed process on the touch set exactly
matches the retrieval time of the remaining
checkpoint image. We present an upper bound
heuristic to estimate the window size, which intends
to make a balanced tradeoff between performance
and design simplicity.

• A revised page fault handling mechanism for
partial image loading. To restart the process with
its partial address space available, the kernel page
fault handler is modified to coordinate the regular
kernel paging mechanism with the special page fault
handling required by FREM.

We have implemented FREM with the BLCR [6]

checkpointing tool in Linux systems. Our experiments
with the SPEC CPU2006 benchmarks [21] show that
the average improvement achieved by FREM is
61.96% in terms of reducing restart latency. To the best
our knowledge, we are among the first to exploit
runtime data access information to achieve fast process
restart in networked environments. FREM
complements existing studies on checkpoint/restart by
enhancing the recovery process. As an example, FREM
can be integrated with MPICH-V [2] and LAM-MPI
[22] to enhance fault management for high
performance computing [8].

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 introduces
the main idea of FREM, followed by a description of
the detailed methods in Section 4. Section 5 presents

our experimental results. Finally, Section 6
summarizes the paper and points out future directions.

2. Related Work

The idea of fast restart is not new, and has been
studied in several fields. For example, Baker and
Sullivan have discussed the use of a “recovery box” (a
protected area of non-volatile memory) in the Sprite
system to store crucial process state needed for fast
recovery [1]. In database systems, quickly resuming
transaction processing is the focus. For example, the
Oracle systems have used the “on-demand rollback”
technique to allow new transactions to execute while
the rollbacks are still being performed [14]. Recently,
more attention has been paid to fast recovery for
Internet services. A representative work is the ROC
project from Berkeley and Stanford [15]. It focuses on
providing a holistic solution for post-failure recovery
of Internet services by using fine-grained system
partitioning and recursive restart. Rao et al. have
proposed a class of hybrid protocols to maintain the
failure-free performance of sender-based protocols
while approaching the performance of receiver-based
protocols during recovery [19]. FREM is
fundamentally different from these works in that it
emphasizes the reduction of restart latency for general
C/R applications.

Existing studies on C/R mainly focus on checkpoint
optimization. One major direction is to determine an
optimal checkpoint frequency. Young has derived a
simple first order approximation of the optimal
checkpoint interval, based on the assumption of
Poisson failure arrivals [26]. To allow failures during
checkpointing or recovery, Dali has proposed a higher
order interval approximation model by extending
Young’s work [3]. Vaidya has developed an
improved interval by differentiating checkpoint latency
and overhead [25]. Plank and Thomason have
investigated the optimal checkpoint interval for parallel
applications [18]. Additionally, there are numerous
papers on dynamic checkpoint scheduling, such as
aperiodic checkpointing [10] and cooperative
checkpointing [13]. The other major direction is to
reduce checkpoint overhead, especially the disk I/O
time. Latency hiding and memory exclusion are two
key techniques [16]. The studies in this category
include copy-on-write [9], diskless checkpointing [17],
and incremental checkpointing [5, 20]. Despite these
runtime optimizations, no dedicated attention is paid to
reducing restart latency during recovery.
Complementing the above studies on checkpoint
optimization, our proposed FREM emphasizes the

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

3

reduction of restart latency. Further, the principle of
FREM is applicable to general C/R protocols.

There also exist several optimization techniques that
utilize memory paging mechanisms to achieve fast
process execution. For example, demand paging is a
well-known technique, which allows a process to begin
execution with part of its pages available in the
physical memory [23]. Unlike demand paging, FREM
selectively restores the pages that will be immediately
needed for fast recovery by tracking the pages used
after the checkpoint.

Similarly in the field of process migration, paging
mechanisms are also incorporated to achieve fast
process restart on the destination machine [11]. While
these migration methods focus on optimally
transferring process state between the source and
destination processes, FREM targets reducing restart
latency and does not require a live copy of the process
on the source machine.

3. Main Idea

The main idea of FREM is illustrated in Figure 1.

There are two phases in FREM: (1) the post-checkpoint
tracking phase at runtime and (2) the fast restarting
phase during recovery.

The post-checkpoint tracking phase is composed of
two steps:
• At time t0 the checkpointing tool is invoked to dump

the process state onto stable storage, just as any
regular checkpoint mechanism does.

