
PMAlloc: A Holistic Approach to Improving Persistent
Memory Allocation

ZHENG DANG and SHUIBING HE, Zhejiang University, Hangzhou, China

XUECHEN ZHANG, Washington State University Vancouver, Vancouver, USA

PEIYI HONG, ZHENXIN LI, XINYU CHEN, and HAOZHE SONG, Zhejiang University,

Hangzhou, China

XIAN-HE SUN, Illinois Institute of Technology, Chicago, USA

GANG CHEN, Zhejiang University, Hangzhou, China

Persistent memory allocation is a fundamental building block for developing high-performance and in-
memory applications. Existing persistent memory allocators suffer from many performance issues. First, they
may introduce repeated cache line flushes and small random accesses in persistent memory for their poor
heap metadata management. Second, they use static slab segregation resulting in a dramatic increase in mem-
ory consumption when allocation request size is changed. Third, they are not aware of NUMA effect, leading
to remote persistent memory accesses in memory allocation and deallocation processes. In this article, we
design a novel allocator, named PMAlloc, to solve the above issues simultaneously. (1) PMAlloc eliminates
cache line reflushes by mapping contiguous data blocks in slabs to interleaved metadata entries stored in dif-
ferent cache lines. (2) It writes small metadata units to a persistent bookkeeping log in a sequential pattern to
remove random heap metadata accesses in persistent memory. (3) Instead of using static slab segregation, it
supports slab morphing, which allows slabs to be transformed between size classes to significantly improve
slab usage. (4) It uses a local-first allocation policy to avoid allocating remote memory blocks. And it sup-
ports a two-phase deallocation mechanism including recording and synchronization to minimize the number
of remote memory access in the deallocation. PMAlloc is complementary to the existing consistency models.
Results on six benchmarks demonstrate that PMAlloc improves the performance of state-of-the-art persistent
memory allocators by up to 6.4× and 57× for small and large allocations, respectively. PMAlloc with NUMA
optimizations brings a 2.9× speedup in multi-socket evaluation and is up to 36× faster than other persistent
memory allocators. Using PMAlloc reduces memory usage by up to 57.8%. Besides, we integrate PMAlloc in
a persistent FPTree. Compared to the state-of-the-art allocators, PMAlloc improves the performance of this
application by up to 3.1×.

This work was supported in part by the National Key Research and Development Program of China under Grant
2023YFB4502100, 2021ZD0110700, the National Science Foundation of China under Grant 62172361, the Major Projects
of Zhejiang Province under Grant LD24F020012, the Program of Zhejiang Province Science and Technology under Grant
2022C01044, and the US National Science Foundation under CNS 1906541 and 2216108.
Authors’ addresses: Z. Dang, S. He (Corresponding author), P. Hong, Z. Li, X. Chen, H. Song, and G. Chen, College of Com-
puter Science and Technology, Zhejiang University, Hangzhou 310027, China; e-mails: dangzheng@zju.edu.cn, heshuib-
ing@zju.edu.cn, hongpeiyi@zju.edu.cn, zhenxin@zju.edu.cn, xy.chen@zju.edu.cn, haozheshz@zju.edu.cn, cg@zju.edu.cn;
X. Zhang, School of Engineering and Computer Science, Washington State University Vancouver, Vancouver, WA 98686;
e-mail: xuechen.zhang@wsu.edu; X.-H. Sun, Department of Computer Science, Illinois Institute of Technology, Chicago,
IL 60616; e-mail: sun@iit.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0734-2071/2024/09-ART7
https://doi.org/10.1145/3643886

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.

https://orcid.org/0000-0003-3841-7912
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-3730-8901
https://orcid.org/0009-0001-6046-4988
https://orcid.org/0000-0001-7140-5070
https://orcid.org/0009-0004-8774-1617
https://orcid.org/0009-0005-1520-4932
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-7483-0045
mailto:permissions@acm.org
https://doi.org/10.1145/3643886
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643886&domain=pdf&date_stamp=2024-09-20


7:2 Z. Dang et al.

CCS Concepts: • Software and its engineering→ Allocation / deallocation strategies; • Hardware→

Non-volatile memory;

Additional Key Words and Phrases: Dynamic memory allocation, persistent memory, memory fragmentation,
non-uniform memory access

ACM Reference Format:

Zheng Dang, Shuibing He, Xuechen Zhang, Peiyi Hong, Zhenxin Li, Xinyu Chen, Haozhe Song, Xian-He
Sun, and Gang Chen. 2024. PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation. ACM

Trans. Comput. Syst. 42, 3–4, Article 7 (September 2024), 52 pages. https://doi.org/10.1145/3643886

1 INTRODUCTION

Dynamic allocation of persistent memory is heavily used for building high-performance applica-
tions from indexing structures [14, 50, 51, 56–59], transactional memory [19, 29, 31, 77], graph
processing [37, 38, 75], to in-memory database systems [4, 16, 54, 63]. Memory allocators are usu-
ally well-tuned for volatile memory (e.g., DRAM) to achieve low latency, high scalability, and low
fragmentation [6, 26, 67]. The adoption of persistent memory (e.g., Intel Optane DIMMs [17]) has
made researchers rethink the design and implementation of allocators. The allocators designed for
persistent memory need to maintain the salient features of DRAM allocators for high-performance
memory management. More importantly, they should enforce crash consistency with low over-
head so they can safely recover allocated memory objects after failures.

Many allocators have been designed for persistent memory [8, 10, 23, 62, 63, 71]. To achieve effi-
cient allocation and deallocation, they need to manage persistent heaps via various types of meta-
data (e.g., object bitmaps, slab structures, extent headers, and write-ahead logs). In this article, we
name these auxiliary data structures heap metadata. For example, PMDK [17] and nvm_malloc [71]
use bitmaps to mark objects that have been allocated. PAllocator [63] uses logs to ensure crash
consistency between the user’s application and its own operations. Updating the heap metadata
triggers frequent small writes to persistent memory ranging from 1 bit to 64 B. All of these per-
sistent allocators use a size-segregated algorithm for serving small allocation requests to reduce
memory fragmentation.

Our research shows that the existing persistent memory allocators only achieve suboptimal per-
formance for the following four reasons: First, their poor metadata management leads to cache line
reflushes. A typical size of CPU cache line is 64 B [63]. The size of a bitmap is 8 B in nvm_malloc.
When the bitmap is updated repeatedly, the same cache line should be flushed for persistence. The
latency of cache line reflush is 7.5× higher than the latency of writes [13]. We observe that the num-
ber of cache line reflushes accounts for 40.4%~99.7% of the total number of allocator-induced flush
operations in four well-known benchmarks (Section 3.2). Frequent cache line reflush operations
cause the degraded performance of persistent memory allocators.

Second, their poor metadata management leads to small random accesses in persistent memory.
Heap metadata of allocators tend to be randomly accessed in persistent memory. Many allocators
(e.g., PMDK, PAllocator, and Makalu [8]) subdivide the heap into chunks of fixed sizes (e.g.,
4 MB) for ease of management. They maintain bookkeeping metadata in each chunk’s header
space, which is separated from data space to avoid metadata being modified by mistake. This
layout causes headers to be distributed over the whole heap space. After serving a sequence
of allocation and deallocation requests, allocators have to in-place update headers randomly
located in persistent memory. Recent work has shown that persistent memory exhibits much
worse random access performance than sequential access performance [77, 79] for small writes.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.

https://doi.org/10.1145/3643886


PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:3

Consequently, serving these small random writes to heap metadata prevents the allocators from
achieving optimal performance.

Third, static slab segregation causes persistent memory fragmentation. All the allocators for per-
sistent memory use size-segregated slabs for small block allocation. Each slab is a container of
multiple free blocks and handles a memory allocation of a particular size class. Slabs assigned to
one size class cannot be reused for other size classes even though the slabs are mostly empty and
there is no free space in slabs of other size classes [76]. This segregation-induced fragmentation is
intensified in persistent memory, because the persistent heap is stored on the DAX file systems in
the form of files. They cannot be eliminated by restarting the system. This kind of fragmentation
increases memory usage by up to 2.8× for workloads with changing allocation sizes and frequent
“delete” operations (Section 3.4).

Fourth, all of them ignore the non-uniform memory access (NUMA) effect. Persistent memory
is mainly deployed with multi-socket CPUs using the NUMA architecture at data centers. Prior
works [46, 74, 80] reported that, compared to DRAM, the impact of NUMA is more pronounced
for persistent memory. Allocators ignoring the NUMA effect may compromise application perfor-
mance in both allocation and deallocation operations. Specifically, in the allocation operations, the
memory blocks in the persistent heaps may be located in different NUMA nodes. The existing al-
locators may allocate the memory blocks belonging to remote NUMA nodes, resulting in a longer
latency of the subsequent memory accesses. When releasing memory blocks, the deallocation op-
erations running on one NUMA node may have to modify its metadata on another NUMA node.
Our experimental results show that the persistent memory allocators ignoring the NUMA effect
degrade the performance of applications by up to 4.6× (Section 3.5).

In this article, we introduce a NUMA-aware, high-performance, and fail-safe persistent memory
allocator named PMAlloc. Our design objectives focus on the efficient elimination of cache line
reflushes and the reduction of small random writes in heap metadata management. Additionally,
we aim to mitigate slab-induced memory fragmentation and support NUMA-aware allocation and
deallocation. To achieve these goals, PMAlloc supports the following optimizations:

First, PMAlloc uses an interleaved memory mapping from data blocks to their corresponding
heap metadata and interleaved layout of linked lists in thread-local caches to avoid accessing the
same CPU cache line repeatedly. An interleaved appending method is also adopted in log-based
structures (e.g., write-ahead logs) to eliminate reflushes for writing at log tails. Second, because
in-place metadata updates cause random accesses in persistent memory with the limited write
buffer size [79], we add a persistent bookkeeping log to store updates of small metadata in a se-
quential pattern. As a result, we completely remove random metadata accesses from the critical
path of malloc() and free(). Third, PMAlloc supports slab morphing with which blocks in two
size classes may be co-located in one slab during the slab transformation. Therefore, the free space
in slabs of low memory usage can be well utilized, with 4.5% runtime overhead for slab meta-
data management. Slab morphing is automatically enabled when a slab is mostly idle but cannot
be used to serve requests in other size classes. Fourth, PMAlloc maintains a dedicated persistent
memory heap for each processor core and adopts a local-first allocation policy to avoid allocating
remote memory blocks. Furthermore, it supports a two-phase deallocation mechanism including
recording and synchronization to minimize the number of remote memory accesses in the deallo-
cation. Specifically, we call the node where a memory block is located its owner node. Each owner
node uses both a regular bitmap and a shadow bitmap in DRAM for deallocation. In the recording
phase, a remote deallocation request is only recorded in the shadow bitmap of its owner node of
the requested memory block but not visible to users yet. When the regular bitmap does not have
enough space to serve a request, synchronization will be triggered to apply the changes in the
shadow bitmaps and make these blocks available.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:4 Z. Dang et al.

PMAlloc currently supports both log-based and garbage-collection-based crash-consistency
models.1 Results on six benchmarks demonstrate that PMAlloc improves the performance of state-
of-the-art persistent memory allocators by up to 6.4× for small allocations and 57× for large al-
locations. PMAlloc with NUMA optimizations brings a 2.9× speedup in multi-socket evaluation
and is up to 36× faster than other persistent memory allocators. Using PMAlloc reduces memory
usage by up to 57.8%. We also integrate PMAlloc in a persistent FPTree [64]. With PMAlloc, the
performance of this application is improved by up to 3.1× compared with the state-of-the-art al-
locators. We further evaluate the performance of PMAlloc with six real-world applications and it
outperforms other persistent memory allocators by up to 39×.

An earlier conference version of this article was presented in Reference [20]. Here, we extend
the previous paper in several aspects. First, we highlight the critical need for a NUMA-aware per-
sistent memory allocator and introduce NUMA-aware optimizations for both allocation and deal-
location procedures. We provide exhaustive NUMA-related evaluations on PMAlloc, along with a
performance comparison with existing allocators. Second, we enrich the discussion on program-
ming semantics and safety, providing a detailed analysis of existing consistency models applicable
to persistent memory allocators. We also discuss the applicability of our proposed techniques to
future persistent memory products. Third, this article includes additional experiments, as well as
more comprehensive numerical statistics and analysis.

2 BACKGROUND

2.1 Terminology

We first define the commonly used terms in persistent memory allocators.

— Extents are a contiguous sequence of bytes allocated from the persistent heap space directly
for serving large allocation requests. They are typically configured to align with multiples
of the page size, facilitating the rapid location of metadata for memory objects [39, 71].

— Slabs are pre-allocated extents in persistent memory and containers of fixed-size free blocks.
The slab size is 64 KB in this article. Small allocations are served using slabs based on their
size classes.

— Blocks are a contiguous sequence of bytes in persistent memory allocated from the slab
structure for serving small allocation requests.

— Slab bitmaps are located in slab headers, with each bit denoting the state (allocated or free)
of a slab block.

— Heap files are files that reside on the DAX file system in persistent memory and are mapped
as a persistent heap.

— Thread-local cache (tcache) tracks addresses of a distinct list of free blocks assembled from
local free requests, which may come from multiple slabs. When an allocator receives a re-
quest, it searches the tcache first to serve the request. When a block is freed, it goes to the
tcache of the thread that frees it, not the one where it was allocated from previously. We
use the LIFO algorithm to manage the tcache. When tcache is empty, it is refilled with block
addresses from slabs.

— Write-ahead logs (WALs) [63, 71] are used to record changes to heap metadata/data when
persistent memory allocators use transactions for fail-safe recovery. WAL entries are de-
signed to save essential metadata (e.g., memory addresses and current values).

1The source code for PMAlloc is available at https://github.com/ISCS-ZJU/PMAlloc

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.

https://github.com/ISCS-ZJU/PMAlloc


PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:5

2.2 Heap Management in Persistent Memory

Small allocations: Slabs are widely used for small allocations (e.g., <16 KB) to reduce mem-
ory fragmentation. We implement a new slab structure for small allocations in persistent mem-
ory leveraging the design principles of existing slab structures (i.e., those in jemalloc [26] and
nvm_malloc [71]). Specifically, each slab has a persistent header and a volatile header (called vs-
lab). The persistent header stores the metadata that is necessary for recovery, including a bitmap
whose bits are sequentially mapped to the following blocks. The volatile vslab serves for a fast
search of free blocks. It could be rebuilt during failure recovery.

Large allocations: Allocators also need to manage large allocations (e.g., ≥16 KB). We use the
similar structures in jemalloc as examples. Extents are managed using virtual extent headers

(VEHs) in DRAM for efficiently searching, splitting, and coalescing of heap extents. Three lists
are used to manage VEHs in PMAlloc. An activated list stores the VEHs of allocated extents. A
reclaimed list stores the VEHs of freed extents with physical persistent memory being mapped to
virtual addresses. And a retained list stores the VEHs of free extents that only have virtual addresses
allocated and their physical memory has been unmapped in the process address space.

Upon serving a large allocation, allocators search the reclaimed list and retained list using the
first-fit algorithm. If a block is found, then its VEH will be moved to the activated list. If none is
found, then a new VEH is created and added to the activated list. When an extent is freed, it is
returned to the reclaimed list. PMAlloc uses a decay-based approach to manage free extents in
the reclaimed list and retained list [26]. It uses a smootherstep function to calculate the maximum
amount of memory THmax that can be used by the lists. If the memory usage of the reclaimed
list is higher than THmax , then its extents will be moved from the reclaimed list to the retained
list. Similarly, if the memory usage of the retained list is higher than its threshold, then its extents
will be moved to OS. When a VEH is removed from the retained list, its corresponding extent is
unmapped in the process address space and its header and extent are freed in persistent memory.
A similar approach has been used in the existing work (e.g., jemalloc). We use the same parameters
of the smootherstep function and time intervals (i.e., 50 ms) as those set in jemalloc.

Metadata association: Allocators require an indexing structure to associate metadata with the
memory objects they manage. Typically, when users deallocate memory, they only provide the
starting address of the memory object. The allocator then uses this index to retrieve the corre-
sponding metadata, such as the vslab or the VEH. In this article, we adopt a page-based radix tree
to serve this purpose, similar to jemalloc. Each 4 KB page managed by the allocator is represented
by a 16-byte leaf in the radix tree, which results in a small overhead of 0.4% to the total heap size.
The leaf node contains a size class field to identify whether the page is part of a slab or an extent,
and a pointer pointing to either the vslab or the VEH. With the radix tree, the allocator can effi-
ciently locate a memory object’s metadata by aligning the object’s starting address to the page size
and then searching the tree. Note that when new memory regions are allocated by the operating
system, their internal pages are initially registered in the radix tree before any allocations take
place. This mechanism also enables the identification of illegal addresses in free() calls, as detailed
in Section 4.4.

