
HStream: A hierarchical data streaming engine for
high-throughput scientific applications
Jaime Cernuda

Illinois Institute of Technology
Chicago, Illinois, USA

jcernudagarcia@hawk.iit.edu

Jie Ye
Illinois Institute of Technology

Chicago, Illinois, USA
jye20@hawk.iit.edu

Anthony Kougkas
Illinois Institute of Technology

Chicago, Illinois, USA
akougkas@iit.edu

Xian-he Sun
Illinois Institute of Technology

Chicago, Illinois, USA
sun@iit.edu

ABSTRACT
Data streaming is gaining traction in high-performance computing
(HPC) as a mechanism for continuous data transfer, but remains
underutilized as a processing paradigm due to the inadequacy of
existing technologies, which are primarily designed for cloud archi-
tectures and ill-equipped to tackle HPC-specific challenges. This
work introduces HStream, a novel data management design for
out-of-core data streaming engines. Central to the HStream design
is the separation of data and computing planes at the task level. By
managing them independently, issues such as memory thrashing
and back-pressure, caused by the high volume, velocity, and bursti-
ness of I/O in HPC environments, can be effectively addressed at
runtime. Specifically, HStream utilizes adaptive parallelism and hi-
erarchical memory management, enabled by this design paradigm,
to alleviate memory pressure and enhance system performance.
These improvements enable HStream to match the performance of
state-of-the-art HPC streaming engines and achieve up to a 1.5x
reduction in latency under high data loads.

CCS CONCEPTS
• Information systems→ Streammanagement;Mainmemory
engines; Distributed storage;Hierarchical storage management;
• Computer systems organization→ Real-time system archi-
tecture.

KEYWORDS
Data Streaming, HPC, hierarchical storage, elastic system, in-transit

ACM Reference Format:
Jaime Cernuda, Jie Ye, Anthony Kougkas, and Xian-he Sun. 2024. HStream:
A hierarchical data streaming engine for high-throughput scientific applica-
tions. In The 53rd International Conference on Parallel Processing (ICPP ’24),
August 12–15, 2024, Gotland, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3673038.3673150

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673150

1 INTRODUCTION
High-Performance Computing (HPC) has seen a great growth in
the volume, velocity and variety of data. From scientific instru-
ments (e.g., large-scale physics experiments [23], telescopes [4],
and ptychography [28]), simulations and workflows [17], or system
monitoring [24]. Traditional mechanisms to manage this data have
focused on leveraging batch-based I/O, periodical processing, and
a globally available parallel file system (PFS). However, the ever-
growing disparity between the production rate and the ingestion
capability of the I/O system has led to a bottleneck known as the I/O
gap. Attempts to reduce or solve this gap have seen the introduction
of new I/O layers (remote or local) [13], systems (e.g., Hermes [15]),
and new data paradigms, of which data streaming is one.

Data streaming is a data paradigm that focuses on the manage-
ment of unbounded flows of data. It moves away from batch-based
solutions found in other systems like MapReduce and has been pri-
marily adopted in HPC as a mechanism for continuous memory-to-
memory data transfer. Systems such as ADIOS2 [11], Scistream [7],
or cloud-basedmessage queues [2] provide scientists with the ability
to continuously transmit data between applications (e.g., workflow
tasks, simulation/analytics pairs, etc.). Yet, data streaming remains
underutilized as a processing paradigm due to the inadequacy of
existing systems. This is despite a growing interest in the commu-
nity for high-performance, in-transit computation in fields like data
reduction [5], continuous learning [3], or application steering [21].
Data streaming engines, computational systems that leverage the
data streaming paradigm for continuous data processing, have been
primarily designed for cloud architectures and are ill-equipped to
tackle HPC-specific challenges. Most of the approaches to use them
on HPC have focused on a direct transference of cloud systems,
either by facilitating their deployment [6]; enabling pre-existing
platforms to make use of HPC technologies [12]; or, by co-locating
Cloud and HPC clusters [10]. HPC-first streaming engines do exist
with explorations of using MPI as a data streaming communication
library with capabilities for processing data within the application
user space [22] and Neon [20] which presents a c++, RDMA-based,
out-of-core data streaming engine for HPC.