• Upon completion of the checkpoint at time t1, FREM
starts to track the page-level memory accesses of the
process between t1 and (t1+tw) where tw is the
tracking window size. The memory access
information, called “the touch set” in this paper, is
formally defined as the intersection of the process
address space saved in a checkpoint and its working
set during the following tracking window. The goal
of this step is to capture the touch set and store its
information remotely on stable storage along with
the regular checkpoint image at the end of the
tracking window. FREM takes advantage of the
paging mechanism supported by modern computer
systems to monitor the page access: it first clears the
access bit of each page table entry (PTE) at t1, which
will be set by the CPU when the corresponding page
is accessed; at the end of the tracking window,
FREM collects the pages touched by the process by
scanning the status of the access bit of each PTE.
The touch set information consists of a set of page
address ranges accessed by the process during the

Figure 1. Main Idea of FREM

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

4

tracking window (denoted as the touch set
descriptor).
During recovery, FREM takes four steps to achieve

fast restart on the destination machine:
• At recovery time t3, FREM retrieves the touch set

descriptor.
• At time t4, based on the descriptor, FREM retrieves

the touch set as well as other necessary process state,
such as register contents and process signals from
the checkpoint image.

• Upon completion of retrieving the touch set at time
t5, the process is restarted on the touch set.
Meanwhile, FREM forks another thread to
simultaneously retrieve the remaining pages from the
image file.

• At time t6, when all the remaining pages are
retrieved and loaded on the destination machine, the
process continues running on the complete address
space.
The rationale of FREM is that the touch set captures

the precise data access of the process during process
recovery. We exploit this feature to optimize the restart
procedure by overlapping the computation with the
communication and disk I/O as shown in Figure 1
(Step 3a -3b). The effectiveness of FREM requires that
the process only access a relatively small portion of its
address space within a given time window after a
checkpoint. This assumption is justified by two facts in
practice: (1) many applications demonstrate good
temporal locality in data accesses, and (2) applications
using dynamic memory allocation may have a large
amount of unused or dead data in their checkpoint
image files [16].

4. Methodology

In this section, we elaborate our research methods.
They are developed to address the key challenges listed
in Section 1, namely how to accurately identify the
touch set, how to appropriately set the tracking window
size and how to effectively load the partial image on
the destination machine.

4.1. Identification of the Touch Set

Precisely identifying the touch set is crucial in the
design of FREM. There are two types of possible
errors: (1) false positives where pages not of interest
are included in the touch set and (2) false negatives
where pages of interest are missing from the touch set.
These errors stem from the complicated features of
hardware and software design, which include hardware
bypassing, page swapping and dynamic memory
management.

4.1.1. Hardware bypassing. Although the access bit
of the PTE is often used to track page-level data
accesses, not every single memory access updates the
access bit in the PTE [27]. For example, a Translation
Lookaside Buffer (TLB) hit can cause the memory
access to bypass the PTEs. When a TLB hit occurs, the
process directly reads the address translation
information from the TLB, rather than going through
the page table maintained by OS. Hardware bypassing
can introduce false negatives in the identification of the
touch set. In the architectures that support
software-managed TLBs, FREM can directly look into
the TLB to obtain the correct status of the access bit,
thereby solving the issue.

But in the architectures without such support, such
as our target platform x86, using a hardware-managed
TLB, TLB peeking is forbidden. To address the issue,
FREM must ensure the consistency between the TLB
and the PTE entries. In our current design, at the
beginning of the tracking window, FREM not only
clears the access bit in the PTE, but also invalidates the
corresponding TLB entry. By doing so, FREM
guarantees the first access of each page will cause a
TLB miss and consequently set the access bit of the
PTE. While such TLB invalidation introduces some
overhead from the perspective of the
micro-architecture, the overhead is generally several
orders of magnitude smaller than the reduction of
restart latency at the macro-system level. Clearing the
access bits of the PTEs could disturb the kernel page
replacement, but in Linux, page replacement is based
on a separate PG_REFERENCE bit of each physical
frame. So to guarantee the original replacement
algorithm, FREM turns on the corresponding
PG_REFERENCE bit when it clears an access bit
which has been previously set.

In addition, a DMA (Direct Memory Access)
operation also bypasses the CPU, thereby causing false
negatives. We suggest instrumenting the corresponding
device driver to set the access bits of PTEs whenever a
DMA transfer is initiated. In the current design, we
adopt a simple strategy which includes all the mapped
DMA pages in the touch set. Typically the amount is
much smaller than the entire process address space on
the x86 platforms.