2.3 Consistency Models for Persistent Memory Allocators

In persistent memory allocators, system crashes can lead to a misalignment between the alloca-
tor’s metadata and the actual memory blocks accessible to applications. Such inconsistencies arise
when a memory block is allocated, but a system failure occurs before the user can store this block
in a designated pointer. This phenomenon is referred to as “persistent memory leakage.” Simi-
lar consistency issues may also arise during deallocation operations. Specifically, if the allocator

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:6 Z. Dang et al.

marks a block as released but the user has not nullified the associated pointer, then the allocator
may re-allocate the same block, leading to unintended data corruption. Consequently, maintain-
ing consistency of allocator metadata and user-accessible memory blocks is a primary concern for
persistent memory allocators. Current designs of persistent memory allocators primarily adhere
to three major consistency models:

Log-based model: In the log-based model [63, 71], users must supply the pointer for allocation
or nullification through the allocator interface. This model employs WALs to record changes in
both heap metadata and user pointers. In the event of a system crash, interrupted operations can
be recovered to a consistent state by replaying the WALs. Within this model, allocators must use
flush instructions to persist not only metadata changes but also the corresponding log entries in
the WALs. Although this approach incurs a higher persisting overhead, it provides the highest
level of consistency. PAllocator [63] and nvm_malloc [71] use this model.

GC-based model: The GC-based model [8, 10] utilizes a garbage collection (GC) mechanism
to rebuild heap metadata after a system crash, thereby eliminating the need to persist metadata and
WALs. This model relies on traversing the heap from pre-defined root pointers, enabling the GC
process to identify memory blocks accessible to the user and reconstruct their metadata. Although
this approach often yields superior allocation speeds, it presents several limitations. First, the GC-
based model restricts certain capabilities of unmanaged-memory languages like C/C++, commonly
used in the development of performance-sensitive systems [63]. Second, the garbage collection
technique utilized in existing persistent allocators, specifically conservative garbage collection [8,
9], is error-prone and may not prevent memory leaks [10]. Makalu [8] and ralloc [10] apply this
model.

Internal collection based (IC-based) model: The internal collection-based model [17] nei-
ther prevents memory leaks nor guarantees leak detection. Instead, it allows users to identify
potentially leaked memory blocks by exposing the allocator’s internal memory block collections
through a dedicated interface. Users can then identify leaks by traversing this full set of blocks
and comparing it against their own set of reachable memory blocks. This approach requires per-
sisting allocator metadata. However, it eliminates the need for WALs, albeit at the cost of potential
memory leaks and traversal. overhead. PMDK [17] adopts this model.

3 MOTIVATION

In this section, we begin by examining the potential overhead introduced by persistent memory
allocators in real-world applications. We then experimentally investigate performance issue and
memory fragmentation induced by the poor heap metadata management in the existing allocators.
We use different applications to generate workloads exposing various internal issues.

3.1 Allocation Overhead in Persistent Memory Applications

The persistent memory allocators differ substantially from their volatile counterparts. Volatile
memory allocators focus solely on providing fast, scalable memory allocation and deallocation.
Differently, persistent memory allocators bear the added responsibility. They must ensure that
memory operations are executed persistently and crash-consistently. This necessitates the inclu-
sion of expensive flush and fence operations and additional data structures like WALs to main-
tain crash consistency, thereby making persistent memory allocators more time-consuming than
volatile ones.

To prove that, we conducted experiments using a persistent B+-Tree, FPTree [64] and ran it with
multiple existing persistent memory allocators (see Section 2.3). We collected the execution time
of the benchmarks using the Linux perf tools. FPTree is executed with 40 threads. FPTree uses the
same workload configuration as described in Section 8.5. Figure 1 shows the results. For IC- and

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:7

Fig. 1. Allocators’ execution time and percentage of flush operations induced by allocators.

log-based allocators, the allocator’s overhead can be exceedingly high, constituting up to 74.8%
of the application’s total execution time. This observation aligns with the previous research [46].
Furthermore, we found that flush operations initiated by the allocators can make up to 57% of the
total flush operations. For GC-based allocators, Makalu and Ralloc account for 43.2% and 14.7%
of the total execution time, respectively. They rarely use flush operations in the runtime, because
they use a weak consistency model (discussed in Section 2.3).

The main reason behind this performance degradation is the consistency constraints imposed by
persistent semantics. Allocators are compelled to immediately persist their metadata modifications
using costly flush and fence operations. Worse, flushing small chunks of metadata can trigger cache
line reflushes and result in random access to persistent memory. We will delve into these issues in
Sections 3.2 and 3.3. In addition, if memory allocators are not designed for widely adopted NUMA
architecture, then they can inadvertently cause remote memory accesses as discussed in Section 3.5.
Given the considerable overhead associated with persisting allocator metadata, there is an urgent
need to manage allocation metadata more efficiently.

3.2 Allocator-induced Cache Line Reflushes

With modern Intel processors, standard flush operations such as clflushopt/clwb are designed to re-
turn quickly once the flushed data arrives at the write pending queues (WPQs) in the processor’s
memory controller. Subsequent writes to persistent memory happen asynchronously, resulting in
a low flush latency (approximately 100 ns). However, repeated flushes to the same CPU cache line
induce latency. This is due to the requirement that data must first be read back into the cache for
a new flush instruction to be executed. If the most recent data is still in transit within the WPQ,
then the subsequent flush must wait until the preceding flush operation has been completed in
the persistent memory and the data has been reloaded into the cache. This behavior unveils the
inherent characteristics of persistent memory hardware, which has a high latency of reads and
writes, consequently leading to a high latency of cache line reflushes.

The latency of cache line reflushes is determined by the reflush distance between two accesses
to the same cache line. When accessing persistent memory becomes a performance bottleneck in
allocators, we can quantify the reflush distance as the number of accesses to unique cache lines.
For example, given a sequence of cache lines (A, B, C, D, A) that are flushed consecutively, the
reflush distance of cache line A is 3. Our experiment shows that the latency of cache line reflushes
is decreased from 800 ns to 500 ns when reflush distance is increased from 0 to 3. This is because

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:8 Z. Dang et al.

Fig. 2. Ratio of cache line reflush.

the preceding flush instruction has extra time to complete when the reflush distance is increased,
thereby reducing the waiting time for any subsequent reflush instruction. In this article, we assume
a cache line reflush occurs when its reflush distance is smaller than 4. Otherwise, a regular flush
occurs. We choose 4 as the representative reflush distance, because we observe that most cache line
reflush distance is smaller than 4 and a larger distance leads to a smaller performance degradation.
The average latency of cache line reflushes is 3× and 7× higher than random and sequential writes
in persistent memory [13], respectively.

To study the number of allocator-induced cache line reflushes, we run four well-known bench-
marks including Threadtest, Prod-con, Shbench, and Larson. The details of the experimental setting
are presented in Section 8. We trace flush operations in the benchmarks by substituting standard
flush functions with custom C preprocessor macros. The percentage of both cache line reflushes
and regular flushes are shown in Figure 2. We observe that the number of cache line reflushes
accounts for up to 99.7%, 94.4%, and 98.8% of the total number of flush operations when running
PMDK, nvm_malloc, and PAllocator, respectively. This is because they consecutively update the
small metadata objects in slab headers or WALs or both to maintain strong consistency. These
cache line reflushes slow down the allocation and deallocation operations. We also run FPTree
with persistent memory allocators to show the impact of cache line reflush in persistent memory
applications. The results show that the number of cache line reflushes accounts for 55%, 47%, and
54% for PMDK, nvm_malloc, and PAllocator, respectively. Makalu and Ralloc have zero reflushes,
because they rarely using flush operations in the runtime. They ensure consistency through post-
crash garbage collection (GC), which leads to a longer recovery time and weaker consistency
guarantee. Compared to these works, PMAlloc can eliminate cache line reflushes in both log-based
(PMAlloc-LOG) and GC-based (PMAlloc-GC) consistency models.

3.3 Allocator-induced Small Random Access

For large allocations, most modern allocators (e.g., PMDK and Makalu) store bookkeeping meta-
data in the header space of a large memory region (e.g., 4 MB). The bookkeeping metadata tracks
all extents in the region. The header space is typically placed in a dedicated location separated
from heap data space. This layout avoids the header space being modified by users mistakenly.
Updating the metadata (e.g., bitmaps and logs) in the header space requires small writes to per-
sistent memory. To study its access pattern, we profile the memory addresses of the first 1,000
flush operations of metadata when running the DBMStest benchmark [25] using four allocators,
including nvm_malloc, PAllocator, PMDK, and Makalu. We exclude Ralloc because its open-source

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:9

Fig. 3. Small random writes in large allocation. The X-axis denotes the number of flushes.

Fig. 4. Small random writes of nvm_malloc with different allocation algorithms.

implementation does not work correctly for large allocations. We show the results in Figure 3. We
observe that, for managing the bookkeeping metadata, allocators issue a large number of small
random writes to persistent memory and the request addresses are distributed in the whole heap
space. The reason is that, to serve a large request, allocators typically use specialized allocation
algorithms (i.e., best-fit, first-fit, or their variants). Their primary goal is to identify the most ap-
propriate extents to minimize memory fragmentation. Because the optimal extent candidate can
be located in any memory region within the heap space, random accesses are generated when
updating its associated bookkeeping metadata. To further investigate the impact of different allo-
cation algorithms, we modify the allocation strategy of nvm_malloc to implement both best-fit
and first-fit algorithms. We execute the DBMStest benchmark using both implementations. As il-
lustrated in Figure 4, the allocator’s memory access pattern remains highly random. Regardless of
the specific allocation algorithm, after a sequence of allocations and deallocations, the most favor-
able extents for serving neighboring requests can reside in disparate memory regions. This leads
to small random accesses for updating bookkeeping metadata.

3.4 Fragmentation Caused by Static Slab Segregation

For allocating small objects, slabs are widely used in the existing allocators including volatile mem-
ory allocators (e.g., jemalloc-5.2.1 [26] and tcmalloc-2.9.1 [28]) and persistent memory allocators
(e.g., Makalu [8], Ralloc [10], nvm_malloc [71], PMDK-1.11 [17], and PAllocator [63]). Slabs are

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:10 Z. Dang et al.

Table 1. Workload Configuration in Fragbench

Workload Before Delete After
W1 Fixed 100 B 90% Fixed 130 B
W2 Uniform 100–150 B 0% Uniform 200–250 B
W3 Uniform 100–150 B 90% Uniform 200–250 B
W4 Uniform 100–200 B 50% Uniform 1,000–2,000 B

Fig. 5. Peak memory consumption of Fragbench.

segregated based on size classes. The size classes are determined when a slab is initialized and
cannot be changed at runtime. However, the request size of memory allocation could be changing
over the execution lifespan of real-world server applications [40, 69, 76]. We run the fragmenta-
tion benchmark simulating the real-world behaviors of memcached storage systems in Meta [69]
(which we refer to as Fragbench) to study the memory usage of popular allocators. Fragbench
has three execution phases: Before, Delete, and After. In the Before and After phases, Fragbench
allocates 5 GB of memory using objects from a pre-defined size distribution and randomly deletes
existing objects to keep the amount of live data from exceeding 1 GB. In the Delete phase, Frag-
bench deletes objects randomly. The three phases are executed in order. We change the object size
distribution and the ratio of deleted objects in four representative workloads2 (W1–W4, as shown
in Table 1) derived from the benchmark to cover a wide range of characteristics of real-world ap-
plications [32, 40]. Similar workloads have been used in the prior research (i.e., RAMCloud [69],
PAllocator [63], and log-structured NVMM [31]).

The peak memory consumption is presented in Figure 5. To manage the 1 GB live heap data,
existing allocators require memory usage of up to 2.8 GB. This result indicates the persistent mem-
ory is severely under-utilized. The reason is static slab segregation used in the existing allocators
responds to the change of request sizes by allocating more slabs in other size classes [41]. It can-
not use the free space in the existing slabs of different size classes. This is because the allocators
cannot change a slab’s size class at runtime until it is completely free. The memory fragmentation
caused by static slab segregation in persistent memory has a larger impact than in volatile memory,
because the memory fragments cannot be eliminated by restarting.

3.5 Allocator-induced Slow NUMA Access

NUMA architecture has been widely used to increase the capacity and bandwidth of persistent
memory. A NUMA system consists of multiple NUMA nodes, which further consist of CPU cores
and DIMMs (DRAM/PM). The NUMA nodes are connected via inter-node links, e.g., Intel Ultra

2Although there are eight workloads in the original Fragbench, we only choose the four workloads, because other work-
loads show similar patterns.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:11

Fig. 6. NUMA effect with various persistent memory allocators.

Path Interconnect. Prior research [45, 74, 80] has established that accessing persistent memory
located on remote NUMA nodes results in increased latency. This performance degradation is pri-
marily due to the directory-based cache coherence protocol used in current Intel processor archi-
tectures [36] for NUMA domain management. In this protocol, the coherence state of each cache
line is embedded within the line itself in the persistent memory. Consequently, remote memory
accesses may necessitate an additional directory “write” operation to update the coherence state,
for instance, transitioning from an “Exclusive” to a “Shared” state. The directory “write” operation
can be triggered by either remote read or write access. Prior work [46] has demonstrated that this
mechanism can substantially reduce remote read bandwidth, as it involves both read and write
operations during read accesses.

We quantitatively study the NUMA impact using four established benchmarks and multiple per-
sistent memory allocators. These benchmarks are executed with 20 threads, either confined to a
single NUMA node (single-socket configuration) or distributed across both nodes (multi-socket
configuration). In the multi-socket setup, we use pthread_setaffinity_np() to pin half of the threads
on the first node and the other half on the second node. Figure 6 presents the results. Across
all multi-socket experiments, we observe that existing allocators experience performance degra-
dation, varying between 1.29× to 4.6×. This degradation arises due to the intricacies of NUMA
architecture influencing both memory allocation and deallocation operations. During allocation,
threads may serve memory blocks from a remote NUMA node, introducing added latency for sub-
sequent memory operations. During deallocation, releasing a memory block on remote NUMA
nodes leads to write amplification for updating metadata (e.g., bitmaps) on the remote NUMA
nodes.

In summary, both our study and prior work [46] show that NUMA-aware persistent memory
allocators are highly needed for developing large-scale high-performance applications.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:12 Z. Dang et al.

4 PMALLOC

In this section, we present the programming model of PMAlloc and describe the design of its ma-
jor components: small allocator and large allocator. The PMAlloc software is developed with four
optimizations including (1) interleaved mapping, which reduces cache line reflushes, (2) slab mor-
phing, which alleviates segregation-induced fragmentation, (3) log-structured bookkeeping, which
improves the write locality, and (4) NUMA-aware allocations and deallocations for the persistent
memory system with multiple NUMA nodes. We illustrate all the components of PMAlloc and
where each optimization is applied in Figure 7.

4.1 Programming Model

We use pmalloc_init() to create a new PMAlloc instance and pmalloc_exit() to safely exit. To
avoid the memory leak, we adopt the pmalloc_malloc_to() and pmalloc_free_from() API used
in other allocators [17, 63, 71] to atomically allocate and free objects on persistent memory, respec-
tively. Function pmalloc_malloc_to() allocates a block or an extent according to user-specified
size in the persistent heap and attaches it persistently at a user-specified address . We use an offset-
based pointer representation to allow persistent structures to be mapped at different virtual ad-
dresses after failure recovery. The same technique has been used in previous projects [10, 12, 15].
The pmalloc_free_from() returns a block or an extent specified by address to the persistent
memory heap and nullifies the user-provided persistent pointer.

Currently, we implement two variants of PMAlloc including PMAlloc-LOG supporting log-
based transactional model and PMAlloc-GC supporting GC-based model (see Section 10). PMAlloc-
LOG uses write-ahead logs (WALs) to maintain crash consistency. When an allocation or deal-
location action is initiated, all associated metadata updates are recorded in the WALs. These logs
also contain the corresponding user-provided pointers passed via the allocation or deallocation in-
terfaces. Before updating the actual data structures in persistent memory, PMAlloc-LOG ensures
that the WALs are written persistently. During failure recovery, PMAlloc-LOG utilizes the WALs to
identify any incomplete allocation or deallocation operations, whose metadata have been updated
but user-provided pointers have not. For such partially completed operations, PMAlloc-LOG re-
verses the metadata changes to prevent any leakage in the persistent memory. In PMAlloc-GC, no
metadata or WALs flushing is used for small allocations to achieve the best runtime performance.
However, it needs to execute the post-crash GC during recovery to rebuild heap metadata and
check memory leaks based on user-defined root pointers. The GC blocks the normal execution of
applications [8]. PMAlloc provides a pmalloc_set_root() interface for users to specify a persis-
tent pointer as the root pointer. The root pointers are stored in a specific persistent space, with
up to 512 top-level roots per arena. For large allocations, PMAlloc-GC has the same code path as
PMAlloc-LOG.