While these engines have been designed as HPC-first engines,
they adhere to traditional cloud-based architectural designs. This
work argues that the unique demands of HPC, particularly data
demands of scientific applications, require specific architectural

231

https://doi.org/10.1145/3673038.3673150
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3673038.3673150
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673038.3673150&domain=pdf&date_stamp=2024-08-12

ICPP ’24, August 12–15, 2024, Gotland, Sweden J. Cernuda, J. Ye, A. Kougkas and X-H. Sun

modifications not present in current systems. Data streaming en-
gines rely heavily on in-memory operations. The high volume
and velocity of data generation and the decreasing memory-per-
core [27] in HPC clusters can put extreme pressure on memory,
leading to memory thrashing [8]. HPC systems benefit from the
presence of node-local and remote burst buffer technologies [14].
These technologies provide a support structure for data placement,
which can allow HPC streaming engines to ease memory demands.
Additionally, data streaming platforms lack the ability to reconfig-
ure the resources allotted to computational tasks at runtime. The
bursty I/O patterns of scientific applications [25] and the increasing
multi-tenancy environments [5] where they are deployed can lead
to severe competition for resources, causing starvation and back-
propagation. A mechanism to adaptively shuffle resources between
tasks can help alleviate this issue, with the high-speed networks
in HPC being more capable of supporting such a mechanism when
compared with the slower TCP/IP networks used in cloud platforms.

To address these issues, we present HStream. HStream is a data
streaming engine with a new architectural design aimed at embrac-
ing the high data throughput of scientific applications. HStream’s
core novelty is the separation of the data and compute planes, allow-
ing engines to control each plane at a lower granularity. To alleviate
memory pressure and avoid thrashing, HStream proposes a data
plane composed of a hierarchical memorymanager, a globally acces-
sible namespace controlling node-local memory while embracing
HPC local and remote burst buffers. Algorithms for data manage-
ment are provided to ensure low latency access in a data streaming
context. To aid in managing the non-uniform data generation of
HPC applications and clusters, HStream introduces the concept
of ephemeral tasks which can be killed, spawned or migrated at
will. Ephemeral tasks maintain access to their data through the
global namespace of the hierarchical manager. Building the com-
pute plane on top of ephemeral tasks allows HStream to implement
an adaptive parallelism controller, where resources can be shifted
between jobs and tasks to respond to the demand imposed by the
applications. Finally, to drive these two mechanisms intelligently,
HStream introduces a stream observer to collect and understand
both the characteristics of the streams flowing through the systems
as well as the hardware utilization metrics of the platform.The
contributions of this work are as follows:

(1) An adaptive parallelism controller allowing the engine
to adapt the parallelism of computation to the variable I/O
requirments of scientific applications.

(2) A hierarchical memory manager leveraging HPC local
and remote storage devices to reduce memory pressure.

(3) Anholistic streamobserver collecting per-task and per-job
software and hardware metrics to drive the decision-making.

2 BACKGROUND AND MOTIVATION
2.1 Data Streaming Engines
Data streaming engines are distributed, out-of-core systems respon-
sible for the intake, processing, and analysis of continuous data
streams. These streams are generated by various sources and fed
into the engine. Within the engine, streams are processed by a se-
ries of linked operators that define a Directed Acyclic Graph (DAG)
known as a job. This job dictates the data flow and encapsulates the

application’s logic. It is the responsibility of the engine to support
the deployment and management of these jobs. Examples of such
platforms include Apache Flink, Google Cloud DataFlow, Apache
Storm, and Kafka Streams.

2.2 The Data Streaming Engine Model
Tasks: In data streaming engines, the smallest unit of computation
is a task. The collection of all tasks comprises the compute plane.
Each task executes a specific operator, such as filtering, but an
operator can be instantiated into multiple tasks depending on its
parallelism requirements.

State Management: While simple tasks may be stateless (e.g.,
filtering or mathematical operations), more complex tasks (e.g.,
joins) require historical data to function. Each task typically man-
ages its state in-memory and interfaces with a key-value store API.
The collective state of all tasks represents one half of the data plane.

Windowing: Windowing is a common and state-intensive oper-
ator in data streaming used to temporarily collect data within a task.
The window’s length may be based on time intervals, the number
of events collected, or session length. Windowing is essential for
operations that calculate rolling or totals over a specified period.

Inter-task Communication: Communication between tasks
is facilitated through queues and per-task network buffers. These
buffers accommodate variations in processing speeds from preced-
ing tasks, allowing tasks to operate independently and in parallel.
Advanced algorithms control the timing of data transmission and
reception. The collection of queue buffers assigned to each task
forms the other half of the data plane.

Keyed vs. Non-keyed Streams: Keyed streams organize data
by a specific attribute (e.g., a file name), using the key to divide the
stream into multiple logical streams. This allows stream processing
systems to apply operations like windowing to all data associated
with a file. While keyed streams are limited in parallelization by
the number of unique keys, they often host stateful operators. Non-
keyed streams, lacking specific keys, can be parallelized across an
unlimited number of tasks.