4.1.2. Page swapping. Page swapping, which clears
the PTE access bits, may also cause false negatives in
the identification of the touch set. Hence, FREM must
track the access bits upon page swapping. To solve the
problem, we instrument the Linux kernel swap thread
kswapd to ensure that whenever a page swap occurs
during the tracking window, the access bits of the
PTEs are first scanned by FREM before they are
cleared by the kernel.

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

5

4.1.3. Dynamic memory management. Dynamic
memory allocation and deallocation operations change
the process address space. Without a careful analysis,
they may cause identification errors. As shown in
Figure 2, we identify three types of pitfalls stemming
from dynamic memory usage.

Figure 2. Pitfalls in the identification of the touch set

caused by dynamic memory management

In Figure 2(a), at time t1 the memory region r (the
region of [a,b]) is saved on stable storage as the
checkpoint image. At time t2, a deallocation operation
shrinks r to [a,c] and releases all the pages in (c,b].
When FREM scans for the touch set at time (t1 + tw)
(the end of the tracking window), a false negative error
may occur - the pages in (c,b] accessed during time (t1,
t2) are lost.

In Figure 2(b), the memory region r is checkpointed
at time t1. At time t2 an allocation operation extends r
to [a,c]. At the scan time (t1 + tw), the pages in (b,c]
accessed during time (t2, t1+tw) should not be counted
in the touch set; otherwise a false positive error is
introduced. Recall that the touch set is defined as the
intersection of the process address space saved in the
checkpoint image and its working set during the
tracking window. Although the pages in (b,c] were
accessed during time (t2, t1+tw), they are not part of the
checkpoint image, indicating they do not need to be
retrieved during the restart phase.

In Figure 2(c), the memory region r is checkpointed
at time t1. At time t2, a deallocation operation shrinks r
to [a,c]. Then later at time t3, an allocation operation
extends it to [a,d]. The question is whether we should
scan the pages in (c,b] or not? The answer is two-fold.
At time t2 just before their deallocation, the pages in
(c,b] should be tracked because they are part of the
checkpoint image; otherwise a false negative error is
introduced. At time (t1 + tw), the pages in the same
range (c,b] are actually newly allocated and should not
be counted in the touch set; otherwise a false positive

error is introduced.
The above analysis indicates that the touch set is

always a subset of the checkpoint image, which
monotonically decreases during the tracking window.
Based on this key observation, we develop a simple yet
effective algorithm to track the touch set: upon the
completion of a checkpoint, the address information of
the pages saved in the checkpoint image is stored by
FREM (denoted as the candidate pages); whenever a
memory deallocation takes place, FREM checks the
intersection between the candidate pages and the pages
to be released for the identification of the touch set;
after that, FREM updates the candidate pages by
excluding the intersection. The algorithm can eliminate
the potential false positives and false negatives as
illustrated in Figure 2. Figure 3 summarizes our
algorithm to identify the touch set.

Figure 3. The touch set identification algorithm

In our implementation, to ensure the efficiency of
the search and insertion operations, we use a double
linked list and a red-black tree to store the touch set
descriptor and the candidate pages respectively. In
addition, to monitor memory space deallocation, the
Linux kernel function do_munmap is instrumented.

Dumping the checkpoint image {
Step 1. Invoke BLCR to save the checkpoint image;
Step 2. Record the pages saved in the checkpoint image
 as the candidate pages;
Step 3. Initialize the touch set descriptor;
Step 4. Invalidate the TLB entries if necessary;

}
Tracking the touch set {

Upon each memory deallocation {
Step 1. Check the intersection between the pages to be
 released and the candidate pages;
Step 2. Identify the accessed pages (in the intersection)
 as part of the touch set;
Step 3. Update the candidate pages by excluding the
 intersection;

}
Upon each page swap {

Step 1. Check the intersection between the pages to be
 traversed and the candidate pages;
Step 2. Identify the accessed pages (in the intersection)
 as part of the touch set;

}
Upon the completion of tracking {

Step 1. Check the intersection between the current
 memory region and the candidate pages;
Step 2. Identify the accessed pages (in the intersection)
 as part of the touch set;
Step 3. Store the touch set descriptor, along with the
 checkpoint image;

}
}

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

6

The modified kernel only impacts the target process
within the tracking window, thereby minimizing its
disturbance to other processes in the system.