4.2 Small Allocator

For small allocation (<16 KB), PMAlloc implements arena and tcache to reduce the thread con-
tention. Each CPU core owns an arena, while each thread owns a tcache. Each thread will be
assigned to an arena that has the least number of assigned threads. An arena maintains one freel-
ist of slabs (f reelistslab ) for every size class. The slabs in the freelists are partially full. A tcache
maintains one freelist of blocks per size class (f reelistblock ). Each block in the freelist is ready to
serve an allocation.

When a small block of a certain size is requested, the working thread gets its size class and then
tries to get a block from the corresponding f reelistblock in tcache. If f reelistblock is empty, then
the working thread will fill it until full using slabs from their corresponding f reelistslab in the

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:13

Fig. 7. Overview of PMAlloc.

arena. Thread synchronization is required here, because multiple threads may be attached to the
same arena. If there is no slab in f reelistslab , then it will first use slab morphing (Section 5.2) to
find blocks of other size classes to fill tcache. When no blocks can be found using slab morphing,
it will require a new slab by executing a large allocation. Once f reelistblock is filled, users can
retrieve a block from tcache immediately.

When a user releases a small block, the working thread will first use a radix-tree (as detailed
in Section 2.2) to find its size class and vslab. The vslab contains a pointer to the corresponding
slab header in persistent memory. The persistent slab header will be updated to record the release.
Then, the working thread will try to return the block to its corresponding tcache for serving future
allocation requests. If the f reelistblock of the tcache is full, then the working thread will return
the small block to its vslab directly, bypassing its tcache.

PMAlloc uses interleaved mapping of slab bitmaps and interleaved layout of tcache (Section 5.1)
to avoid cache line reflushes when small heap metadata accesses are required.

4.3 Large Allocator

The large allocator in PMAlloc is responsible for allocating slabs and extents that are ranging
from 16 KB to 2 MB. For objects larger than 2 MB, PMAlloc calls mmap() to allocate a given
size extent. The architecture of the large allocator is shown in Figure 11 in Section 5.3. When
pmalloc_malloc_to() is called, it first searches the reclaimed list using the best-fit algorithm. If
no extent is found, then the search is repeated using the retained list. If an extent is found, then its
virtual extent header (VEH) is moved to the activated list. The extent may need to be split if the
existing extent is larger than the request size. The suitable part after splitting is returned to the
user, while the remaining part is reinserted into the source list. If no extents are available in either
the reclaimed list or the retained list, then PMAlloc calls mmap() to allocate a new extent of 4 MB,
which is split into two parts. PMAlloc returns the first part to user and adds it to the activated list.
The second part is added to the reclaimed list. Finally, for each part, PMAlloc adds an item to the
radix-tree pointing to the VEH for the part.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:14 Z. Dang et al.

When pmalloc_free_from() is called to free a large memory object, PMAlloc searches for its
VEH in the radix-tree using its memory address. The VEH is moved from the activated list to
the reclaimed list. If the extents adjacent to the currently freeing extent are also free, then they
will be coalesced into a new, larger extent before inserting to the reclaimed list. PMAlloc uses a
decay-based approach to manage VEHs in the reclaimed list and retained list (see Section 2.2). For
failure recovery, when a VEH is created or updated, its essential metadata is added to the persistent
bookkeeping log. The operations of the persistent bookkeeping log are described in Section 5.3.

4.4 Sanity Check

Unlike volatile main memory, simple programming bugs can cause permanent corruption to per-
sistent memory heap [23]. Therefore, it is imperative for a robust persistent memory allocator to
proactively identify and mitigate such adverse behaviors. In PMAlloc, we have added layers of san-
ity checks to safeguard against incorrect or malicious use of memory allocation APIs, specifically
targeting issues such as double-free or invalid-free. We describe three sanity-check mechanisms.

Mapped address verification: Initially, all users’ address spaces that are mapped to the persis-
tent memory are registered in a radix tree maintained by PMAlloc. Upon a deallocation request,
we check whether the address falls within the pre-registered address range in the radix tree. If it
does not, then the radix tree generates an error for the unfound address, marking the deallocation
request as illegal and promptly aborting it.

Internal range validation: If an address does fall within the registered address range, then
PMAlloc subsequently verifies its validity against the address range of its corresponding vslab
or VEH. For small blocks, the address must reside within the data space managed by the vslab
and align precisely with the boundaries of memory objects within the slab. Conversely, for large
extents, the address must correspond exactly to the extent start address recorded in the VEH.

Allocation status check: Even if an address passes the above sanity checks, one final check
is performed to confirm whether the object at that memory location is currently allocated. The
allocation status is verified using vslab for small memory objects and using VEH for large ones.
This prevents the issue of attempting to deallocate an object that has already been freed, commonly
known as a double-free error.

These rigorous checks form an integral part of PMAlloc’s design, serving as preventive measures
to guard against both unintended and malicious misuse of the memory allocator APIs.

5 OPTIMIZATION OF METADATA MANAGEMENT

In this section, we introduce three optimizations that address the metadata management issues in
persistent memory allocators.

5.1 Interleaved Mapping

Using the slab structure, contiguous small allocations from the same slab need to update consecu-
tive bits in slab bitmaps. Because these bits are likely stored in one CPU cache line, it may cause
allocator-induced repeated cache line flushes, leading to longer request latency. A naive approach
is allocating blocks at random offsets. Thus, multiple cache lines may be accessed in a random
order, avoiding reflushing the same cache line. However, this approach compromises the spatial
locality of blocks in a persistent heap. Another approach used in the previous work [8, 10] is man-
aging free blocks in a slab using a linked list rather than bitmaps. Each free block has an embedded
link pointer. There are three issues with this design. First, placing a header right before the allo-
cated data blocks is prone to metadata corruption from memory corruption bugs [23]. Second, the
size of link pointers is much smaller than the size of a cache line. When the link pointers and their
corresponding data blocks are stored in the same cache line, allocator-induced reflushes are still

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:15

Fig. 8. Interleaved bitmap mapping.

possible. Third, blocks in tcache may still be mapped to the same cache line. Therefore, none of
the existing work completely solves the problem.

We design a two-level interleaving scheme to produce a metadata layout that eliminates cache
line reflushes while maintaining the spatial locality of blocks.

Interleaved mapping of slab bitmaps. Assume we have a bitmap, which has N bits in total.
We divide the bitmap into bit stripes, each of which is mapped to a cache line. The stripe size d is
the total number of bits in a stripe and is capped by the cache line size. We then map consecutive
blocks to bits in different stripes in an interleaved manner. We use Figure 8 for illustration. In this
example, we assume the number of bit stripes is 4. In the baseline, bits are sequentially mapped
to the data blocks. For example, bits M0, M1, and M2 are mapped to data blocks B0, B1, and B2,
respectively. As allocators need to persist the bitmap upon each allocation for crash consistency,
contiguous allocations of B0, B1, and B2 result in reflushing the same cache line storing bits M0,
M1, and M2. In the interleaved mapping, M0, M1, and M2 are placed in different bit stripes and
cache lines. Because M0, M1, and M2 are, respectively, stored in cache lines #0, #1, and #2, there
will be no cache line reflush when B0, B1, and B2 are allocated in the slab.

Interleaved layout of tcache. When tcache is used, the order of block allocation is deter-
mined by the LIFO algorithm managing tcache. Therefore, it is still possible to have cache line
reflushes of contiguous allocations if the bits of blocks selected by tcache are mapped to the same
cache line. To avoid cache line reflush issue, we design a new interleaved tcache layout (shown in
Figure 9(a)). Specifically, we divide a tcache into multiple sub-tcaches. The number of sub-tcaches
is determined by the number of bit stripes. Each sub-tcache caches addresses of blocks whose
corresponding bits are mapped to the same cache line. We maintain a cursor to indicate which
sub-tcache is used for current allocation. The cursor points to the next sub-tcache after one alloca-
tion, which ensures that sub-tcaches mapped to different cache lines are used to serve contiguous
allocations. For example, assume that tcache is filled with blocks corresponding to bits M0 to M15
in Figure 9(a). Because tcache selects the blocks alternatively from the 4 sub-tcaches for serving
contiguous small allocations, we can guarantee that tcache does not select bits mapped to the same
cache line. Consequently, cache line reflushes are effectively eliminated.

Interleaved appending of logs. Existing approaches sequentially append new log entries to
the tail of WALs or other log-based structures as shown in Figure 9(b). They may cause cache line
reflushes if the size of log entries is smaller than the cache line size. To eliminate this kind of cache
line reflushes, we design an interleaved log-appending approach. Specifically, PMAlloc partitions

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:16 Z. Dang et al.

Fig. 9. Interleaved mapping used in tcache and log structures.

the tail part of a log into multiple log segments (e.g., Segment #0,#1 in the figure). The size of
each segment is 64 B. The segments are aligned to the cache line boundary. The log entries are
appended to different segments alternatively. We use an example to further illustrate it as shown
in Figure 9(b). The working thread appends five log entries denoted as LE0 to LE4. We assume their
size is 8 B. When the sequential appending is used, LE1 to LE4 are appended to the log sequentially,
causing cache line reflushes. In contrast, when the interleaved appending is used, LE1 and LE3
are appended to Segment 1. LE2 and LE4 are appended to Segment 0. Because these consecutive
log entries (e.g., LE0 and LE1) are stored in two segments in different cache lines, PMAlloc can
effectively eliminate repeated cache line reflushes.

5.2 Slab Morphing

The existing allocators use static slab segregation to manage slabs, leading to memory fragmen-
tation. We design a new technique, named slab morphing, to address this issue. The idea is that
when memory usage of a slab is low, PMAlloc allows it to be transformed to a slab of another size
class. During the transformation, the slab may store two types of data blocks of different sizes. We
need to address two challenges in the design of slab morphing. (1) The scheme needs to guarantee
the correctness of indexing two types of blocks belonging to different size classes. (2) We need to
minimize the overhead of managing these blocks.

Block allocation using slab morphing. We manage all the slabs using an LRU list. The slab
that is least recently accessed is placed at the head of the list. Slab morphing is only enabled when
a small object request comes but existing slabs of the request size class have no space. PMAlloc
will choose a slab for morphing and transforming its metadata.

Selecting a slab candidate for morphing. PMAlloc scans the LRU list from head to tail and chooses
a slab for morphing when its Ratiooccupy is lower than a threshold of space utilization (SU ),
where Ratiooccupy is defined as the ratio of the number of allocated blocks to the number of total
blocks in the slab. We set SU as 20% in its current design (see Section 8.7). Because slab morphing
needs to change the format of slab headers, a slab will not be selected if the new header space is
overlapped with block spaces having live data.

Transforming slab metadata. Then, PMAlloc needs to reset the metadata of the chosen slab. For
the convenience of our discussion, we call the slab before, in, and after morphing slabbef or e , slabin ,
and slabaf ter , respectively; we refer to the blocks allocated in slabbef or e as blockbef or e . Slabbef or e

and slabaf ter are regular slabs whose headers consist of a size_class field, a data_offset field (the
offset of the starting address of the data region relative to the starting address of a slab), and its

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:17

Fig. 10. Illustration of slab morphing.

bitmap field. Slabin needs to support indexing blocks of two size classes. Therefore, we add addi-
tional metadata to help implement this functionality. Specifically, we add an old_size_class field
and old_data_offset field in the header of slabin to support the index of blockbef or e . We also add an
index_table that comprises entries for each blockbef or e . Each entry within the index_table stores
the block index in slabbef or e and the current allocation state of the block. All allocation states are
initially set to “Allocated,” and they are subsequently updated to “Free” once blockbef or e is deallo-
cated. The presence of the index_table is crucial for maintaining the recoverability of blockbef or e ,
since direct access to the bitmap of slabbef or e is no longer possible. The index table has a small
memory footprint, because (1) each table entry is only 2 B and (2) we only have a limited number
of blocksbef or e , since we only select a slab for morphing when its slab usage is low. Finally, we
add a counter cntslab in the volatile header vslab to denote the number of allocated blockbef or e in
the slab. If cntslab > 0, then the slab is a slabin , otherwise it is a regular slab. We also maintain
a counter cntblock in the volatile memory for each block in the slabin to denote the number of
blockbef or e that occupy it. The corresponding bitmap bit for a block will remain set if its cntblock

is not equal to zero. This non-zero value indicates that the memory block is still occupied by one
or more blockbef or e .

We transform metadata in the following steps: Step 1: set the old_size_class and old_data_offset;
Step 2: set the index_table; Step 3: set the size_class, data_offset, and bitmap in the new slab header.
Because slab transforming involves multiple steps of modification of metadata, we add a flag field
to indicate the step of transformation to ensure crash consistency. Flag is set to 0 for slabin and
slabaf ter . During the transformation, we atomically increment flag by 1 after each step. Size_class,
data_offset, and allocation information in the bitmap will be changed after we have a copy of them
in old_size_class, old_data_offset, and index_table. We can undo the morphing if a crash happens
during the transformation using flag, which denotes which step has been completed. After meta-
data transformation, slabin is removed from the LRU list, because it cannot morph again. It is also
removed from the slab list of old_size_class and inserted into the slab list of size_class.

Figure 10 shows an example of transforming a slab of a small size class to a slab of a large size
class with the slab morphing technique. Before morphing, B1, B5, and B6 are allocated in slabbef or e .
During the transformation, cntblock are set for each block. For NB0, its cntblock is set to 1, because
only B1 of slabbef or e is occupied in NB0. For NB2, its cntblock is set to 2, because both B5 and B6
are occupied in NB2. Note that the slab morphing also supports slab transforming from a large
size class to a small size class.

Block release. When a block is released, PMAlloc determines whether it is a block in slabbef or e

by querying cntslab and cntblock . Blockbef or e will be directly put back to slabin bypassing tcache

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:18 Z. Dang et al.

with its state set to free in index_table. When cntslab becomes 0, slabin is reset to a regular slab
slabaf ter and is inserted into the LRU list again.

The slab morphing procedure introduces a small overhead, because it only involves metadata
modification. This overhead could be further reduced by employing a background thread to iden-
tify and morph slabs with low memory utilization. However, for implementation simplicity, this
optimization is not incorporated in the current version. For allocation and release of blocks of a
new size class, blocks in slabin can be used to fill the tcache as normal blocks without extra over-
head. For the release ofblocksbef or e , PMAlloc needs to modify its state in the index_table and flush
it. These operations have a low cost, because blocksbef or e only account for up to 20% of the total
blocks as set in our experiments. We quantify its overhead in Section 8.3.

5.3 Log-structured Bookkeeping

For large allocation and release, PMAlloc uses a virtual extent header (VEH) in DRAM to man-
age every extent in persistent memory. VEHs are moved between the activated list, the reclaimed
list, and the retained list. The essential metadata (e.g., size and address) needs to be updated in
their corresponding extent headers in persistent memory. Because of in-place extent header up-
dates, random access to the headers is unavoidable. To eliminate the random accesses induced by
large allocations, we design a log-structured bookkeeping scheme as shown in Figure 11. Specifi-
cally, when a virtual extent header (e.g., VEH1) is updated, its essential metadata is appended to
a persistent bookkeeping log. The log is sequentially written and cleaned up when it is full. We
trade persistent memory space for better spatial locality.

The overhead of log-structured bookkeeping in allocators is very low for the following reasons:
First, the persistent bookkeeping log only stores small essential metadata. Each log entry is only
8 B, consisting of 26 bits for “size,” 36 bits for “addr,” and 2 bits for “log type.” For “addr,” we only
need 36 bits, because (1) only the low-order 48 bits are used in 64-bit address space in Intel x86
processors [63], and (2) our address is 4 KB-aligned, thus the lower 12 bits are not needed in the
log entry. For processors supporting the 5-level page table processor feature [33], they allow the
operating system to extend the size of virtual addresses from 48 bits to 57 bits. In such systems,
we utilize a log entry of 16 B. The first 8 B stores “addr,” and the second 8 B stores “log type” and
“size.” Despite this increment, the log entry size remains relatively insignificant compared to the
requested allocation size. This is different from traditional log-structured file systems, whose log
entry can be as large as a request size. Consequently, the space overhead of metadata logging
is much smaller than data logging in traditional log-structured file systems. Therefore, we can
afford to trade more space for a better space locality without incurring the overhead of garbage
collection. Second, log entry size is uniform in persistent bookkeeping logs, leading to a simplified
log management process.