2.3 Data Streaming: Challenges and Limitations
Memory Thrashing: Memory thrashing occurs when node pro-
cesses exceed available memory, leading to system crashes or sig-
nificant performance degradation from excessive OS paging. Some
engines, like Apache Spark, do not impose memory limits, poten-
tially causing abrupt failures upon memory exhaustion. Others, like
Apache Storm, impose strict memory limits on a per-task basis and
preemptively terminate tasks that exceed these thresholds, necessi-
tating application tuning to establish optimal limits. Alternatively,
some engines integrate with persistent, node-local, general-purpose
key-value stores, such as RocksDB, to alleviate memory load and
ensure balanced resource utilization across multiple tasks.

Back-pressure: A significant challenge in data streaming is
back-pressure, which occurs when the rate of incoming data ex-
ceeds a task’s processing capabilities, causing data to accumulate
in the input queue. This mismatch, often resulting from varying
computational complexities among sequential operators, can se-
verely degrade job throughput and affect other jobs in the system
due to resource hogging. To mitigate back-pressure, engines may

232

HStream: A hierarchical data streaming engine for high-throughput scientific applications ICPP ’24, August 12–15, 2024, Gotland, Sweden

limit the flow of data using algorithms such as credit-based flow
control, adjust the parallelism of affected tasks (which may require
a costly restart), or shed messages that have reached their TTL.

3 DESIGN AND IMPLEMENTATION
Thiswork presents HStream, a novel data streaming engine. HStream
was designed and implemented with the following new architec-
tural components:

(1) A holistic observer: that can track and identify the charac-
teristics of each data stream (e.g., velocity, average size) and
collect cluster-wide hardware utilization.

(2) An adaptive job manager: to adapt to the bursty I/O of scien-
tific applications and HPC multi-tenancy, the job manager
of the data streaming engine should be able to adjust the
parallelism of operators during runtime.

(3) A hierarchy-aware data manager: to process the high vol-
umes and velocity of data produced by scientific applications
without overwhelming the memory, HStream must be able
to leverage the entire storage hierarchy.

Overall, these three design goals aim to present an HPC-aligned
data streaming engine capable of handling the unique data require-
ments of scientific applications.

3.1 HStream Architecture
Data streaming is a flexible programmingmodel designed to operate
on real-time data. A variety of HPC applications (e.g., simulation,
IoT, AI, analytics) and storage targets (e.g., PFS, inference server)
can act as either producers or consumers of data. Further, a stream-
ing platform can provide extensive in-transit transformations on
the data without the need for changing the application. This section
presents the design and architecture of HStream. HStream can be
used, for example, to build an online prediction pipeline, where it
can process the generated data from a telescope and provide online
detection of cosmic events for the applications as soon as possible.
Users can define the logic and flow of the needed transformations
through the submission of a job, HStream can then perform vari-
ous operations on the stream of data flowing through the job all
completely transparent to the application.

Figure 1 presents the high-level architecture of HStream, its ma-
jor components, and showcases the data path through the platform.
HStream adopts a master-worker architecture, in which multiple
masters (the Job Managers) are responsible for a number of workers
(the TaskManagers). This architecture, and the distributed nature of
each component, provides a flexible, scalable, and efficient platform
for distributed processing of data streams.

3.1.1 HStream’s data path. The first step towards interacting with
HStream is to leverage HStream’s client library. HStream’s client
library is composed of three core components:

The API : The HStream API allows applications to interact with
the system for job submission (administration layer) and publica-
tion/subscription for data stream events (data layer).

The Job constructor and operator library: Before sending data to
HStream for processing, the application first needs to create a job.
The job describes the transformations that users desire to happen
on the data stream. It is defined as a directed acyclic graph (DAG)

ClientClient

Stream
Monitor

Job
Register

Stream
Monitor

Job
Register

Master Nodes

Stream
Monitor

Job
Manager

Job
Register

API
Submit

Job

Publish
Execution Node

Task Manager Task Monitor

TaskA TaskB

Execution Node
Task Manager Task Monitor

TaskA TaskB

…

Storage
Target

PFS

DB

KVS

S3

Inference
Server

Apps

Simulation

IoT Viz

Analytics

AI

API

Subscribe

Source
Queues

TaskC

Storage
Target

PFS

DB

KVS

S3

Inference
Server

Apps

Simulation

IoT Viz

Analytics

AI

Sink
Queues

Figure 1: HStream architecture, showcasing in blue the data
path from client to source queues, across the job, and into the
sink queues of the clients. Black arrows show a simplified
depiction of the control pathway for a job submission.

of operators, where each operator is the implementation of a trans-
formation to be performed on the data stream being processed. A
task, a concept that will be used later in this section, is an instance
of an operator executed by a thread. One operator can be paral-
lelized into multiple tasks. HStream’s client library includes several
pre-defined operators that can be used by any user, as well as the
utilities required to define, instantiate, and compile the job into a
shared library compliant with HStream’s requirements.