4.2. Estimation of Tracking Window

The tracking window size tw is equally important in

the FREM design and is dynamically determined at the
beginning of the post-checkpoint tracking. How to set
an optimal window size is challenging. A small
window size reduces the time duration of overlapping
computation and image retrieval during recovery and
also incurs numerous remote page faults. On the other
hand, a large window size leads to a large touch set,
thereby increasing recovery latency and also increasing
the risk of failures. An ideal tw should yield a perfect
touch set such that the resumed process first accesses a
page not in the touch set just as the transmission of the
remaining checkpoint image finishes, e.g., the time t6
in Figure 1.

In our current design, a heuristic method is adopted
to estimate the window size: once we know the
checkpoint image size W at the completion of a
checkpoint, we set tw to the retrieval time of the
checkpoint image (denoted as retrieval(W)). It can be
simply calculated as the sum of the disk I/O and
network transfer time:

W Wretrieval(W)= + + network latencydisk BW network BW
Here, the parameters like latency and bandwidth can be
obtained according to the hardware specifications or
through benchmark tools. Note that retrieval(W) is a
conservative estimate and can be used as an upper
bound. In practice, the actual image retrieval time
should be less as the disk I/O may be overlapped with
the network transfer. The rationale is to ensure the
availability of the entire checkpoint image before the
process completes its execution on the touch set. It is
possible to set tw to a smaller value. Currently we did
not do this and leave it as future work.

Further, the tracking window size can be set to zero
so as to disable FREM under two conditions:
• When W is smaller than a pre-defined threshold TH,

tw is set to zero. For the applications with small
memory footprints, FREM is not used. The value of
TH can be set by system administrators or users
based on their tolerable restart latency.

• If retrieval(W) is larger than the checkpoint interval,
we also set tw to zero. Based on our experience, this
violation is rare in practice since the retrieval time
retrieval(W) is usually much less than the checkpoint
interval.

4.3. Partial Image Loading

To enable the process restoration on the touch set,

FREM coordinates its partial image loading with the
Linux demand paging mechanism:
• Once the touch set is retrieved, FREM restores the

structure of the process address space via the
memmap function call, and then loads in the touch
set. Afterward the process is restarted and another
kernel thread is forked to simultaneously retrieve the
remaining image to the destination machine.

• During the overlapped execution, FREM provides
special page fault handling for the process by
implementing the no_page callback function as a
memory map driver. (1) If a page fault address
belongs to the touch set (this is possible due to
dynamic memory allocation), the default page fault
handling is used. (2) If a page fault address falls out
of the touch set, FREM first checks whether the
requested data is already available in the local image
file; if yes, the requested page will be loaded
on-demand; otherwise a remote page fault occurs. A
simple strategy is employed to deal with remote
page faults in our current design, which stops the
application until the requested page is retrieved. Due
to the conservative estimation of the tracking
window size, the probability of remote page faults is
rare. As soon as the entire checkpoint image is
available and loaded, FREM unhooks this driver
from the memory management subsystem to restore
its normal operations. A more sophisticated
mechanism like on-demand remote data retrieval
will be investigated in our future work.

5. Experiments

To evaluate FREM, we have implemented a
prototype system with the BLCR checkpointing tool
[6] in Linux 2.6.22 systems. Our testbed consists of
two x86 machines, one used as the source machine and
the other as the destination machine. Each machine is
equipped with a 2.8GHz Pentium 4 processor, 512KB
cache, 1 GB RAM and an 80GB 7200RPM Maxtor
disk. Two network configurations at the National
Center for Supercomputing Applications (NCSA) are
tested: (1) FAST, which denotes a fast Myrinet2000
network deployed in the NCSA Mercury cluster and (2)
SLOW, which represents a relatively slow Ethernet
connection deployed between the Mercury and
Tungsten clusters [12]. Table 1 lists the measured data
retrieval parameters.

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

7

Table 1. Parameters of image retrieval cost

The benchmark suite SPEC CPU2006 is tested in

our experiments [21]. Since FREM targets the
applications with large memory consumptions, we
choose the applications whose memory footprints are
greater than 150 MB. Among these applications, we
randomly select twelve applications and present their
results in the following.