One major challenge is cache line reflushes for writing small log entries. We introduce the layout
of persistent bookkeeping logs and how to prevent cache line reflushes in logging and how to
reduce GC overhead.

The layout of persistent bookkeeping log. The persistent bookkeeping log has two com-
ponents in DRAM and persistent memory, respectively. Its layout is shown in Figure 12. At the
time of initialization, PMAlloc creates a file of 100 MB in persistent memory to store log entries.
A log file is divided into chunks of 1 KB, each of which can store 128 log entries. The chunks are
managed as a linked list. The log file has a log header, which stores two pointers and an alt bit.
One of the pointers refers to the head of the linked list of active log chunks upon recovery; the
other one is only used by GC for building a new linked list. The alt bit indicates which one of the
two pointers is active. Each chunk has a chunk header, which stores its ID number, an activeness
bit, and a pointer to the next active chunk.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:19

Fig. 11. Illustration of log-structured bookkeeping.

Fig. 12. The memory layout of the persistent bookkeeping log. VC denotes vchunk. Chunks in orange and

white colors denote active and free chunks, respectively.

To speed up the log operation, each log chunk has a corresponding volatile chunk, vchunk in
DRAM. It stores a bitmap indicating the valid log entries in the chunk. Besides, PMAlloc uses a
red-black tree to manage the vchunks of the allocated chunks and a free chunk to manage free
chunks. After GC, all the freed chunks are retained in a linked list for fast allocation in the future.
When a new log chunk is needed, it is first retrieved from the free list. If the free list is empty, then
a new chunk is created and appended to the tail of the log file in persistent memory.

Basic log operation. In PMAlloc, the log entry has two different types: normal entry and tomb-
stone entry. When allocating a large block, a normal entry will be created and added in the current
chunk. To avoid cache line reflushes, we map consecutive log entries to the chunk in an interleaved
manner, similar to the method in Section 5.1. Then the corresponding bit in the bitmap of its vchunk
will be set.

Similar to the normal entries, a tombstone entry will be added when freeing a large extent. In
addition, the tombstone entry will store the pointer of the normal entry to be deleted and clean its
corresponding bit in the bitmap of vchunk for fast garbage collection.

Garbage collection (GC). To control the size of the log file, we need to execute GC to drop the
log entries that are marked as deleted by the tombstones. PMAlloc supports two GC algorithms,
including fast GC and slow GC [31], which are designed to make different tradeoffs between the
GC overhead and memory efficiency. Specifically, if the size of log files is larger than a certain
memory usage thresholdUsaдepmem (default value of 0.2%), then PMAlloc first executes a fast GC.
After that, if the size of log files still exceeds the threshold, then it applies a slow GC.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:20 Z. Dang et al.

Fig. 13. NUMA-aware allocation process. Code path 1: allocation using the local arena. Code path 2: expand

the local arena via OS. Code path 3: allocation using the arena on the same NUMA node. Code path 4:

allocation using remote arenas on different NUMA nodes.

The fast GC algorithm scans the bitmap of each vchunk in the red-black tree. If the bitmap of
a vchunk is empty, then it will be moved to the free list. Because the fast GC algorithm does not
need to access persistent memory, its overhead is trivial.

When the slow GC algorithm is executed, a new active chunk list listnew will be created to
store the active log entries. The slow GC algorithm scans all the log entries in the existing active
chunk list listold and checks whether the log entries are alive via bitmap. The log entries that are
alive in listold will be copied to chunks in listnew . The tombstone entries will be removed in the
process. When the scanning is completed, PMAlloc marks listnew as the current active chunk list
by flipping the alt bit. Then it recycles all the chunks in listold .

6 NUMA-AWARE MEMORY ALLOCATION AND DEALLOCATION

Contemporary computer systems usually use the popular NUMA architecture to improve their
performance. To accommodate the NUMA architecture, PMAlloc should be carefully designed con-
sidering the longer latency of memory accesses across NUMA nodes. We need to enforce failure
consistency while minimizing the number of remote memory accesses in the allocation and deallo-
cation of persistent memory. PMAlloc uses the slab-based and extent-based (de)allocation for small
and large blocks, respectively. In the following subsections, we first describe how we optimize the
allocation and deallocation processes of small memory blocks in PMAlloc. Then, we describe how
we adapt these optimizations to large (de)allocations.

6.1 NUMA-aware Allocation of Small Blocks

To reduce remote memory accesses across NUMA domains, PMAlloc needs to allocate local mem-
ory blocks first before allocating remote memory blocks in other NUMA nodes. For this purpose,
PMAlloc creates a dedicated persistent memory heap for every arena corresponding to each CPU
core as shown in Figure 13. Specifically, we first create heap files in DAX file systems mounted
to different NUMA nodes. Then, when an arena is created, its heap space is mapped to the heap
files based on the ID of the NUMA node that the arena is affiliated with. For example, as Figure 13

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:21

ALGORITHM 1: NUMA-aware allocation of small blocks
Input: memory block size sizer eq

Output: memory address addrr et

1 SZ← Get_Sizeclass_with_Size(sizer eq);

2 if not Try_to_alloc_with_tcache(tcache.freelistblock [SZ],addrr et ) then

/* Try to fill tcache with the arena it is affiliated to. */

3 success_flag← Try_Fill_Tcache(Get_Arena(tcache));

/* If fails, try with arenas in the same node. */

4 if not success_flag then

5 foreach arenalocal in the local node do

6 success_flag← Try_Fill_Tcache(arenalocal );

7 end

8 end

/* If fails, try with arenas in remote nodes. */

9 if not success_flag then

10 foreach arenar emote in the remote node do

11 success_flag← Try_Allocate_without_Tcache(arenar emote , addrr et );

12 if success_flag then return addrr et ;

13 end

14 end

15 if not success_flag then

16 ERROR(“Memory exhausted.”);

17 end

/* Now, we can use tcache to allocate the block. */

18 addrr et ← Allocate_with_tcache (tcache.freelistblock [SZ]);

19 end

/* Persist the allocation. */

20 Set_Bitmap(pslab.bitmap, addrr et );

21 Flush(pslab.bitmap);

22 return addrr et ;

shows, Arena #0 is affiliated with Core #0. Therefore, the heap space of Arena #0 is mapped to the
heap file #0 on NUMA node 0.

We design a NUMA-aware allocation policy to minimize the allocation from remote NUMA
nodes. Its algorithm is shown in Algorithm 1. Its input is request size sizer eq , and its output is the
allocated memory address addrr et . Specifically, the working thread will allocate memory blocks
from its tcache (Line #2). If the tcache is empty, then PMAlloc needs to fill the tcache with the
arena that it is affiliated to (Line #3). PMAlloc will search the slabs of the given size class to find free
memory blocks and mark them as allocated in the bitmap of vslab (i.e., the volatile header of a slab).
If the given arena does not have enough space to fulfill the allocation request, then the working
thread will first try to extend the heap space of the arena by creating and mapping new heap files
through OS. If the OS request fails, then the working thread will turn to other arenas to search for
suitable memory blocks. In this case, it will first check the arenas on the same node (Lines #4–8). If
all of the previous functions fail, then the working thread eventually has to check arenas on other
NUMA nodes to serve the request (Lines #9–14). The Try_Allocate_Without_Tcache() function will
persistently allocate the memory block in the remote arena. Finally, addrr et is assigned with the
address of the memory block to be allocated (Line #18) and PMAlloc will persist the allocation in
the bitmap of pslab (i.e., the persistent header of a slab) in persistent memory (Lines #20 and 21).

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:22 Z. Dang et al.

Fig. 14. Major data structures and operations of the two-phase deallocation mechanism in PMAlloc. TS is

short for timestamp.

6.2 NUMA-aware Deallocation of Small Blocks

There are many challenges in the design of NUMA-aware deallocation. (1) Allocators have no
knowledge of the whereabouts of incoming deallocation requests. Therefore, they have to serve
both remote and local deallocation requests efficiently. (2) Allocators need to make sure the blocks
released by remote threads can be reused for serving requests from local threads. Otherwise,
blowup fragmentation [6] (i.e., any memory freed through remote deallocations cannot be reused
again) may be induced. (3) The deallocation process used in the existing persistent memory allo-
cators need many remote reads and writes for searching and updating the metadata of memory
blocks in the arena, resulting in performance degradation of the allocators.

An intuitive approach to address these issues is creating a dedicated background thread for each
NUMA node to handle deallocation requests from both local and remote threads. The background
threads can complete the deallocation process without remote memory access. However, this ap-
proach does not work for persistent memory allocators, because it may induce an unacceptable
synchronization overhead. This is because the calling threads cannot return immediately after
handover to the background threads. They must wait until the metadata of the released memory
blocks is persisted in persistent memory to avoid consistency problems.

In PMAlloc, we design a two-phase deallocation mechanism to minimize the number of memory
accesses across NUMA nodes and the synchronization overhead. Its deallocation includes a remote
recording phase and a local synchronization phase. Figure 14 illustrates the major data structures
and steps of the deallocation process.

Data structures: Vslabs maintain NUMA node ID of a memory block, a regular bitmap whose
bits denote the state of memory blocks between synchronizations, and a shadow bitmap whose
bits denote the state of memory blocks that have been freed by remote threads but have not been
synchronized with the regular bitmap. Each tcache also has a node ID, which is assigned by the
thread that it belongs to. In persistent memory, PMAlloc has pslabs corresponding to vslabs and
manages a deallocation log on each NUMA node. The pslab contains a persistent bitmap to record
the state of memory blocks persistently and a timestamp (TS) to record when the persistent
bitmap was modified. We utilize _rdtsc() instruction to obtain the hardware clock and generate TS,

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:23

ALGORITHM 2: NUMA-aware deallocation of small blocks
Input: memory address addrinput to be released

1 vslab← Search_Rtree_for_vslab(addrinput );

2 arena← getArena(vslab);

/* Step 1, identify remote deallocation. */

3 if vslab.nodeid � tcache.nodeid then

/* Step 2, record the release operation with deallocation log. */

4 if deallocation_log.logsize == MAX_LOG_SIZE then

5 foreach arenar emote on remote nodes do

6 Create_or_Awake_thread(arenar emote , Epoch_based_Sync);

7 end

8 deallocation_log = Create_New_Log();

9 end

10 Append_Log_Entry_with_TS(deallocation_log);

11 Flush(deallocation_log);

/* Step 3, register the block in shadow bitmap. */

12 vslab.has_shadow_bitmap← TRUE;

13 Set_Bitmap (vslab,addrinput );

14 else

/* Otherwise, perform local deallocation. */

15 SZ← Get_Sizeclass(vslab);

16 if not Try_to_release_with_tcache(tcache.freelistblock [SZ],addrinput ) then

17 Unset_Bitmap(vslab.regular_bitmap, addrinput );

18 end

/* Persist the deallocation. */

19 Unset_Bitmap(pslab.bitmap, addrinput );

20 Flush(Pslab.bitmap);

21 end

22 return;

and we use the ORDO primitive [44] to ensure correct ordering of timestamps across NUMA nodes.
The deallocation log records remote deallocation operations locally. Its log entry consists of a TS
to record the time of the logged operation and the address of the memory block to be deallocated.
TS is used to ensure crash consistency when serving concurrent remote deallocations.

The two-phase remote deallocation procedure comprises the remote recording phase and the
local synchronization phase. The remote recording phase (Phase 1 in Figure 14) is executed by
a deallocation thread. The thread first determines if the memory block being released is from a
remote NUMA node (Recognize step). If so, then the thread first stashes this deallocation in the
associated shadow bitmap of the block of the remote node (Modify step). Then, it records essen-
tial data for failure recovery in the local deallocation log (Record step). Finally, the local synchro-
nization phase (Phase 2) is conducted either by allocation threads through an On-demand Syn-
chronize mechanism or by dedicated synchronization threads through an Epoch-based Synchronize
mechanism on remote nodes. A detailed description of these two deallocation phases is provided
below.

Remote recording phase: Algorithm 2 shows the procedure of the NUMA-aware deallocation
and its remote recording phase in PMAlloc. The algorithm takes the memory address addrinput

to be released as its input. The algorithm needs to check whether a request requires remote

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:24 Z. Dang et al.

deallocation (Line #3). It compares the NUMA node ID of the deallocation thread and the memory
block to be deallocated to determine that. For the non-remote deallocation, it returns the mem-
ory block to tcache and updates its metadata in vslab and pslab (Lines #15–20). For the remote
deallocation, PMAlloc only records the deallocation request in the deallocation log (Lines #4–11).
Then, it sets the bits corresponding to blocks being deallocated in the shadow bitmap of its corre-
sponding vslab in the remote NUMA node (Lines #12 and 13). PMAlloc does not update the regular
bitmap and the persistent bitmap until the local synchronization phase. The pseudo-code of local
synchronization is not displayed in Algorithm 2, because it is executed asynchronously and not in
the critical path of deallocation. The whole remote recording phase is completed by deallocation
threads without memory access to persistent memory on different NUMA nodes.

Local synchronization phase. In this phase, threads will synchronize shadow bitmaps and reg-
ular bitmaps and free the space in the deallocation log. PMAlloc supports two kinds of local syn-
chronization: on-demand synchronization and epoch-based synchronization. Both synchroniza-
tion processes are protected under a per-slab mutex to avoid conflict with other threads.

On-demand synchronization: it happens in the allocation process. When the allocation thread
needs memory blocks to fill its tcache, it will search vslabs one-by-one for available blocks. Within
each vslab, it will search the regular bitmap first. The block status in the shadow bitmap is invisi-
ble to the working threads if the number of available blocks in the regular bitmap is enough to fill
the tcache. If they are not enough, then the on-demand synchronization will be triggered to syn-
chronize the shadow bitmap of the current vslab. In the procedure of on-demand synchronization,
the working thread (1) applies the changes recorded in the shadow bitmap to the regular bitmap,
(2) applies the changes to the persistent bitmap, and (3) updates the TS in the pslab using the
RDTSC instruction atomically. After the synchronization, the working thread can fill its tcache
using the newly freed blocks through the regular bitmap. The corresponding log entries in the
deallocation log will be freed and recycled in the epoch-based synchronization.

Epoch-based synchronization: it is triggered when the size of any deallocation log exceeds a
threshold (e.g., 4 MB in our design) in the remote recording phase. The trigger thread will create
a new deallocation log to handle future remote deallocation requests and awaken the background
synchronization thread for each arena in the remote NUMA nodes. Each arena is assigned a ded-
icated synchronization thread that awaits the epoch-based synchronization signal. The synchro-
nization thread will find all vslabs that have not been synchronized by on-demand synchroniza-
tion in the arena. For each vslab, it synchronizes the shadow bitmap to the regular bitmap and
persistent bitmap and then updates the TS in the pslab. When all synchronization threads com-
plete their work, the trigger thread will be informed to recycle the previously used deallocation log.
The garbage collection procedure is simply removing the previously used deallocation log entirely,
because all the remote release operations recorded in the log are completed by synchronization
threads.

Semantic and consistency guarantee. PMAlloc assumes the same programming semantics
for deallocating remote memory blocks as it does for local ones. Our two-phase deallocation pro-
cess is designed to be transparent from the user’s perspective. In this design, the deallocation
function call returns as soon as the remote recording phase is complete, while the synchronization
phase is carried out asynchronously by background or allocating threads at a later time. Despite
this separation in time and operation, PMAlloc guarantees the consistency of remote deallocations.
We address this in two aspects:

First, PMAlloc strictly avoids allocating any memory block that has not been fully and persis-
tently deallocated. This ensures that no memory blocks will be erroneously marked as released
following a failure and subsequent recovery. With our two-phase deallocation mechanism, blocks
that are in the process of being deallocated are stashed in shadow bitmaps. These blocks are

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:25

invisible to allocation threads until they have been successfully synchronized to persistent mem-
ory. Once this synchronization is complete, the blocks are entirely deallocated. Just as using the
standard deallocation procedures, they are released in both the DRAM and persistent memory by
changing the metadata on their resident NUMA node.

Second, PMAlloc guarantees that all delayed deallocations will be completely finalized once
the deallocation function returns, even if a system failure occurs. This is achieved by using local
deallocation logs. Although the metadata for deallocated blocks is not immediately updated when
the deallocation function is called, the deallocation is logged by the deallocation thread. This log
is later synchronized to the block’s metadata during a recovery phase.