The client queues: HStream’s client provides distributed queues
for the producers (source queues) and consumers (sink queues). The
implementation of these queues leverages Boost interprocess com-
munication for node-local data accesses by the application cores,
and an RPC layer for remote data accesses from the HStream cluster.

When an application submits a job to the cluster, it communi-
cates with the elected Job Manager’s leader. Job Managers are the
only entities deployed on HStream deployment and are launched on
a set of configurable master nodes. Each Job Manager is designed to
be mapped to a single master node. These Job Managers have many
responsibilities. During job submission, they are responsible for re-
ceiving the request, storing the job metadata in the Job Register (e.g.,
user, path to the shared library, timestamp, job ID, required opera-
tors), and initializing the job. This initialization process is depicted
by the black lines in Figure 1. For this initialization, the Job Manager
links to the shared library of the job and loads the DAG into mem-
ory. Once it understands the job requirements, the Job Manager
will instantiate the first operator of the job. This operator is usually
referred to as the collector and is responsible for gathering data
from the source queues. To do so, The Job Manager will initialize a
set of Task Managers (if none exist) and instruct them to instantiate
a collector operator. The collector operator task can have multiple
copies spawned across different nodes, with their quantity deter-
mined based on the parallelism of the first operator defined by the
user within the job (and a default from the platform configuration
file). After this initialization, the application or the storage server
can publish/subscribe to data stream events to/from HStream.

Living alongside each of the Job Managers on the Master nodes
are two additional components: The Stream Monitor, a key compo-
nent in HStream’s intelligent observer, is responsible for monitoring
and collecting statistical information on the data stream. This infor-
mation helps estimate workloads, detect bottlenecks, and adapt task
parallelism; and, the Job Register which contains several in-memory

233

ICPP ’24, August 12–15, 2024, Gotland, Sweden J. Cernuda, J. Ye, A. Kougkas and X-H. Sun

distributed data structures for storing metadata and statistical infor-
mation related to submitted jobs. These data structures store the job
information, a map of the tasks assigned to the job, resource utiliza-
tion of the cluster, and more. In general, all the information needed
for the Job Manager to perform its adaptive scheduling of tasks is
stored within these distributed data structures of the Job Register.

Once the collectors are ready to handle data for the job, the appli-
cation will start publishing the data stream into the source queues.
The blue lines in Figure 1 present the data streams processing path
from producer to consumer. During the running phase, each col-
lector proactively pulls stream events from the client queues for
processing. This pull-based design enables the Job Manager to also
affect the parallelism of the collectors without having side effects
on the clients. These collectors, like any other task, executed on the
Task Manager, a component of HStream running on the execution
nodes that manages tasks (spawning and killing them). It is the
core component establishing the separation between the data and
operation planes. The Task Manager is also responsible for creating
the input queue and state for any task, controlling the task’s move-
ment between memory and permanent storage devices (e.g., NVMe,
HDD) during runtime, and presenting a global namespace to the
data, allowing for the querying of data from different tasks. Upon
reception of an event, if no tasks exist to handle it, the TaskManager
will spawn a task and assign an input queue to it. Finally, the event
will be placed into the corresponding input queue for processing.

Tasks within the job communicate and transfer events between
queues, but rely on the Job Manager to tell them their destination.
As such, every so often when a task finalizes processing an event,
it will contact the Job Manager to ask for directions. If the cluster
has maintained the load, no changes will be made. Otherwise, the
Job Manager can reconfigure the parallelism of the operator by
redirecting traffic: to new tasks (to increase) or away from tasks (to
reduce). This scheduling is the final responsibility of the Job Man-
ager. Upon reaching the final task (the sink), the task outputs the
processed data stream events to the sink queues running together
with the consumer. These final sink tasks can be replaced by the
network queues of the nodes hosting a storage target.

Task Managers are co-located with a Task Monitor. Task Mon-
itors, paired with the Stream Monitor, implement the observation
layer of HStream.While an execution node can (but rarely will) con-
tain more than one Task Manager (e.g., for data isolation purposes
between two applications), HStream only requires a single Task
Monitor per node. Its primary responsibility is tracking and collect-
ing hardware resource utilization on a per-task basis at an adaptive
time interval. All this information is stored in an in-memory data
structure and is used by the Hierarchical Manager to instruct data
movement between memory and storage.