5.1. Application Restart Latency

In this set of experiments, we compare application

restart latencies by using the regular BLCR and
FREM-enhanced BLCR. Table 2 lists our measured
results, including application checkpoint image size,
size of the touch sets, and restart latencies using BLCR
and FREM. As we can see from the table, for most
applications, the touch sets are substantially smaller
than the checkpoint images. The use of FREM can
significantly reduce application restart latency. The
performance achieved by using FREM is very
promising: the average reductions on restart latency
are 72.43% and 61.96% in the FAST and SLOW
networks, respectively.

Table 2. Restart latency (RL) by using BLCR
and FREM with SPEC CPU2006 applications.
The parenthesized numbers in the last two

columns are relative improvements (in
percentage) achieved by FREM.

Figures 4 and 5 show, respectively, the raw
improvement and the relative improvement on restart
latency achieved by FREM over BLCR. As we can see
from Figure 4, the reduction ranges from a couple of
seconds to a couple of hundred seconds. The highest
reduction is 152.6 seconds in the FAST network and
208.5 seconds in the SLOW network. According to
Figure 5, except for applications 8 and 9, the relative
improvement is more than 53.78% in the SLOW
network and more than 49.25% in the FAST network.
The trivial improvements on applications 8 and 9 are
attributed to their low temporal data locality. For
instance, for application 8, its touch set is 402 MB,
which is very close to the checkpoint image of 409 MB;
for application 9, the improvement achieved by FREM
drops sharply when the network performance is
changed from FAST to SLOW. This is also caused by
the rapid growth of the touch set when the network
performance is low. However, we shall point out that
even in a slow network, the raw restart latency is still
reduced by at least a couple of seconds.

Raw Improvement on Restart Latency by Using FREM

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12
Application ID

R
es

ta
rt

 L
at

en
cy

 R
ed

uc
tio

n
(s

ec
on

ds
)

FAST
SLOW

Figure 4. Raw improvement on restart latency

by using FREM over BLCR
Percentage Improvement by Using FREM

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12
Application ID

Pe
rc

en
ta

ge

FAST

SLOW

Figure 5. Percentage improvement on restart

latency by using FREM over BLCR

For the gcc test cases (applications 6 and 7), the
relatively small touch set is largely attributed to the
dynamic memory deallocation of the applications. For

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

8

these applications, although the checkpoint image is
large, it has many pages that will never be used again
and will soon be freed. This observation indicates that
dynamic memory management can provide more
optimization opportunities for FREM.

5.2. Runtime Overhead

The use of FREM introduces two types of runtime
overhead: (1) the post-checkpoint tracking overhead
and (2) the fast restart overhead.

Table 3. Post-checkpoint tracking overhead

(in milliseconds)

Table 4. Fast restart overhead
(time unit: seconds)

The post-checkpoint tracking overhead is mainly
caused by three factors: the PTE scan time, the
descriptor search and insertion time, and the I/O time
to store the descriptor. Table 3 lists the measured
post-checkpoint tracking overheads. We have observed

similar results for runs in the FAST and SLOW
networks. Due to space limitations, here we only
present the results obtained in the SLOW network. It is
shown that the post-checkpoint tracking overhead is
generally less than 60.2 milliseconds, which is trivial
compared to the performance gain achieved by FREM.
The PTE scan time is the dominant contributor to the
overhead. This is due to the fact that
memory-demanding applications typically have huge
page tables. In general, the search and insertion time
is less than 15.0 milliseconds, while the descriptor I/O
time is less than 1.5 milliseconds. These overheads are
mainly determined by the number of entries in the
touch set descriptor, which should not exceed two
thousand, because of spatial data locality.

When using FREM, the restart of the process is
overlapped with the image retrieval until all the
remaining image is delivered to the destination
machine. This overlapping inevitably incurs some
overhead to the program execution due to resource
contention. This is denoted as the fast restart overhead.
Table 4 lists the sizes of remaining images to be
retrieved, the durations of overlapping and the fast
restart overheads in the SLOW network, for all
applications. In general, the restart overhead is less
than 22.7 seconds, which is much smaller than the
reduction of restart latency achieved by FREM (see
Section 5.1). Further, when the duration of
overlapping is increasing, the overhead generally
grows. This is caused by the fact that the number of
context switches increases, thereby incurring more
overhead. We believe on the emerging multi-core
machines, the overhead can be reduced due to greater
parallelism provided by the advanced architectures.