By adhering to these guidelines, PMAlloc ensures both semantic transparency and consistency,
thereby offering a reliable solution for remote memory block deallocation in persistent memory
systems.

6.3 NUMA-aware Optimizations for Large (De)Allocations

PMAlloc adapts the similar approaches to small (de)allocations for large (de)allocations. (1) Similar
to small allocations, PMAlloc allocates local memory extents first before allocating remote mem-
ory extents in other NUMA nodes in the implementation of large allocation. (2) Similar to small
deallocations, PMAlloc uses a two-phase extent deallocation mechanism to minimize the num-
ber of memory access across NUMA nodes. (3) PMAlloc uses deallocation logs to enforce crash
consistency of large allocators.

NUMA-aware large allocations. When an allocation thread needs one large extent to serve
user requests, it traverses the existing arenas to find one having enough space for the extent. The
traversing order of arenas is similar to small allocations: the arena it is affiliated to, arenas on
the local node, and then the arenas on the remote nodes. In this way, PMAlloc ensures that local
memory extents are always allocated in preference to remote ones. When a candidate extent is
chosen, the allocation thread will move its VEH to the activated list and append a log entry to the
bookkeeping log to persistently record the allocation.

NUMA-aware large deallocations. PMAlloc also adopts a two-phase NUMA-aware dealloca-
tion approach, which also includes the remote recording phase and local synchronization phase,
for serving remote release of large memory extents. Figure 15 shows the major data structures
and operations in it. Similar to small deallocations, we add a deallocation log in each NUMA node
to ensure crash consistency and a shadow log in each arena to temporarily store the tombstone
log entries of remote released extents. We also add a remote-released list for each arena to record
which VEHs point to the extent being remotely released.

— Remote-recording phase. The release thread records the deallocation operation in the deal-
location log and appends a tombstone log entry for the released extent to the shadow log.
Then it moves the corresponding VEH from the activated list to the reclaimed list and remote-
released list.

— Local synchronization phase. PMAlloc also supports two kinds of synchronization ap-
proaches, on-demand synchronization and epoch-based synchronization. For on-demand
synchronization, when an allocation thread finds an extent meeting its size requirement,
it will check whether the VEH of this extent has been added to the remote-released list.
If so, then it will migrate all the tombstones stored in the shadow log to the bookkeeping
log and then remove all the VEHs from the remote-released list to ensure all the remote re-
leases that happened before in the arena are synchronized. For epoch-based synchronization,
it happens when any deallocation log for large deallocations exceeds the capacity thresh-
old (4 MB). The synchronization threads will be awoken in each arena of remote nodes to

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:26 Z. Dang et al.

Fig. 15. Illustration of NUMA-aware large deallocation design. TS is short for timestamp.

synchronize the shadow log and empty the half-released list. After all the synchronization
threads complete their work, the previously used deallocation log will be removed.

To ensure crash-consistency, PMAlloc also adds TS to deallocation log entries and persistent
bookkeeping logs. The TS in a bookkeeping log will be updated when tombstone log entries are
appended to it in the synchronization phase. Similarly to small deallocations, if a power failure
happens before normal exits, then the recovery thread will traverse all the deallocation logs and
replay the log entries whose TS is newer than its corresponding bookkeeping log. For these log
entries, a tombstone of the remotely released extent will be appended to the bookkeeping log.

6.4 NUMA-aware Tcache Optimization

Utilizing tcaches can accelerate memory allocations by storing blocks being recently freed in the
local thread. This approach has been adopted by most of the existing allocators [8, 10, 26, 28]. This
section details how PMAlloc ensures NUMA-locality while using the tcache technique, even when
faced with scenarios like thread migration.

Guaranteeing local memory items in tcache. Except in scenarios involving thread migra-
tion, PMAlloc guarantees that tcache only contains local memory items. First, for allocation oper-
ations, memory blocks are primarily sourced from local arenas. The only exception arises when
local heaps are exhausted, an occurrence that is exceedingly rare. In such instances, the memory
blocks allocated from remote heaps will bypass the tcache and are directly provided to the request-
ing thread. This ensures that the tcache remains populated solely with local memory items. Second,
for deallocation operations, any remote deallocations are immediately identified and executed by-
passing the tcache, ensuring tcache remains unaffected by remote deallocations.

Addressing OS-level thread migration. The operating system may silently migrate threads
across NUMA nodes for efficiently utilizing hardware resources. However, existing persistent mem-
ory allocators do not adapt their allocation strategies to the OS-level thread migration. As a result,
their tcache may continue to hold and allocate items from the original NUMA node, leading to re-
mote object allocations. To address this, PMAlloc introduces an optional periodic thread migration
monitoring mechanism. When enabled, the PMAlloc invokes the getcpu() system call periodically
to check if the thread has migrated to another NUMA node. If such migration is detected, then the

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:27

items in the tcache are transferred back to the CPU-local arena, and the thread is bound to a new
arena associated with its new CPU, thereby maintaining NUMA locality. This functionality can
also be manually invoked through the pmalloc_numa_migrate_check() interface.

7 RECOVERY

The recovery code is invoked by pmalloc_init() when the allocator detects an unclean initial-
ization, as evidenced by the presence of existing persistent heap files. After the recovery process,
allocators must ensure that there is no persistent memory leak and the metadata of the alloca-
tors is consistent. Then, the application can conduct normal allocation and deallocation in the
persistent heap again. We use a per-arena flag to mark the states of an arena including running,
normal shutdown, and recovery. We change the state to normal shutdown when pmalloc_exit()
is completed. If the recovery process finds the flag is running or recovery, it indicates a failure has
occurred during running or recovery. In this case, we need to do an additional sanity check to
ensure consistency.

Normal shutdown recovery. For a normal shutdown recovery, we first recreate an arena for
each CPU core and then open and map their respective heap files and log files. Within each arena,
we scan all associated log files. Initially, we construct a vchunk header for each log chunk contained
in these files. Subsequently, we examine the alt bit in each file’s log header to retrieve the linked
list of active log chunks. These active log chunks function as leaf nodes during the reconstruction
of the red-black tree. The remaining free chunks in the log files are added to the arena’s free list
of log chunks. After that, we perform a slow GC on the persistent bookkeeping log to clean up
its tombstone entries (see Section 5.3). Then, we scan and process every log entry. Specifically, for
each log entry, we first check its type to determine whether its corresponding extent is a slab. For
the slab, we reconstruct its volatilevslab based on the metadata in the slab header and add it to the
f reelistslab . Next, we read its f laд field to identify whether a slab was morphing when a normal
shutdown happened. If it is a slabin (see Section 5.2), then we will reconstruct its cntblock and
cntslab additionally. For normal extents, we reconstruct their VEHs and add them to the activated
list. We also treat the space gaps between active extents as free extents and insert their VEHs to
the reclaimed list in DRAM.

Post-crash recovery. If a crash occurs during runtime or the recovery process, then we ex-
ecute post-crash recovery. In this procedure, we first conduct the normal shutdown recovery to
rebuild the DRAM metadata. Then, we additionally use different methods to do memory sanity
check to resolve possible inconsistency issues according to the consistency model of allocators. For
PMAlloc-LOG, we replay WALs to reverse the metadata changes of partially completed operations.
We retain the old WALs until all log entries have been replayed to prevent the loss of log entries in
the crash during recovery. For PMAlloc-GC, we conduct conservative garbage collection [8, 9] as
in Makalu. This process is initiated from top-level root pointers with multiple garbage collection
threads, which execute a parallel mark algorithm. The garbage collection threads conservatively
scan the memory regions of root objects, treating any value within the address range of user data
in the persistent memory heap as a potential pointer. Upon identifying a potential pointer, the cor-
responding target object is marked as reachable. We will then recursively identify pointers from
this object. This process continues until no new objects can be marked, indicating the coverage of
all allocated blocks. As for slabs, we will read the f laд field in the slab header to identify whether
there is a failure during slab morphing. If a failure is detected, then we undo all the operations of
metadata transformation.

Completion of delayed remote deallocations. PMAlloc relies on deallocation logs and TSs
to ensure crash consistency in the remote deallocation procedure. For a normal shutdown, PMAl-
loc triggers epoch-based synchronization for each arena, thereby ensuring the completion of all

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:28 Z. Dang et al.

outstanding remote deallocations. In the recovery phase, no additional work needs to be executed.
However, if a system crash happens before the normal shutdown is completed, then PMAlloc needs
to re-do log entries recorded in deallocation logs to recover to a consistent state. The re-do opera-
tions are executed after the post-crash recovery phase is completed. For each log entry, the re-do
thread will compare its TS with the TS stored in the pslab whose persistent bitmap contains the
corresponding bit of this log entry. If the TS of the log entry is older, it means the corresponding
bit has been synchronized before the crash happens and this log entry can be skipped safely. If the
TS of the log entry is newer, then the working thread will unset its corresponding bit in the regu-
lar bitmap and persistent bitmap to complete the release process of the recorded memory blocks.
After all log entries have been checked, deallocation logs can be safely removed and PMAlloc is
ready for serving new allocations and deallocations.

8 EVALUATION

8.1 Experimental Setup

Experimental platform. We run the experiments on a Linux server (kernel 5.3.0-050300-generic)
with two Intel Xeon Gold 5218R CPUs. Each CPU has 20 physical cores (40 hyperthreads), 64 GB
DRAM, and two Intel Optane DIMMs (128 GB per DIMM). Every pair of DIMMs attached to a
CPU is mounted with the Ext4-DAX file system and configured in App Direct Mode. We use the
numactl utility to bind every thread to one core in the first socket to avoid the NUMA effects in
all the experiments except those related to FPTree (Section 8.5) and NUMA effect (Section 8.4).
In cases where the number of threads exceeds the available number of processor hyperthreads,
additional threads are bound to CPU cores based on the modulus of their thread number against
the total number of cores. All source codes are compiled with g++7.5 with -O3.

Compared allocators. We compare PMAlloc with state-of-the-art persistent allocators, includ-
ing PMDK [17], nvm_malloc [71], PAllocator [63], Makalu [8], and Ralloc [10]. Since all of them
except PAllocator are open-source, we use their public implementations for tests. We reimplement
PAllocator as faithfully as possible according to the description in the article. We exclude jemal-
loc [26], Hoard [6], and tcmalloc [28], because they are volatile allocators. To support existing con-
sistency models, we implement two versions of PMAlloc: PMAlloc-LOG and PMAlloc-GC, which
leverage WAL and GC to keep crash consistency and avoid memory leaks, respectively. We choose
the number of bit stripes as 6 in interleaved mapping, because it provides the optimal performance.
The impact of the number of bit stripes is further discussed in Section 8.7.

For ease of description, we call PMDK and WAL-based allocators (i.e., nvm_malloc, PAllocator,
and PMAlloc-LOG) as strongly consistent allocators. In contrast, we call GC-based allocators (i.e.,
Makalu, Ralloc, and PMAlloc-GC) weakly consistent allocators.

8.2 Evaluations Using Benchmarks

Benchmarks. We use five representative benchmarks, each of which has a unique allocation pat-
tern, in the evaluation.

Threadtest [6] measures multi-threaded performance of an allocator for i iterations of alloca-
tions. In every iteration, each thread allocates n objects in size of s and then frees all of them
independently. In the experiment, we set i = 104, n = 105, and s = 64 B.

Prod-con [6, 70] simulates a producer-consumer workload for t threads. Each pair of threads
produces and consumes n objects, whose total size is s . One thread of each pair allocates objects

while the other one frees them. Our experiment sets n = 2×107

t
and s = 64 B.

Shbench [60] is a stress test for an allocator. In each iteration, each thread allocates and frees
objects of varying sizes from 64 B to 1,000 B. The smaller objects are allocated and freed more
frequently. We run 105 iterations.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:29

Fig. 16. Performance (log10 scaled) of small allocations with strongly consistent allocators.

Larson [49, 63] simulates a behavior where some objects allocated by one thread are freed by
another thread. In each iteration, each thread randomly allocates and frees 103 varied-size ob-
jects. After 104 iterations, each thread creates a new thread that starts with the remaining objects
and repeats the same allocation/deallocation procedure. We generate two workloads: Larson-small,
managing small objects (64 B to 256 B), and Larson-large, managing large objects (32 KB to 512 KB).
We run the test for 30 seconds.

DBMStest [25]: it simulates the allocation in a database with TPC-DS benchmark for t threads.
In each iteration, each thread allocates n large objects, whose sizes follow a Poisson distribution

between 32 KB to 512 KB, and then randomly deletes 90% of them. We choose n = 104

t
objects. We

run 50 iterations for warmup and 50 iterations for evaluation.
Performance of small allocations. We first evaluate the allocator performance for small ob-

ject allocations with varying numbers of threads on Threadtest, Prod-con, Shbench, and Larson-
small. For a fair comparison, we show the results of strongly and weakly consistent allocators in
Figure 16 and Figure 18, respectively. Overall, PMAlloc outperforms and scales better than all the
counterparts on all benchmarks.

Figure 16 shows that PMAlloc-LOG is up to 6.4×, 3.5×, and 3.9× faster than PMDK, nvm_malloc,
and PAllocator, respectively, on the four benchmarks. PMAlloc-LOG outperforms its counterparts,
because the interleaved mapping reduces the number of cache line reflushes in both metadata up-
dating and WAL updating. To further analyze these results, we use the Linux perf tools [22] to mea-
sure the breakdown of the execution time of different benchmarks with 8 threads. The execution
time is normalized. The benchmark execution consists of object searching, splitting, and coalesc-
ing of extents in allocation/deallocation (denoted as Search), metadata flushing (FlushMeta), WAL
flushing (FlushWAL), and others (Other). In the breakdown analysis, we fix the number of test oper-
ations at 10 million for the Larson benchmark, ensuring a fair comparison of time distribution. We
conduct the experiment with five different versions of PMAlloc-LOG: Base denotes PMAlloc-LOG

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:30 Z. Dang et al.

Fig. 17. Performance breakdown analysis of small allocations for LOG-based allocators.

without any optimizations described in Section 4. +IM-tcache, +IM-slab, and +IM-WAL correspond
to versions where optimizations of interleaved tcache layout, interleaved mapping of slab bitmaps,
or interleaved appending of WALs, are individually enabled. PMAlloc denotes the version where all
the aforementioned optimizations are applied. As illustrated in Figure 17, the FlushMeta and Flush-
WAL time account for 51% to 87% of the execution time of Base across all benchmarks. Compared
to Base, +IM-tcache reduces the FlushMeta time of Base by 14% to 62%, while +IM-slab diminishes
it by 28% to 63%. With the interleaved appending of WALs, +IM-WAL achieves the reduction of
41% to 66% in FlushWAL time. The comprehensive optimizations of PMAlloc-LOG further reduce
the total amount of flush time (FlushMeta and FlushWAL), resulting in an overall speedup rang-
ing from 30% to 65%. Additionally, PMAlloc-LOG yields more benefits in Threadtest and Prod-con
compared to the other benchmarks. This is because they have more cache line reflushes for their
fixed allocation size.

Figure 18 shows that PMAlloc-GC achieves a maximal speedup of 70× and 6× over Makalu and
Ralloc on the four benchmarks. PMAlloc-GC has better performance, because Makalu and Ralloc
use the embedded linked list to manage free blocks in persistent slabs while PMAlloc-GC uses
bitmaps to manage blocks, improving data access locality in persistent memory. PMAlloc-GC also
maintains a volatile bitmap copy in DRAM for fast free block indexing and reducing accesses to
persistent memory. To further illustrate the results above, we run the small allocation benchmarks
with 32 threads and use Linux perf tools to collect L1-cache miss count at runtime. Note that we
have fixed the number of operations at 10 million for Larson. Figure 19 shows that with PMAlloc-
GC, all four benchmarks have the lowest number of L1-cache miss. And PMAlloc-GC reduces
the miss count by a maximum of 70× and 2.8× compared to Makalu and Ralloc, proving the data
locality enhancement achieved by bitmap utilization. To quantify the benefit of volatile bitmap
copy, we run the four benchmarks using 32 threads. We compare PMAlloc-GC performance with
the feature on and off. The normalized results are shown in Figure 20. It indicates that with volatile

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:31

Fig. 18. Performance (log10 scaled) of small allocations with weakly consistent allocators.

Fig. 19. L1-cache misses (log10 scaled) with weakly

consistent allocators.
Fig. 20. Performance impact of the volatile bitmap

copy. The vbitmap denotes volatile bitmap copy.

bitmap, PMAlloc-GC runs up to 1.57× faster than that with the volatile bitmap disabled for all the
benchmarks.