3.2 Intelligent Stream Observer
For the proper execution of HStream’s algorithms, it is essential to
have a comprehensive understanding of the characteristics of the
data stream and the current hardware utilization status. To collect
them HStream makes use of a holistic stream observer to collect
statistics a per-task and per-stream level. HStream avoids static
monitoring pooling rates as they are inefficient and variable per
system. Instead HStream leverages an adaptive and dynamic time

interval strategy inspired by existing works [24]. This dynamic
time interval modifies the polling rate to measure more often on
highly variable resources and reduces it on more statically used
resources. This dynamic interval allows monitoring a higher num-
ber of resources. The initial value is defined empirically by the
user, and the system is responsible to search for a pooling rate that
maintains CPU overhead below 10% of the node, adjustable by the
user. The stream observer is composed of two distinct layers: the
data observation layer and the hardware observation layer.

3.2.1 Data Observation Layer. The data observation layer is a sub-
layer of the stream observer, implemented by the Stream Monitor
component, as illustrated in Figure 1. Each master node runs a
single Stream Monitor component. The main responsibility of the
Stream Monitor is to collect statistical information about jobs and
data streams. This includes metadata of live jobs within the cluster,
the resources used by each job, the available resources in the cluster,
the data production and consumption rate of each task (defined as
the number of events per second received or sent), and the load (the
length and volume of the queue) of each cluster queue, including
source and sink queues. These stream stats are stored in the Job
Register after collection.

To help with the Job Manager’s scheduling, the Job Register
stores the data in two data structures: a loadmap (unordered_map)
and a reversed_loadmap (multimap). In the loadmap, the taskman-
ager_id is used as a key, while in the reversed_loadmap, the com-
bined load of a Task Manager is used as the key and sorted in
ascending order. This allows both searching for the specific load of
a Task Manager and quickly finding the least loaded Task Manager.
During runtime, the Job Manager uses these maps to detect bottle-
necks (e.g., back-pressure) or idleness of tasks and find appropriate
locations to spawn or kill tasks.

3.2.2 Hardware Observation Layer. The hardware observation layer
is the other sublayer of the stream observer, implemented by the
Task Monitor component shown in Figure 1. Each execution node
runs a single Task Monitor. The Task Monitor is responsible for col-
lecting the hardware resource utilization per node and per task, in-
cluding both CPU usage andmemory usage. Here, CPU andmemory
utilization refer to the average percentage of CPU or memory in use
over a user-configured time interval. Individual task CPU metrics
are obtained by naming each task thread and extracting its informa-
tion from the proc file system. The TaskMonitor has shared access to
the data structures and files that hold the queues and task state, and
can leverage this access to track their size and memory utilization.
All these hardware statistics are stored in a hardware statistics data-
base, which is an in-memory hashmap. All this information will be
used by a Task Classifier, a component of the Hierarchical Manager,
to compute a score for each task, helping the Hierarchical Memory
Manager determine which tasks to move to or from storage.

3.3 Reducing Network Pressure Via Adaptive
Parallelism

Data streaming jobs are statically deployed with a defined paral-
lelism per operator, determined at startup by the user submitting
the job. In multi-tenant environments, over-provisioning resources
can make one application perform at maximum capacity, but may

234

HStream: A hierarchical data streaming engine for high-throughput scientific applications ICPP ’24, August 12–15, 2024, Gotland, Sweden

Job1 After

Master Node

Stream
Monitor

1. Track the
load of each
tasks

5. Increase
Task B’s
parallelism

Job Register

Execution Node

Task A.1 (10, 100)
… …
Task C.2 (20, 50)

loadMap

2. Records
tasks’ load

3. Extract
the load in
configured
interval

6. Next Task

Job
Manager

4. Detect
backpressure

Job1 Before
Execution Node

Execution Node
Task A

Task C

Task C

Task A

Task B
Execution Node

Task BTask A

Task B Task C

Task C

Task A

Job2 After

Master Node

Stream
Monitor

1. Track the
load of each
tasks

5. Shrink
Task Y’s
parallelism

Job Register

Execution Node

Task X.1 (10, 100)
… …
Task Z.2 (10, 30)

loadMap

2. Records
tasks’ load

3. Extract the
load in
configured
interval

6. Next Task

Job
Manager

4. Detect RS
under-utilized

Job2 Before
Execution Node

Execution Node
Task X

Task Z

Execution Node

Task X

Task Y

Task Z

Task X

Task Y

Task Y

Task Y

a) Scale parallelism of a task b) Shrink parallelism of a task

Task X

Figure 2: HStream’s adaptive parallelism, showcasing on the
left the detection of back-pressure on Task B and its increase
in parallelism when any of the previous tasks (Task A) re-
quest the next tasks. The right side shows the reverse.

lead to reduced availability of resources for other applications. In en-
vironments where data is generated unevenly over time, such as the
bursty I/O patterns of scientific applications, under-provisioning
resources can cause events to clog the network queues due to a
mismatch between production and consumption rates.