5.3. Statistical Performance Analysis

The results shown so far indicate that FREM can
significantly reduce the restart time, but also introduces
some runtime overheads. Given that checkpoint
frequency is usually greater than that of recovery, a
key question that may be raised is whether FREM is
capable of producing positive performance gain in the
long run. To answer this question, we conduct a set of
experiments to examine application performance when
using FREM in a long run. Here, the “long run” means
that we statistically evaluate application performance
between two restarts. In our experiments, we simulate
Poisson failure arrivals of the underlying system,
where the arrival rate ranges from one failure per 1000
days to 10 failures per day. The application checkpoint
interval is set according to Young’s approximation
formula [26]. The SLOW network is used in this set of
experiments.

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

9

Two evaluation metrics are used to measure the
overall performance of FREM: (1) Egain, the expected
restart improvement achieved by FREM between two
restarts and (2) Eoverhead, the expected runtime overhead
introduced by FREM between two restarts. They are
calculated as follows:

 _ (1-)

 _

 _ _ (1-)

gain

overhead ckp

E RL improvement f

E tracking overhead N

fast restart overhead f

= ×

= ×

+ ×

Here, f is the failure probability of FREM, i.e., the
chance that a failure occurs during the tracking
window. Nckp is the average number of checkpoints
between two restarts.

Our simulations show that for all applications other
than applications 8 and 9, Egain surpasses Eoverhead by a
significant margin ranging from 14.3 seconds to 183.3
seconds under different failure arrival rates. Due to
space limitations, we only present the results for
applications 1, 2 and 8 in Figure 6. For applications 1
and 2, the runtime overhead Eoverhead introduced by
FREM is substantially smaller than the performance
gain Egain achieved regardless of failure rates. Further,
it is shown that the overhead drops as the failure rate
grows. When the failure rate increases, the number of
checkpoints Nckp decreases, thereby resulting in less
post-checkpoint tracking overhead. For application 8,
the benefit achieved by FREM is much less impressive.
A major reason is that the application lacks temporal
data locality, thereby resulting in trivial restart
improvement. When the failure rate gets higher, the
runtime overhead may overshadow the restart
improvement. This observation suggests that data
locality should be used as key guidance to determine
whether to apply FREM or not.

5.4. Result Summary

In summary, the above experiments have shown
that:
• For most applications, FREM can reduce restart

latencies by 61.96% on average, as compared to the
regular C/R mechanism. The results on the
applications with good temporal data locality are
more promising.

• The post-checkpoint tracking overhead incurred by
FREM is around tens of milliseconds, which is
trivial compared to the reduction in restart latency
achieved by FREM (e.g., in the range of a couple of
seconds to 208.5 seconds). The restart overhead
depends on application characteristics, generally
ranging from less than one second to 22.7 seconds.

• Our statistical performance analysis has shown that
by using FREM, the expected application execution

time between two restarts can be reduced by 14.3
seconds to 183.3 seconds.

Figure 6. Statistical performance analysis

of FREM

6. Conclusions

We have presented a novel mechanism called
FREM to tackle the restart latency problem of general
checkpoint protocols in networked environments.
Through user-transparent system support, it allows fast
restart on a partial checkpoint image by recording the
process data access after each checkpoint. We have
implemented FREM with the widely used BLCR
checkpointing tool in Linux systems. Experiments on
SPEC CPU2006 benchmarks have shown that FREM
can effectively reduce process restart latency by
61.96% on average. In future, we will explore an
aggressive way to estimate the tracking window. In
addition, a more sophisticated image loading
mechanism will be developed for better performance of
FREM. Our ultimate goal is to integrate FREM with
existing checkpointing tools for better fault
management of applications.

Proc. of the 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

10

Acknowledgement

The authors appreciate the valuable comments and
suggestions from the anonymous reviewers. We would
like to thank our paper shepherd, David Taylor, for his
time and guidance.