Performance of large allocations. Figure 21 shows the performance of large object alloca-
tions. Because PMAlloc-GC performs the same as PMAlloc-LOG for large allocations, we exclude
it in Figure 21. On Larson-large and DBMStest, PMAlloc-LOG is up to 40×, 18×, 55×, and 57×
faster than PMDK, nvm_malloc, PAllocator, and Makalu. PMAlloc-LOG is faster than its counter-
parts because of using log-structured bookkeeping and the interleaved mapping in WALs.

To illustrate the impact of log-structured bookkeeping and interleaved mapping for large alloca-
tions, we evaluate the execution time breakdowns using these two benchmarks. Figure 22 shows
the results. The +Log version signifies the implementation of log-structured bookkeeping exclu-
sively. It reduces the total amount of flush time (FlushMeta and FlushWAL) by 28% and 45% in the
two benchmarks, because the log-structured bookkeeping provides a sequential write pattern to

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:32 Z. Dang et al.

Fig. 21. Performance (log10 scaled) of large allocations.

Fig. 22. Performance breakdown analysis of large allocations.

persistent memory. +IM exclusively enables interleaved mapping and gains a 23% speedup in flush
time for both benchmarks due to eliminated repeated cache line flushes of log entries and WALs.
The comprehensive optimizations integrated into PMAlloc-LOG achieve an overall speedup by up
to 49%.

Space usage. Figure 23 and Figure 24 show the memory consumption of different allocators.
Because the PMAlloc-LOG and PMAlloc-GC use the same amount of space, we only show the result
of PMAlloc-LOG. PMAlloc-LOG’s peak memory consumption is comparable to other allocators on
all benchmarks. We exclude RAlloc in Figure 24, because RAlloc does not work correctly for large
objects in their open-source implementation.

Impact of thread pinning. Considering that real-world applications may not employ thread-
pinning techniques in their designs, we conducted supplementary tests using benchmarks without
thread pinning to assess its impact. In this setup, threads are localized to the first NUMA node but
are not explicitly bound to individual cores. The results are depicted in Figure 25 and Figure 26.
PMAlloc continues to demonstrate superior performance compared to other allocators.

8.3 Evaluations Using Fragbench

We then evaluate PMAlloc on Fragbench [69] with the four workloads listed in Table 1 in Section 3.
Figure 27(a) shows the space consumption of different allocators. We exclude the ones in Figure 5(b)
except Makalu to avoid redundant representation. As PMAlloc-LOG and PMAlloc-GC yield the
same space consumption, we only include PMAlloc-LOG. For comparison, we also evaluate

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:33

Fig. 23. Space consumption of small object allocations.

Fig. 24. Space consumption of large object allocations.

PMAlloc-LOG without the slab morphing strategy (PMAlloc-LOG w/o SM). The result shows that
PMAlloc-LOG achieves the smallest space consumption because of the slab morphing technique.

To verify this, Figure 27(b) shows the space breakdown of PMAlloc-LOG. We divide the slabs into
three categories according to their memory utilization: 0%–30%, 30%–70%, 70%–100%. Figure 27(b)
shows that, with the slab morphing, PMAlloc-LOG greatly increases the number of slabs with high
utilization, compared to the scheme without using slab morphing. Thus, it decreases the overall
memory consumption. The slab morphing has more utilization improvement with W1 and W3,
because they both have a 90% deletes in Delete phase, causing more slabs to become candidates of
slab morphing. For W2 and W4, they have fewer delete operations (0% and 50% in Delete phase),
making many slabs still have a high memory utilization after the Delete and After phases and can
not be selected as morphing candidates. A larger SU can let more slabs be morphed with a higher
performance overhead. We discuss this in Section 8.7.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:34 Z. Dang et al.

Fig. 25. Performance (log10 scaled) of strongly consistent allocator without thread binding.

Fig. 26. Performance (log10 scaled) of weakly consistent allocator without thread binding.

Figures 27(c) and 27(d) show the performance of PMAlloc. PMAlloc outperforms all other allo-
cators because of using the interleaved mapping technique, as discussed in Section 8.2. We also
observe that the slab morphing approach may introduce a performance degradation of 4.5% on
average, because it needs to flush slab metadata. Despite the slight performance slowdown, the
slab morphing reduces memory usage by up to 41.9%.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:35

Fig. 27. Results of Fragbench. SM denotes slab morphing.

To substantiate the efficacy of slab morphing, we monitored the quantity of slabs in three distinct
states (i.e., slabbef or e , slabin , and slabaf ter ) throughout the execution of Fragbench. We modify
Fragbech by expanding the size of the total allocated memory of the After phase from 5 GB to 10 GB
to further show the transform ratio of slabaf ter in a longer running time. The results are presented
in Figure 28. We denote the original After phase as After1 and the expanding part as After2. We
observe that slab morphing primarily occurs in the After phase. This is because (1) most allocation
requests that arrived in the Before phase belong to the same size classes, and (2) no allocation
happens in the Delete phase. Conversely, during the After phase, slabs undergo deallocations from
the Delete phase and receive new allocation requests of different size classes. Figure 28 shows that
for W1 and W3, PMAlloc morphs 37.2% and 43.6% of slabs into slabin , respectively, followed by
57.9% and 48.8% of these slabin completing the morphing process to transition into slabaf ter by
the end of the After1 phase. This is because the morphing mechanism obviates the need for new
slab allocations, reutilizing existing slabs and thus significantly reducing memory consumption.
For W2 and W4, PMAlloc transformed 14.4% and 22.2% of slabbef or e into slabin , respectively, and
eventually 11.6% and 17.2% of slabin complete the morphing. Additionally, during After2 phase,
PMAlloc keeps morphing slabs to serve new allocation requests, and eventually most of slabin is
transformed into slabaf ter . By the end of the four workloads, 98.3%, 96.1%, 97.2%, and 95.7% of
slabin complete the transformation process.

8.4 Effectiveness of NUMA-aware Allocations and Deallocations

We use all the four benchmarks to show the performance of PMAlloc with NUMA cores. In each
benchmark, we increase the number of threads from 16 to 80. As the prior work did [10], we first
pin each thread to one core on the first NUMA node and then to one hyperthread on the same node.
When the number of threads exceeds the maximum number of hyperthreads on one node (i.e., 40),

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:36 Z. Dang et al.

Fig. 28. Slab state statistic during Fragbench execution.

we pin the remaining threads to the other node. In the Prod-con test, we still pin the producer
threads to the first node and the consumer threads to the second node, as described in Section 3.5.
For PMDK, we leverage its pool set feature to unify persistent memory heaps across two nodes.
Other persistent memory allocators lacking multi-heap capability allocate memory blocks only
on the first NUMA node and directly release remote blocks. To further highlight the benefits for
using our NUMA optimizations, we add a compared system, named PMAllocNN, which denotes
PMAlloc without enabling NUMA optimizations. PMAllocNN has similar allocation and dealloca-
tion behaviors to existing allocators but enables metadata management optimizations proposed in
Section 5.

Figure 29 shows the results of strongly consistent allocators. PMAlloc-LOG achieves up to 2.9×
performance improvement over PMAllocNN-LOG and 7.3× performance improvement over other
allocators. For Threadtest, Shbench, and Larson, the performance improvement is mainly from our
NUMA-aware allocation, because all of these benchmarks have almost no cross-thread releases (<
1%) [2]. When the number of threads exceeds 40, these benchmarks will run on two nodes. The
performance improvement is because PMAlloc-LOG can allocate memory blocks on the local node
of the working threads, while other allocators are unaware of the NUMA effect, resulting in allo-
cations on the remote node. For the Prod-con benchmark, allocators always allocate local memory
blocks but release them remotely. PMAlloc-LOG achieves up to 4.3× performance improvement
over other allocators and 1.4× over PMAllocNN-LOG. This is because the two-phase NUMA-aware
deallocation of PMAlloc-LOG eliminates remote NUMA accesses in the remote release procedure.

To further explore the reason for the performance improvement, we conduct a persistent mem-
ory traffic breakdown analysis of PMAlloc-LOG and PMAllocNN-LOG on all four benchmarks
with 80 threads. We use Intel’s IPMCTL tools [34] to record the total amount of data accessing
persistent memory. We then use Intel’s PCM tools [35] to record the amount of data accessed from
remote NUMA nodes as Nap [74] did. Figure 30 shows the results. PMAlloc-LOG reaches nearly

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:37

Fig. 29. NUMA test for strongly consistent allocators.

Fig. 30. Breakdown analysis of persistent memory traffic. The absolute number (GB) of total traffic is marked

on the top. LT is short for local traffic and RT is short for remote traffic.

Table 2. The Amount of Data Written to Internal Media

of Persistent Memory

Benchmark PMAlloc PMAllocNN PMDK
Threadtest 0.5 GiB 2.1 GiB 6.8 GiB
Prod-con 2.1 GiB 4.9 GiB 11 GiB
Shbench 45 GiB 75 GiB 99 GiB

Larson-small 135 GiB 62 GiB 62 GiB

zero remote traffic in all four workloads, while the baseline allocators issue remote accesses that
account for 29% to 82% of all the persistent memory accesses.

We also measure the total amount of data written to the internal media of persistent memory
for PMAlloc-LOG, PMAllocNN-LOG, and PMDK with IPMCTL tools. Table 2 shows the results.
PMAlloc-LOG reduces persistent memory writes by up to 76% and outperforms PMDK by up to

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:38 Z. Dang et al.

Fig. 31. NUMA test for weakly consistent allocators.

92% in Threadtest, Prod-con, and Shbench. Larson has a fixed amount of execution time, while
other benchmarks have fixed amount of operations. It writes 2.2× more data with PMAlloc-LOG
than that with baseline allocators, because the former improves its throughput by 2.9×. The main
reason for such write reduction is PMAlloc-LOG reduces remote NUMA accesses, which induces
extra writes to the persistent media for maintaining cache coherency under directory coherence
protocol.

We also evaluate the PMAlloc-GC with weakly consistent allocators. Figure 31 shows that
PMAlloc-GC achieves up to 36× performance improvement over other allocators and 1.45×
over PMAllocNN-GC. The improvement ratio of PMAlloc-GC compared to PMAllocNN-GC with
weakly consistency model is smaller than that with the strongly consistency model. This is be-
cause most cache line flush operations are eliminated in weakly consistency model so the cache
lines from the remote nodes can be retained in the local processor cache. This will hide the high
latency of subsequent memory accesses.

8.5 Evaluation Using FPTree

We also evaluate PMAlloc with a real-world key-value store application, FPTree [64], under two
NUMA nodes. It is a persistent concurrent B+tree, which stores the inner nodes in DRAM and the
leaf nodes in persistent memory. Each node of FPTree contains 64 children. To support varied-size
values, FPTree uses the original value in the leaf node as a pointer to an actual key-value pair. We
set the size of original keys and values as 8 B. Since most key-value pairs are small in Facebook [11],
we set the size of the actual key-value pair as 128 B. We measure the performance of FPTree with
a mixed workload of 50% insertions and 50% delete operations. We warm up the FPTree with 50 M
key-value pairs, then execute 50 M operations with a varying number of threads.

Figure 32 shows the throughputs of FPTree using different allocators. With PMAlloc-LOG,
FPTree yields up to 2.5×, 2.7×, and 3.1× throughput compared with PMDK, nvm_malloc, and

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:39

Fig. 32. Performance of FPTree with two NUMA nodes.

Fig. 33. Performance breakdown of FPTree.

PAllocator, respectively. With PMAlloc-GC, FPTree brings a speedup up to 1.6×. FPTree with PMAl-
loc yields comparable space consumption over other allocators, since the slab morphing technique
is not triggered for the given workload.

We further show the execution time breakdown of FPTree to study the impact of individual opti-
mizations in PMAlloc-LOG. As in Section 8.2, we use the Linux perf tool to measure the execution
time. Figure 33 displays the results. We introduce a new category to represent the time spent on
executing the code that is not related to allocators. We denote it as Application. The +NUMA ver-
sion indicates a configuration where only NUMA-related optimizations are activated. Compared
to Base, +IM-tcache decreases FlushMeta by 51.8%, while +IM-slab reduces it by 53.1%. Employ-
ing interleaved appending of WALs, +IM-WAL cuts FlushWAL by 31.9%. The +LS version reveals
that log-structured bookkeeping only trims the execution time by 2.7%. This marginal impact is
attributed to the infrequency of large allocations in this application. +NUMA further reduces the
total execution time by 26.4%. This is because the NUMA optimization uses more local memory to
serve requests and eliminates the remote accesses when executing remote deallocations. Overall,
PMAlloc with all optimizations can reduce the execution time by 43% compared to Base.

8.6 Evaluation Using Real-world Applications

To further demonstrate PMAlloc’s performance and scalability, we evaluate it using real-world
applications. We use two NUMA nodes in the experiments. These applications are adapted from

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:40 Z. Dang et al.

Fig. 34. Performance of real-world applications for strongly consistent allocators.

various use cases. We replace their default allocators with persistent memory allocators and then
run all the applications with varying numbers of threads.

Vacation [61, 72] is an online transaction processing system, which uses a red-black tree in
its internal database. We configure the database to contain 16,384 possible relations and conduct
1,000,000 transactions. Each transaction consists of five queries that target approximately 90% of
these relations. Our setup aligns with that of Ralloc [10]. Note that Vacation requires that the
number of threads must be a power of 2. Figure 34(a) shows that PMAlloc-LOG outperforms PMDK,
nvm_malloc, and PAllocator by up to 1.7×, 1.4×, and 1.5×, respectively. And Figure 35(a) shows
that PMAlloc-GC performs up to 2.9× and 1.2× better than Makalu and Ralloc.

Ackermann [1] is a recursive implementation for a mathematical function named after Wil-
helm Ackermann. It performs six 600-byte allocations as caches to record the parameters and
results of each recursive step. Similar to Poseidon [23], we configure this application to repeatedly
calculate a set of Ackermann functions 10 million times. The performance of different allocators
is shown in Figure 34(b) and Figure 35(b). For the strongly consistent allocators, it shows that
PMAlloc-LOG achieves 7.7×, 11.5×, and 7.6× higher throughput compared to PMDK, nvm_malloc,
and PAllocator, respectively. Due to the NUMA-aware allocation and deallocation design of

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:41

Fig. 35. Performance of real-world applications for weakly consistent allocators.

PMAlloc, the throughput with PMAlloc-LOG is increased as the number of threads is increased
while the other allocators struggle in performance. For the weakly consistent allocators, PMAlloc-
GC shows similar performance to Ralloc but delivers a 39× higher throughput than Makalu.

N-Queens [7] is a multi-threaded implementation designed to solve the n-queens problem. The
application solves n-queens puzzles on an 8× 8 board, utilizing a 128-byte allocation, which is deal-
located upon completion of the puzzles. We repeatedly find the solution for the 8-queens puzzle
100,000 times, using a variable number of threads. Figures 34(c) and 35(c) show the results. PMAl-
loc demonstrates superior scalability compared to other allocators, particularly when the thread
count surpasses 40 and threads are distributed across different NUMA nodes. With 80 threads,
PMAlloc-LOG outperforms PMDK, nvm_malloc, and PAllocator by 8.3×, 15.1×, and 4.3×, respec-
tively. PMAlloc-GC also achieves 278× and 1.26× better throughput compared with Makalu and
Ralloc.

Cfrac [52] is an implementation of the continued fraction factoring algorithm. It is a single-
threaded test that involves many short-lived, small memory allocations. We run this application
and factor 44-digit number 17,545,186,520,507,317,056,371,138,836,327,483,792,789,528, which is
the product of two primes. Figure 34(d) shows that PMAlloc-LOG reduces the execution time of

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:42 Z. Dang et al.

Cfrac by 53%, 28%, and 55% compared with PMDK, nvm_malloc, and PAllocator. Figure 35(d) in-
dicates that Cfrac performs similarly with both Ralloc and PMAlloc-GC but is 11% faster than
Makalu.

Barnes [5] is a multi-threaded algorithm for solving the gravitational N-body problem. This
application performs relatively fewer allocations than Cfrac. It is widely used by many volatile and
non-volatile memory allocators [6, 8, 53]. We set the number of particles being simulated as 400,000.
Figure 34(e) shows that PMAlloc performs similarly with PMDK and outperforms nvm_malloc
and PAllocator by 17% and 21%, respectively. From Figure 35(e), we observe that there is minimal
performance difference between PMAlloc and Ralloc, while Makalu exhibits a performance decline
of 22% compared to them.