To solve this problem, HStream provides an adaptive parallelism
controller to address both the under- and over-provisioning of re-
sources, making it better suited for the multi-tenant and bursty I/O
patterns in HPC clusters. It allows for adaptive adjustment of an
operator’s parallelism during runtime by scaling in and scaling out
the number of tasks executing the given operator. This decision is
made by considering the current load on a given task, measured by
the length of its input queues and the current inflow of data into
the job, metrics tracked by the Stream Monitor. The adaptive par-
allelism controller is implemented through two core mechanisms:
a next task scheduling algorithm implemented in the Job Manager
and ephemeral tasks, which are a result of the decoupling of the
data (both state and queue) from the task, allowing their spawning
and termination at will. Ephemeral tasks are crucial, as they allow
the Job Manager to instruct new tasks to be spawned or, if a task
does not receive any events for a configurable duration, it marks
itself as terminated for the corresponding operator, freeing it to
be selected later for a different task. These two mechanisms allow
the Job Manager to dynamically adjust the parallelism of tasks by
redirecting the flow of events.

HStream’s adaptiveness is illustrated in Figure 2. When a task
completes processing an event, it sends a message to the Job Man-
ager with its job_id, task_id, and the event_key to request the lo-
cation of its subsequent task. Upon receipt of a next_task request,
the Job Manager checks the current status of the queues for the
previously selected, if any, next task. If the task has no issues, the
current one is asked to maintain the current connection. If the
task is detected to be overloaded, the Job Manager will trigger an
scale out of the operator parallelism by finding the Task Manager
with minimal load on the cluster. To efficiently execute this process,
we make use of the Job Register reversed_loadmap(std::multimap)
that maintains a record of the load of each Task Manager, with the
load as the key, sorted in ascending order. The Job Manager then
returns to the task the corresponding taskmanager_id, the ID of
the next operator, and the task_list containing all available task
slots (free cores) on the Task Manager. When received, the task

Execution Node
Message
Handler

1. Incoming
Stream

5. Register Task.
(TaskID, PID, operation,
priority, state)

2. Dequeue
Message

7. Store hardware stats
(PID, Memory, CPU)8. Calculate

tasks scores

9. State
changes

Node Registry

Task
Registry

Hardware
Stats DB

Message Queue 3. Create
Task

Task 2Task 1
Task

Monitor

Task Manager

Task
Spawner

State
Manager

Task
Classifier

6. Submit
messages to
input queues

10.
Confirm
state
change

4. Assign
thread and
input queue

Figure 3: HStream control flow on a single execution node,
depicting the control path for creating a new task (steps 1–6)
and the communication required for the Hierarchical Stream
Manager (steps 7–10).

establishes a connection with the new Task Manager. The spawn-
ing of a new task is depicted in Figure 3. When a message arrives
containing a task_list, it will be sent to the Task Manager, which
chooses among the available task slots in the list to place the new
tasks, requesting a new state and queue to be created for it, and
placing the new event on the recently created queue. Finally, if the
queue load of the next task is below a threshold, the Job Manager
initiates a scaling in. To do so, it searches for the current load of the
other tasks from the same operator. If any of the tasks are detected
to be underloaded, the Job Manager will redirect the current task
to the found task. Note that the next_task call can happen every n
events or seconds, configurable by the user, establishing a trade-off
between reactiveness of the system and network utilization.

The need for the task_list is important to manage keyed streams
where all events with the same key must be processed by the same
tasks (e.g., all events belonging to a unique topic). For these cases,
the task_list allows the Job Manager to make specific requests for
where to place the tasks. Previous non-processed elements of this
key can be extracted, at the cost of some increased latency, from the
global namespace managed by the Hierarchical Manager. HStream’s
design does support the ability to migrate task state, but it lies be-
yond the current scope of this work. An important unique case for
the adaptive control is the Collector tasks, which are the first task
on any job and interface with the client queues. Under a normal
push-based model, where clients send the data to the engine, it is
very hard to manage their parallelism, requiring updating informa-
tion on the client. Instead, HStream uses a pull-based model, where
users push data to user queues that are then pulled by the collectors.
This design, combined with the distributed nature of the queues,
allows HStream to alter the number of collectors without any side
effects on the user processes. The collectors’ load is measured by
the length of the user queues, monitored by the Stream Observer.