References

[1] M. Baker and M. Sullivan, “The recovery box: Using
fast recovery to provide high availability in the UNIX
environment,” in Proceedings of Summer USENIX Technical
Conference, 1992.
[2] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier,
F. Cappello, “MPICH-V: A multiprotocol automatic fault
tolerant MPI,” International Journal of High Performance
Computing and Applications, vol. 20(3), pp. 319-333, 2005.
[3] J. Daly, “A model for predicting the optimum
checkpoint interval for restart dumps,” in Proceedings of
International Conference on Computational Science, 2003.
[4] E. Elnozahy and J. Plank, “Checkpointing for
peta-scale systems: A look into the future of practical
rollback-recovery,” IEEE Trans. on Dependable and Secure
Computing, vol. 1(2), pp. 97-108, 2004.
[5] S. Feldman and C. Brown, “IGOR: A system for
program debugging via reversible execution,” in Proceedings
of ACM SIGPLAN and SIGOPS workshop on parallel and
distributed debugging, 1989.
[6] P. Hargrove and J. Duell, “Berkeley lab
checkpoint/restart (BLCR) for Linux clusters,” in
Proceedings of SciDAC, 2006.
[7] O. Laadan and J. Nieh, “Transparent checkpoint-restart
of multiple processes on commodity operating systems,” in
Proceedings of USENIX Annual Technical Conference, 2007.
[8] Z. Lan and Y. Li, “Adaptive fault management of
parallel applications for high performance computing,” IEEE
Trans. on Computers, in press.
[9] K. Li, J. Naughton and J. Plank, “Low-latency,
concurrent checkpointing for parallel programs,” IEEE
Trans. Parallel and Distributed Systems, vol. 5(8), pp.
874-879, 1994.
[10] Y. Ling, J. Mi and X. Lin, “A variational calculus
approach to optimal checkpoint placement,” IEEE Trans.
Computers, vol. 50(7), pp. 699-708, 2001.
[11] D. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler
and S. Zhou, “Process migration,” ACM Comput. Surv., vol.
32(3), pp. 241-299, 2000.
[12] NCSA web site, http://teragrid.ncsa.uiuc.edu.
[13] A. Oliner, L. Rudolph and R. Sahoo, “Cooperative
checkpointing: A robust approach to large-scale systems
reliability,” in Proceedings of International Conference on
Supercomputing, 2006.
[14] Oracle high availability document website,
http://www.oracle.com/technology/deploy/availability/htdocs
/fs_on-demand_rollback.htm.
[15] D. Patterson et al., “Recovery-oriented computing
(ROC): Motivation, definition, techniques, and case studies,”
UC Berkeley Computer Science Technical Report
UCB//CSD-02-1175, 2002.

[16] J. Plank, Y. Chen and K. Li and M. Beck and G.
Kingsley, “Memory exclusion: Optimizing the performance
of checkpointing systems,” Software — Practice and
Experience, vol. 29(2), pp. 125-142, 1999.
[17] J. Plank, K. Li and M. Puening, “Diskless
checkpointing,” IEEE Trans. Parallel and Distributed
Systems, vol. 9(10), pp. 972-986, 1998.
[18] J. Plank and M. Thomason, “Processor allocation and
checkpoint interval selection in cluster computing systems,”
Journal of Parallel and Distributed Computing, vol. 61(11),
pp. 1570-1590, 2001.
[19] S. Rao, L. Alvisi and H. Vin, “The cost of recovery in
message logging protocols,” IEEE Trans. on Knowledge and
Data Engineering, vol. 12(2), pp. 160-173, 2000.
[20] J. Sancho, F. Petrini, G. Johnson, J. Fernandez and E.
Frachtenberg, “On the feasibility of incremental
checkpointing for scientific computing,” in Proceedings of
International Parallel and Distributed Processing
Symposium, 2004.
[21] SPEC CPU 2006 benchmark website, http: //
www.spec.org/cpu2006/.
[22] J. Squyres and A. Lumsdaine, “A component
architecture for LAM/MPI,” in Proceedings of European
PVM/MPI Users' Group Meeting, 2003.
[23] A. Tanenbaum and A. Woodhull, Operating Systems:
Design and Implementation, 2nd ed., New Jersey:
Prentice-Hall, 1997.
[24] T. Tannenbaum and M. Litzkow, “The Condor
distributed processing system,” Dr. Dobb's Journal, vol. 227,
pp. 40-48, 1995.
[25] N. Vaidya, “Impact of checkpoint latency on overhead
ratio of a checkpointing scheme,” IEEE Trans. on
Computers, vol. 46(8), pp. 942-947, 1997.
[26] J. Young, “A first order approximation to the optimal
checkpoint interval,” Comm. ACM, vol. 17(9), pp. 530-531,
1974.
[27] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y.
Zhou and S. Kumar, “Dynamic tracking of page miss ratio
curve for memory management,” in Proceedings of
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2004.