Kruskal [47] is a graph processing algorithm. It aims to find the minimal spanning tree

(MST) in the graph. Similar to Poseidon, we configure the application to solve Kruskal MST imple-
mentations for graphs of order 6. Each execution involves allocating a 168-byte block for temporary
graph data, employing a greedy strategy for problem-solving, and then deallocating the memory.
This process is repeated 10 million times. Figure 34(f) shows that, unlike other memory allocators,
PMAlloc continues to exhibit performance improvement after the number of running threads ex-
ceed 40 and yields up to 7.6×, 7.9×, and 3.1× throughput compared with PMDK, nvm_malloc, and
PAllocator. For weakly consistent allocators, we can observe from Figure 35(f) that PMAlloc-GC
exhibits comparable performance to Ralloc while achieving a maximum throughput increase of
3.2× over Makalu.

8.7 Sensitivity Analysis

Number of bit stripes. The efficiency of interleaved mapping is related to the number of bit
stripes. A larger number of bit stripes decreases the number of reflushes, because each bit stripe
has fewer bits and thus fewer blocks are mapped to the same cache line. However, it may increase
the flushing latency, because we may exhaust the XPBuffer [79] in persistent memory when a large
number of cache lines flush concurrently. To explore the impact of the number of bit stripes, we
run PMAlloc-LOG on Threadtest with varying numbers of threads as a study case.

As Figure 36(a) shows, the execution time of PMAlloc-LOG is not linearly decreased as we in-
crease the number of bit stripes. This is because the execution time is determined by both software
parameters (i.e., the number of bit stripes and the number of threads) and hardware parameters
(i.e., the number of XPBuffer lines in persistent memory and its size). In this article, we choose
the number of bit stripes as 6, because it achieves the best performance for most cases. Users may
adjust the bit stripe size to better suit the requirements of specific applications.

Morphing parameter. The slab space utilization threshold (SU) in the morphing technique
also impacts the efficiency of PMAlloc. A larger SU allows more slabs to be morphed and thus de-
creases memory consumption, while a smaller SU decreases the morphing cost and thus improves
performance. Figure 36(b) shows the impact of SU on PMAlloc-LOG on the W4 workload. Based on
the results, we empirically set SU as 20% to achieve a decent tradeoff between memory consump-
tion and allocator performance. While this parameter works well in our initial prototype, using a
more sophisticated parameter could be more beneficial. We leave such exploration for future work.

Deallocation log size threshold. In the NUMA-aware two-phase deallocation mechanism, the
deallocation log size threshold defines the maximum capacity of the deallocation logs. A larger
threshold results in a higher occupation of memory by these logs, while a smaller threshold trig-
gers epoch-based synchronization more frequently, potentially impacting overall performance.
To investigate the influence of the deallocation log size threshold on allocator performance, we
run PMAlloc-LOG on the Prod-con benchmark with a varying number of threads. As the deal-
location log size threshold increases, Figure 36(c) shows that the allocator’s performance initially

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:43

Fig. 36. Sensitivity analysis.

deteriorates with a very small threshold but stabilizes when the threshold reaches 400 KB or larger.
To strike a balance between memory occupation and performance, we set the deallocation log size
threshold to 4 MB in our experimental configuration.

Remote deallocation ratios in applications. Different applications may consist of varying
ratios of remote deallocations, ranging from 0% to 100%. To evaluate the impact of our two-phase
remote deallocation technique on different applications, we conducted tests using the Prod-con
benchmark. Specifically, we varied the percentage of remote deallocations in Prod-con, ranging
from 0% to 100%. We run it using 40 threads for both PMAlloc and PMAlloc-NN (with NUMA
optimizations disabled). The results are shown in Figure 36(d). Both allocators exhibit similar per-
formance when the ratio of remote deallocations is 0%. However, as this ratio increases, PMAlloc
outperforms PMAlloc-NN with a performance gain ranging from 1.06× to 1.54×. These results
indicate that PMAlloc offers substantial benefits when an application has a high ratio of remote
deallocations and remains effective at lower ratios.

8.8 Overhead Discussion

GC overhead. To evaluate the efficiency of log cleaning on log-structured bookkeeping for large
allocations, we run PMAlloc-LOG on Larson-large and DBMStest. Figure 37 shows, with GC, the
throughput drops slightly (only 3%) on Larson-large and 8% on DBMS when Usaдepmem = 0.2%.
The GC overhead is trivial, because the log-structured file is lightweight, since it only keeps the
allocation metadata, thus the copying overhead is low.

Furthermore, Figure 38 shows the log file size during the benchmark execution. For Larson-large,
we set the testing iterations to 104. To better illustrate the impact of GC operations, we increase
the testing iterations to 500 for DBMStest. We can find that enabling GC significantly reduces
the memory overhead. The frequency of GC execution can be varied. In Larson-large, PMAlloc

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:44 Z. Dang et al.

Fig. 37. GC overhead.

Table 3. Recovery Time

Allocators 10M 50M 100M
nvm_malloc 0.32 ms 1.3 ms 5.6 ms

PMDK 34 ms 54 ms 127 ms
PMAlloc-LOG 45 ms 97 ms 173 ms

Ralloc 0.55 s 2.1 s 6.7 s
Makalu 0.91 s 8.3 s 23.5 s

PMAlloc-GC 0.93 s 4.9 s 12.4 s

Fig. 38. Log file size (log10 scaled) of large allocations.

triggers 98 fast GCs and 98 slow GCs. In contrast, for DBMStest, it triggers 38 fast GCs and 7 slow
GCs.

Recovery. Table 3 presents the recovery times of various open-source allocators. These allo-
cators are tested with a linked list containing 10 million (10M), 50 million (50M), and 100 million
(100M) nodes, each allocated with node sizes uniformly distributed between 64 bytes and 128 bytes.
The recovery operations are performed using a single thread.

For strongly consistent allocators, PMAlloc-LOG is slower than PMDK and nvm_malloc across
all tested sizes. This is because PMAlloc-LOG needs to scan both the WALs and log-structured
bookkeeping, while PMDK only traverses the WALs and nvm_malloc defers some metadata re-
construction to the runtime deallocation process. The recovery time for PMAlloc-LOG correlates
with the heap size, as the log-structured bookkeeping accounts for 0.2% of it. Thus, with more
allocated nodes, the recovery time increases. However, since the log-structured bookkeeping is
tailored for large memory objects, whose number is far fewer than smaller ones, the recovery time
of PMAlloc-LOG remains acceptable (173 ms for 100 million memory objects) and is significantly
reduced compared to GC-based allocators.

For weakly consistent allocators, their recovery process involves reconstructing DRAM meta-
data for both small and large memory objects by scanning the entire heap, resulting in extended
recovery times. PMAlloc-GC shows comparable performance to Makalu. It is slower than Ralloc,
because Ralloc only needs to scan part of nodes in the recovery.

Synchronization overhead. Background synchronization threads perform epoch-based syn-
chronization periodically in NUMA-aware deallocations, potentially leading to contention with
working threads. To assess the influence of possible thread contention, we run PMAlloc-LOG

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:45

Table 4. Synchronization Overhead of Deallocation Logs

Benchmarks
workload thread

active time ratio (%)
synchronization thread

active time ratio (%)
Threadtest 99.90 1.56 × 10−3

Prod-con 98.33 1.326
Shbench 99.99 1.10 × 10−4

Larson-small 99.95 4.66 × 10−5

across four benchmarks with 80 workload threads. We employ clock_gettime() functions to mea-
sure the active duration of each thread using system clocks. By summing the active time of both
workload threads and synchronization threads, we obtain their ratio in the entire process. As il-
lustrated in Table 4, the overhead imposed by synchronization threads has a negligible impact on
system utilization. Across Threadtest, Shbench, and Larson benchmarks, which have almost no
cross-thread deallocations, the synchronization overhead is nearly zero. In the case of Prod-con,
where all blocks are deallocated remotely, the synchronization overhead is more noticeable but
remains remarkably low, accounting for less than 2% of the total active time. This is because the
majority of remotely deallocated blocks (83% in our experiment) have been synchronized by the
allocating thread incidentally through on-demand synchronization. The remaining blocks handled
by background threads are synchronized in a NUMA-local manner, which involves only the slab
headers within the local node, leading to minimal CPU contention with the application threads.

8.9 Evaluation on Emulated eADR Platform

eADR (extended ADR) is a new feature supported in the third-generation Intel Xeon Scalable
Processors, which ensures CPU caches are also in the power-fail-protected domain [18]. Thus, ex-
plicit cache line flushes are not necessary on eADR. Implementing eADR requires higher energy
consumption, hardware cost, and system maintenance burden. Given these issues, both ADR and
eADR platforms will co-exist in the foreseeable future, as pointed out by Intel [68]. In this section,
we evaluate PMAlloc on the eADR platform. Because the eADR is not commercially available, we
emulate it by removing flush operations (i.e., clwb) on the ADR platform for all evaluated allocators.
We only evaluate the strongly consistent allocators, because the weakly consistent allocators re-
moved most of the flush operations by performing post-crash GC and have the same performance
numbers as ADR ones.

First, we evaluate the impact of interleaved mapping on eADR. We run Threadtest with 4 threads,
while the number of bit stripes is increased from 1 to 32. As shown in Figure 39, the number of bit
stripes has no impact on the performance of PMAlloc-LOG. Because the interleaved mapping in-
creases the cache usage, we disable the interleaved mapping on the emulated eADR platform in the
following experiments. For the real eADR platform, we usepmem_has_auto_f lush() in PMDK [17]
to automatically detect the eADR feature and then disable the interleaved mapping technique.

Second, we study the small allocation performance on eADR. The results in Figure 40 show that
PMAlloc-LOG improves the performance of the benchmarks by 240% on average compared to other
strongly consistent allocators. The execution time of PAllocator with Threadtest is 27% smaller
than that with PMAlloc-LOG when the number of threads is 64. This is because PAllocator uses
dedicated small allocators for each thread. It achieves better scalability for thread-local allocations
but leads to worse performance of frequent cross-thread operations in Prod-con and Larson-small.

Third, Figure 41 shows the performance of PMAlloc-LOG for large allocations. We can observe
that it has an 11× performance improvement on average with Larson-large and DBMStest. This is

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:46 Z. Dang et al.

Fig. 39. Impact of interleaved mapping on eADR.

Fig. 40. Performance (log10 scaled) of small allocations on the emulated eADR platform.

because our design of VEH and log-structured bookkeeping reduces the total number of persistent
memory access and improves the write locality for eADR.

9 DISCUSSION

In this section, we discuss the applicability of the proposed techniques to future persistent memory
systems.

Cache line reflushing issue. The challenge of cache line reflushing originates from the CPU’s
instruction architecture design rather than the persistent memory hardware. In processors such
as Intel’s Cascade Lake and Skylake, a repeated flush instruction can only execute after previous
flushes have completed and the same cache line is reloaded back, leading to long reflush latency [13,
78]. Newer processors, such as the recently released Ice Lake, have fully implemented the clwb
instruction. In earlier processors, clwb was equated with clflushopt [18]. The clwb instruction can
keep the cache line content in the processor cache during flushing, thereby mitigating cache line

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:47

Fig. 41. Performance (log10 scaled) of large allocations on the emulated eADR platform.

reflush issues for waiting for data reloading. However, only the local clwb (pertaining to the same
NUMA node) possesses this feature. For remote clwb and other instructions, such as clflushopt and
clflush, the cache line content is not retained [18]. Thus, high reflush latency remains a significant
performance hurdle. Our interleaved mapping technique provides a solution for these cache line
reflush problems.

Random accesses impact. Random accesses can degrade the performance of persistent mem-
ory applications. Intel Optane DIMMs, for example, use an on-chip buffer to consolidate adjacent
data requests, minimizing slow access times to the internal 3D-XPoint media. However, if the data
request addresses are randomized, then this buffer loses its effectiveness, resulting in a perfor-
mance decline. While Intel ceased production of new Optane DIMMs in the summer of 2022 for
commercial reasons, we believe our log-structured bookkeeping technique remains relevant for
upcoming byte-addressable persistent memory products. Devices like CXL-based products (e.g.,
Samsung’s Memory-Semantic SSD [30, 42]), which are seen as potential replacements for Optane
DIMMs, still employ an on-chip buffer for consolidating data requests. Consequently, when allo-
cating large memory extents on such devices, the log-structured bookkeeping technique can help
counteract the negative effects of small, random accesses caused by allocators.

Fragmentation concerns. Fragmentation due to static slab segregation is a prevalent problem
in both volatile and persistent memory systems. Our innovative slab morphing technique can sub-
stantially cut down memory usage in applications with fluctuating allocation patterns, irrespective
of the memory media in use.

NUMA impact. Recent studies [80] indicate that future persistent memory systems designed
using the NUMA architecture might continue facing extended memory latencies due to remote
memory access when applying the directory coherence protocol in Intel X86 machines. Hence,
our suggested NUMA-aware memory allocation and deallocation techniques retain their relevance,
ensuring efficient use of persistent memory in such environments.

10 RELATED WORK

Log-based allocators. Persistent memory allocators supporting transactional models record
changes of memory addresses and heap metadata in logs. After replaying the logs, allocators can
rebuild their heap metadata after a crash. For example, nvm_malloc [71] divides its heap meta-
data into volatile and non-volatile parts to reduce data accesses on persistent memory. Its small
writes to its bitmaps and logs may lead to cache line reflushes. PAllocator [63] serves small block
allocation using segregated-fit strategy and large block allocation using index trees. It also suf-
fers from the cache line reflush issue because of accessing 2-B block metadata in page headers and

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:48 Z. Dang et al.

micro-logs. Poseidon [23] is the first persistent memory allocator enforcing page-based protections.
It also uses bitmaps and logs for heap metadata management.

GC-based allocators. To reduce the overhead of writing logs and flushing metadata, recent
allocators [8, 10, 59] employ garbage collection (GC) to reconstruct heap metadata after a crash.
This process involves traversing the persistent heap and utilizing pointer identification techniques
to locate and recover still-active memory blocks from its pre-defined root pointers. For instance,
Makalu [8] pioneers this approach by utilizing offline GC to ease heap metadata persistence con-
straints when online. This results in accelerated small-block allocations. Similarly, Ralloc [10]
changes the transient, lock-free allocator LRalloc into a persistent one, and like Makalu, Ralloc
relies on post-crash GC to avert cache line reflushes. However, DCMM [59] eliminates the long
heap metadata recovery time by simply allocating new blocks appending to the existing heap area
and employing background recovery threads running in parallel.

Allocators using internal collection. The allocator in PMDK provides non-transactional
atomic allocations [17]. Using PMDK’s interface (e.g., POBJ_FIRST() and POBJ_NEXT()), users will
never lose a reference to an object in persistent memory. Therefore, the allocators using PMDK’s
internal collection do not need to maintain write-ahead logs. The approaches proposed in PMAlloc
can be used to implement log-based, GC-based, or internal-collection-based persistence models. In
any of these models, we can eliminate the allocator-induced cache line reflushes and random writes
to persistent memory, compared to the existing allocators. Besides, because we use slab morphing,
PMAlloc no longer has the memory fragmentation issue caused by static slab segregation.

NUMA-aware optimizations for volatile memory system. To avoid the penalty brought by
remote NUMA access, volatile memory allocators have adopted NUMA-aware memory manage-
ment policies. Kaminski et al. [43] make the working threads always allocate from the local mem-
ory first. Wagle et al. [73] design the allocator to always use the closest NUMA node to allocate
memory when local memory runs out. TintMalloc [65] allows users to determine which NUMA
node to make memory allocations and ensures the memory isolation between different tasks. How-
ever, these works only achieve NUMA locality in the allocation process but can not reduce the
remote memory access induced by remote releases. PMAlloc addresses both issues while ensur-
ing crash consistency on persistent memory. There are also numerous works [21, 24, 27, 55, 66]
that optimize NUMA memory accesses through kernel-level page scheduling techniques. Car-
refour [21] utilizes page replication as a means to distribute access pressure and reduce remote
memory accesses. AsymSched [55] periodically samples memory access metrics and dynamically
migrates pages between nodes to optimize performance. kMAF [24] optimizes memory access pat-
terns by leveraging page fault tracing for efficient thread and data mapping. Unlike these kernel-
level works, PMAlloc and other memory allocators aim to address remote access issues at the user
level.