3.4 Alleviating Memory Pressure with Storage
Hierarchies

Existing data streaming engines manage state as a holistic resource
across the job, where the state is tied to the tasks, and they either
operate in memory, memory-mapped files, or a KV store tied to the
task. This decision presents a trade-off between memory utilization
and performance that must be made at the job level rather than by
individual tasks. To overcome this challenge, HStream presents an
intelligent hierarchical memory manager that can manage, store,

235

ICPP ’24, August 12–15, 2024, Gotland, Sweden J. Cernuda, J. Ye, A. Kougkas and X-H. Sun

and access individual task states and input queues on the storage
hierarchy when memory pressure is high. However, implementing
such a hierarchical memory manager requires understanding the
I/O behavior and resource usage of each task (Observational Layer)
and deciding when to execute data movement, as randomly moving
a task state may degrade overall performance.

Algorithm 1: Calculating Task Score Algorithm
Data: 𝑡𝑜𝑡𝑎𝑙_𝐶𝑃𝑈 , 𝑡𝑜𝑡𝑎𝑙_𝑀𝑒𝑚, config, Task Statistics (TS)
Result: Top Task based on score

1 Procedure CalculateTaskScore():
2 TaskManagerStats← (𝑡𝑜𝑡𝑎𝑙_𝐶𝑃𝑈 , 𝑡𝑜𝑡𝑎𝑙_𝑀𝑒𝑚);
3 MaxMemTHR← config.get(maxMemThreshold);
4 if TaskManagerStats.total_Mem > MaxMemTHR then
5 foreach 𝐼𝐷 ⊂ 𝑇𝑅 do
6 params← TS.{CPU, Mem, input_rate, Priority,

Retention};
7 score← Score(params);
8 ScoreMap.append(ID, score);
9 sortedScoreMap← sortByScore(ScoreMap);

10 return ReturnTopTask(sortedScoreMap);

11 Function Score(PRI, IN_RATE, RT, CPU, Mem):
12 return 𝑤1·Mem+𝑤3·RT

𝑤2·CPU𝑤6+𝑤4·IN_RATE +𝑤5 · PRI;

HStream presents an algorithm to select which task needs to
be moved based on different policies. Note that these movements
occur on a per-task basis (not on an operator or job basis) and can
move both the task state and its input queue, if necessary. Algo-
rithm 1 showcases how HStream grades tasks to move to storage.
The Task Classifier is responsible for executing the algorithm. This
score is based on five factors: priority, input event rate, retention,
CPU usage, and memory usage. Priority and retention are extracted
from job definition and are static during the runtime of the appli-
cation, the rest are monitor by our observer. These parameters are
normalized through a min-max normalization method. As depicted
in Figure 3, the classifier is triggered by the Task Monitor when the
memory usage of the current node exceeds the user-defined max-
imum memory threshold. The algorithm will then score each task
running on the node, storing their ID and score as a key-value pair
into a shared map. The top task is picked to be moved, and the pro-
cess repeats until the memory usage of the current node is below the
maximummemory threshold. Similarly, the algorithm also supports
moving tasks from storage tomemory by reversing the sorting order.
The Task Classifier will notify the State Manager of the need to move
tasks, and the information will be gathered from the shared map.

Algorithm 1 used by HStream to grade tasks can be tuned (shown
on line 21) for different jobs and depending on the HPC site’s ap-
plications, by adjusting the weights (𝑤1 to𝑤6) and changing the
relative importance of each of the five factors. Through this tun-
ing, HStream allows the implementation of different policies. We
propose several policies to cover some common application types,
leaving system administrators and users with a flexible system that
enables them to enhance HStream with more:

3.4.1 Frequency-based policy. This policy aims to optimize mem-
ory utilization by retaining hot tasks in memory and moving cold
tasks to storage. The hotness of a task is influenced by the input
event rate. In this policy, the input event rate weight (w4) is given
the highest value.

3.4.2 Computing-intensive policy. Typically, a computing-intensive
task is expected to have more memory accesses, and therefore a
lower score. However, computing-intensive tasks, such as AI train-
ing or inference, may have high CPU utilization but fewer memory
accesses compared to other tasks. For these use cases, one can set
a high value for the CPU usage weight (w2) and set its exponent
(w6) to negative one.

3.4.3 Retention-based policy. This policy targets tasks with long
retention, such as long-term windowing tasks. It allows finer con-
trol of how to manage the relationship between input rates and
retention lengths. For example, a daily window that averages many
events over a day compared to a minute window with fewer events.
The default policy will put the daily window on disk, which might
not be feasible due to its high input rate. Instead, in this policy, the
retention weight (w3) should be set to a low value, while the input
rate weight (w4) can be set to a higher value.