NUMA-aware optimizations for persistent memory system. Because persistent memory
is more sensitive to NUMA impact than DRAM, recent works have tried to reduce remote mem-
ory access. Nap [74] provides a black-box approach to reduce remote access to persistent memory
for index structures. It utilizes a global and volatile view in DRAM to cache hot items and absorb
remote memory access. ListDB [45] mitigates NUMA impact in the skip list by making the up-
per layer pointers point only to the skip list elements on the same NUMA node. PACTree [46]
finds that the root cause of the limited cross-socket bandwidth is the directory coherence protocol
used in the x86 machines. ODINFS [80] uses local threads to delegate remote memory access re-
quests, thereby eliminating remote NUMA access in the file system. POSEIDON [23] is a persistent
memory allocator that considers the NUMA impact through its use of per-CPU sub-heaps, which
naturally facilitate NUMA-local memory allocations. PMAlloc enhances POSEIDON’s allocation
strategy by permitting memory sharing across different NUMA domains when the local PM is

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:49

depleted. Moreover, PMAlloc is the first persistent memory allocator to consider mitigating re-
mote metadata access during the deallocation operations.

Asynchronous deallocation. Asynchronous deallocation is often used to improve system per-
formance by scheduling it at a later time using different mechanisms. For example, LATR [48]
decreases the latency of munmap() by delaying expensive TLB shootdowns. It introduces a lazy
software-based TLB shootdown mechanism in the kernel space that asynchronously invalidates
TLB entries on context switches. DaxVM [3] proposes an asynchronous unmapping approach for
DAX-based persistent memory files. It tracks the pages to unmap and defers their unmapping until
the total number of deferred pages meets a threshold. Then, it unmaps these pages and invalidates
their TLBs in batch. Different from the existing approaches, PMAlloc focuses on optimizing cross-
NUMA memory deallocation within the user-space memory allocator. Our two-phase deallocation
approach eliminates remote access induced by remote metadata management while ensuring crash
consistency.

11 CONCLUSION

In the article, we design a novel allocator, named PMAlloc, to allocate/deallocate memory objects
in persistent memory. PMAlloc leverages interleaved metadata mapping, log-structured bookkeep-
ing, and slab morphing techniques to eliminate the allocator-induced cache line reflushes, small
random writes, and memory fragmentation issues. PMAlloc also provides NUMA-aware allocation
and deallocation for multi-socket servers. Our experimental results demonstrate that PMAlloc can
significantly improve allocator performance and space utilization. As persistent memory becomes
more and more popular, we hope the various optimization techniques in PMAlloc will inspire the
future generation of persistent memory systems.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their constructive suggestions.

REFERENCES

[1] Wilhelm Ackermann. 1928. Zum hilbertschen aufbau der reellen zahlen. Math. Ann. 99, 1 (1928), 118–133.
[2] Martin Aigner, Christoph M. Kirsch, Michael Lippautz, and Ana Sokolova. 2015. Fast, multicore-scalable, low-

fragmentation memory allocation through large virtual memory and global data structures. ACM SIGPLAN Not. 50,
10 (2015), 451–469.

[3] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios Goumas, and Michael Swift. 2022. DaxVM: Stressing the
limits of memory as a file interface. In Proceedings of the 55th IEEE/ACM International Symposium on Microarchitecture

(MICRO’22). 369–387.
[4] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s talk about storage & recovery methods for non-

volatile memory database systems. In Proceedings of the ACM SIGMOD International Conference on Management of

Data (SIGMOD’15). Association for Computing Machinery, 707–722.
[5] Josh Barnes and Piet Hut. 1986. A hierarchical O (N log N) force-calculation algorithm. Nature 324, 6096 (1986), 446–

449.
[6] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. 2000. Hoard: A scalable memory

allocator for multithreaded applications. ACM SIGPLAN Not. 35, 11 (2000), 117–128.
[7] Bo Bernhardsson. 1991. Explicit solutions to the N-queens problem for all N. ACM SiGART Bull. 2, 2 (1991), 7.
[8] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016. Makalu: Fast recoverable allocation of non-

volatile memory. ACM SIGPLAN Not. 51, 10 (2016), 677–694.
[9] Hans-Juergen Boehm. 1993. Space efficient conservative garbage collection. In Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI’93). New York, NY, 197–206.
[10] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott. 2020. Under-

standing and optimizing persistent memory allocation. In Proceedings of the ACM SIGPLAN International Symposium

on Memory Management (ISMM’20). 60–73.

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.



7:50 Z. Dang et al.

[11] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characterizing, modeling, and benchmarking
RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference on File and Storage Technolo-

gies (FAST’20). 209–223.
[12] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng Wu. 2017. Efficient support of position inde-

pendence on non-volatile memory. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO’17). 191–203.
[13] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An efficient log-structured

key-value storage engine for persistent memory. In Proceedings of the 25th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS’20). 1077–1091.
[14] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free concurrent level hashing for persistent memory.

In Proceedings of theUSENIX Annual Technical Conference (ATC’20). 799–812.
[15] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.

2011. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. ACM SIGARCH

Comput. Archit. News 39, 1 (2011), 105–118.
[16] Intel Corporation. 2018. Redis. Retrieved from https://github.com/pmem/redis/tree/3.2-nvml/
[17] Intel Corporation. 2020. Persistent Memory Development Kit. Retrieved from http://pmem.io/
[18] Intel Corporation. 2021. eADR: New Opportunities for Persistent Memory Applications. Retrieved from

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-
memory-applications.html

[19] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient algorithms for persistent transactional
memory. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA’18). 271–282.

[20] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang, Xian-He Sun, and Gang Chen. 2022. NVAlloc:
Rethinking heap metadata management in persistent memory allocators. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’22). New York, NY,
115–127.

[21] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers, Vivien
Quema, and Mark Roth. 2013. Traffic management: A holistic approach to memory placement on NUMA systems.
In Proceedings of the 18th International Conference on Architectural Support for Programming Languages and Operating

Systems. New York, NY, 381–394.
[22] Arnaldo Carvalho De Melo. 2010. The new Linux “perf” tools. In Slides from Linux Kongress, Vol. 18. 1–42.
[23] Anthony Demeri, Wook-Hee Kim, R. Madhava Krishnan, Jaeho Kim, Mohannad Ismail, and Changwoo Min. 2020.

Poseidon: Safe, fast and scalable persistent memory allocator. In Proceedings of the 21st International Middleware Con-

ference (Middleware’20). 207–220.
[24] Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Philippe O. A. Navaux, Anselm Busse, and Hans-Ulrich

Heiss. 2015. Kernel-based thread and data mapping for improved memory affinity. IEEE Trans. Parallel Distrib. Syst.

27, 9 (2015), 2653–2666.
[25] Dominik Durner, Viktor Leis, and Thomas Neumann. 2019. On the impact of memory allocation on high-performance

query processing. In Proceedings of the 15th International Workshop on Data Management on New Hardware (Da-

MoN’19). 1–3.
[26] Jason Evans. 2021. Jemalloc. Retrieved from https://github.com/jemalloc/jemalloc/
[27] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra Fedorova, and Vivien Quéma. 2014.

Large pages may be harmful on NUMA systems. In Proceedings of the USENIX Annual Technical Conference (USENIX

ATC 14). 231–242.
[28] Google Inc. 2021. tcmalloc. Retrieved from https://github.com/google/tcmalloc
[29] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing Guan, and Haibo Chen. 2019. Pisces:

A scalable and efficient persistent transactional memory. In Proceedings of the USENIX Annual Technical Conference

(ATC’19). USENIX Association, 913–928.
[30] Tom’s Hardware. 2022. Samsung’s Memory-Semantic CXL SSD Brings a 20x Performance Uplift. Retrieved from https:

//www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
[31] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. 2017. Log-structured non-volatile main

memory. In Proceedings of the USENIX Annual Technical Conference (ATC’17). 703–717.
[32] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin Wang. 2015.

LAMA: Optimized locality-aware memory allocation for key-value cache. In Proceedings of the USENIX Annual Tech-

nical Conference (ATC’15). USENIX Association, 57–69.
[33] Intel. 2018. 5-Level Paging and 5-Level EPT White Paper. Retrieved from https://www.intel.com/content/www/us/en/

content-details/671442/5-level-paging-and-5-level-ept-white-paper.html

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.

https://github.com/pmem/redis/tree/3.2-nvml/
http://pmem.io/
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://github.com/jemalloc/jemalloc/
https://github.com/google/tcmalloc
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html


PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation 7:51

[34] Intel Inc. 2022. IPMCTL: A Command Line Interface (CLI) application for configuring and managing PMems. Retrieved
from https://github.com/intel/ipmctl/

[35] Intel Inc. 2022. Processor Counter Monitor (PCM). Retrieved from https://github.com/intel/pcm/
[36] Intel Inc. 2023. Intel® 64 and IA-32 Architectures Optimization Reference Manual.
[37] Abdullah Al Raqibul Islam and Dong Dai. 2023. DGAP: Efficient dynamic graph analysis on persistent memory. In

Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’23).
Association for Computing Machinery, New York, NY.

[38] Keita Iwabuchi, Lance Lebanoff, Maya Gokhale, and Roger Pearce. 2019. Metall: A persistent memory allocator en-
abling graph processing. In Proceedings of the IEEE/ACM 9th Workshop on Irregular Applications: Architectures and

Algorithms (IA3’19). 39–44.
[39] Jemalloc. 2023. Jemalloc(3) Manual Page. Retrieved from https://jemalloc.net/jemalloc.3.html
[40] Hai Jin, Zhiwei Li, Haikun Liu, Xiaofei Liao, and Yu Zhang. 2020. Hotspot-aware hybrid memory management for

in-memory key-value stores. IEEE Trans. Parallel Distrib. Syst. 31, 4 (2020), 779–792.
[41] Mark S. Johnstone and Paul R. Wilson. 1998. The memory fragmentation problem: Solved? ACM SIGPLAN Not. 34,

3 (1998), 26–36.
[42] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets compute express link for memory expansion

(CXL-SSD). In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’22). 45–51.
[43] Patryk Kaminski. 2009. NUMA aware heap memory manager. AMD Devel. Centr. (2009), 46.
[44] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim, and Taesoo Kim. 2018. A scalable ordering primitive for mul-

ticore machines. In Proceedings of the 13th EuroSys Conference (EuroSys’18). Association for Computing Machinery,
New York, NY.

[45] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young ri Choi, Alan Sussman, and Beomseok Nam. 2022.
ListDB: Union of write-ahead logs and persistent skiplists for incremental checkpointing on persistent memory. In
Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI’22). 161–177.

[46] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Changwoo Min. 2021. PACTree: A high
performance persistent range index using PAC guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles (SOSP’21). Association for Computing Machinery, 424–439.
[47] Joseph B. Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer.

Math. Societ. 7, 1 (1956), 48–50.
[48] Mohan Kumar Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselý, Zi Yan, Taesoo Kim, Abhishek Bhattacharjee,

and Tushar Krishna. 2018. LATR: Lazy translation coherence. In Proceedings of the 23rd International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS’18). New York, NY, 651–664.
[49] Per-Åke Larson and Murali Krishnan. 1998. Memory allocation for long-running server applications. In Proceedings

of the 1st International Symposium on Memory Management (ISMM’98). 176–185.
[50] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh. 2017. WORT: Write Optimal Radix Tree

for persistent memory storage systems. In Proceedings of the 15th USENIX Conference on File and Storage Technologies

(FAST’17). 257–270.
[51] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. Recipe: Converting

concurrent DRAM indexes to persistent-memory indexes. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles (SOSP’19). 462–477.
[52] Daan Leijen. 2019. MiMalloc Benchmarks. Retrieved from https://github.com/daanx/mimalloc-bench
[53] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. MiMalloc: Free list sharding in action. In Proceedings of

the 17th Asian Symposium on Programming Languages and Systems (APLAS’)19. Springer, 244–265.
[54] Lenovo. 2018. Memcached-PMEM. Retrieved from https://github.com/lenovo/memcached-pmem/
[55] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and memory placement on NUMA systems:

Asymmetry matters. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’15). 277–289.
[56] Zhenxin Li, Bing Jiao, Shuibing He, and Weikuan Yu. 2022. PhaST: Hierarchical concurrent log-free skip list for per-

sistent memory. IEEE Trans. Parallel Distrib. Syst. 33, 12 (2022), 3929–3941.
[57] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+ Trees: Optimizing persistent index performance on 3DXPoint

memory. Proc. VLDB Endow. 13, 7 (2020), 1078–1090.
[58] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable hashing on persistent memory. Proc.

VLDB Endow. 13, 8 (2020), 1147–1161.
[59] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu. 2021. ROART:

Range-query optimized persistent art. In Proceedings of the 19th USENIX Conference on File and Storage Technologies

(FAST’21). 1–16.
[60] MicroQuill Inc. 2014. shbench. Retrieved from http://www.microquill.com/

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.

https://github.com/intel/ipmctl/
https://github.com/intel/pcm/
https://jemalloc.net/jemalloc.3.html
https://github.com/daanx/mimalloc-bench
https://github.com/lenovo/memcached-pmem/
http://www.microquill.com/


7:52 Z. Dang et al.

[61] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford transactional
applications for multi-processing. In Proceedings of the IEEE International Symposium on Workload Characterization.
IEEE, 35–46.

[62] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy Ranganathan, and Nathan Binkert.
2013. Consistent, durable, and safe memory management for byte-addressable non-volatile main memory. In Proceed-

ings of the 1st ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS’13). 1–17.
[63] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Willhalm, and Grégoire Gomes. 2017. Mem-

ory management techniques for large-scale persistent-main-memory systems. Proc. VLDB Endow. 10, 11 (2017), 1166–
1177.

[64] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. 2016. FPTree: A hybrid SCM-
DRAM persistent and concurrent B-tree for storage class memory. In Proceedings of the International Conference on

Management of Data (SIGMOD’16). 371–386.
[65] Xing Pan, Yasaswini Jyothi Gownivaripalli, and Frank Mueller. 2016. TintMalloc: Reducing memory access divergence

via controller-aware coloring. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium

(IPDPS’16). 363–372.
[66] Mihail Popov, Alexandra Jimborean, and David Black-Schaffer. 2019. Efficient thread/page/parallelism autotuning for

NUMA systems. In Proceedings of the ACM International Conference on Supercomputing. 342–353.
[67] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor. 2019. Mesh: Compacting memory management

for C/C++ applications. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 333–346.
[68] Andy Rudoff. 2020. Persistent memory programming without all that cache flushing. Retrieved from https://www.

snia.org/educational-library/persistent-memory-programming-without-all-cache-flushing-2020
[69] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014. Log-structured memory for DRAM-based storage.

In Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST’14). 1–16.
[70] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. 2006. Scalable locality-conscious multi-

threaded memory allocation. In Proceedings of the 5th International Symposium on Memory Management (ISMM’06).
84–94.

[71] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner. 2015. Nvm malloc: Memory alloca-
tion for NVRAM. ADMS@ VLDB 15 (2015), 61–72.

[72] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. ACM

SIGARCH Comput. Archit. News 39, 1 (2011), 91–104.
[73] Mehul Wagle, Daniel Booss, Ivan Schreter, and Daniel Egenolf. 2015. NUMA-aware memory management with

in-memory databases. In Proceedings of the Technology Conference on Performance Evaluation and Benchmarking

(TPCTC’15). Springer, 45–60.
[74] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A black-box approach to NUMA-aware persistent memory

indexes. In Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI’21).
USENIX Association, 93–111.

[75] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu. 2022. XPGraph: XPline-friendly persistent mem-
ory graph stores for large-scale evolving graphs. In Proceedings of the 55th IEEE/ACM International Symposium on

Microarchitecture (MICRO’22). 1308–1325.
[76] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. 1995. Dynamic storage allocation: A survey and

critical review. In Proceedings of the International Workshop on Memory Management (IWMM’95). Springer, 1–116.
[77] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-aware, high performance transaction for persis-

tent memory. In Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST’21). 141–153.
[78] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Characterizing the performance of Intel

Optane persistent memory: A close look at its on-DIMM buffering. In Proceedings of the 17th European Conference on

Computer Systems (EuroSys’22). 488–505.
[79] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. 2020. An empirical guide to the

behavior and use of scalable persistent memory. In Proceedings of the 18th USENIX Conference on File and Storage

Technologies (FAST’20). 169–182.
[80] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min, and Sanidhya Kashyap. 2022. ODINFS: Scaling

PM performance with opportunistic delegation. In Proceedings of the 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’22). USENIX Association, 179–193.

Received 26 November 2022; revised 8 September 2023; accepted 21 January 2024

ACM Trans. Comput. Syst., Vol. 42, No. 3–4, Article 7. Publication date: September 2024.

https://www.snia.org/educational-library/persistent-memory-programming-without-all-cache-flushing-2020