4 DESIGN CONSIDERATION
The adaptive parallelism inHStreamhas limitations. For key streams,
themaximumparallelism of a task depends on the number of unique
keys used. For non-key streams, the maximum parallelism of a task
is limited by the maximum available hardware resources (usually
cores). When hitting these adaptive limitations, the system cannot
adjust the degree of parallelism as desired. In this situation, we
expect an increase the back-pressure. In these situations, the hierar-
chical manager can reduce this pressure by placing cold, large-sized,
or low-priority tasks into storage.

The current implementation of HStream leverages high-speed
local burst buffers. However, these clusters often present a much
deeper hierarchy in the form of remote SSD-backed Burst Buffers
and remote PFS. The expected latency of these storage systems for
state placement is too high to be directly used in data streaming en-
gines. Yet, the global namespace enabled by the Task Manager can
allow for a much deeper state storage pool for the tasks, opening
avenues for new functionality, such as shared state between tasks
or the migration of tasks between nodes, as the state would remain
accessible. We aim to explore this mechanism in future work. Addi-
tionally, HStream uses a lazy deserialization method to handle the
events, events are stored in the queues and task states in a serialized
format and are only deserialized when used. This allowsmovements
of the task state between the hierarchy layers more performant.

Extensive work exists in the literature and on production systems
to support exactly-once semantics and fault tolerance in streaming
engines. Currently fault tolerance lies beyond the scope of the pa-
per, but the design of HStream is compatible with mechanism like
watermarking and checkpoints. In fact, we expect that the ability
of the Hierarchical Manager to interface with remote storage might
present interesting opportunities to optimize these processes.

236

HStream: A hierarchical data streaming engine for high-throughput scientific applications ICPP ’24, August 12–15, 2024, Gotland, Sweden

Figure 4: Scalability of Job Manager and Stream Monitor

5 EVALUATIONS
5.1 Methodology
Hardware: All experiments were conducted on our local research
cluster. The cluster consists of a compute rack with 32 nodes, con-
nected via two isolated Ethernet networks (40 Gb/s and 10 Gb/s)
with RoCE enabled. Each compute node has a dual Intel(R) Xeon
Scalable Silver 4114, 48 GB RAM, a Samsung 250GB NVMe SSD,
and a Seagate 1TB SATA HDD.
Software: The implementation of HStream is written in C++ with
over 9,000 lines of code, publicly available on GitHub1. The OS is
Ubuntu 22.04. For the evaluations, we used HCL 0.9.3 [9], a high-
performance library that provides distributed data structures over
RPCs, used for all metadata structures and for the source and sink
queues. HStream uses Mochi Thallium [26] for RPC communication,
supporting libfabric and verbs. The evaluations compare HStream
against the Neon streaming engine, a state-of-the-art HPC stream-
ing engine that shows significant performance improvements over
cloud engines that rely on Java and the TCP stack.

5.2 Evaluations
This section aims to answer several questions. Firstly, it examines
HStream’s scalability by measuring the response rate of the Job
Manager and Stream Collector (responsible for the adaptive par-
allelism of HStream). In addition, it measures the overhead of the
task collector. Secondly, it explores how an adaptive streaming
engine boosts performance in a multi-tenant and bursty environ-
ment by deploying three I/O kernels simultaneously, each with
varying I/O generation on three identical streaming jobs. Thirdly,
it demonstrates how a hierarchical streaming engine improves per-
formance when handling high data volumes. This is shown through
a ChronoLog-inspired [14] streaming job that collects data for dif-
ferent topics and buffers the data over time before sorting and
writing to disk. Lastly, it investigates how the combination of these
technologies can enhance holistic systems, using an AI inference
workload to demonstrate how adaptable and hierarchical engines
can reduce latency and improve overall system performance.

1 https://github.com/scs-lab/HStream

5.3 HStream Scalability
This first set of evaluations consists of three experiments. For the
first two, we evaluate the scalability of the Job Manager. Both ex-
periments are executed using a single Job Manager process with
4 RPC threads. In the first experiment, the clients behave as tasks,
continuously requesting new task allocations from the Job Manager.
In the second experiment, the clients act as task managers, updating
the Stream Monitor with synthetic loads. Each experiment deploys
8 processes per node across 31 nodes, with the 32nd node reserved
for the Job Manager/Stream Monitor. Each process generates 500k
request for a total of 124M at the largest scale.

Figures 4 show the results, revealing similar behaviors with slow
performance increases as requests grow, peaking at 60K events
per second for the Job Manager and 80K events per second for the
Stream Monitor. Performance was not affected by scaling the RPC
server threads from 4 to 16, with 16 threads even reducing perfor-
mance due to shared resource locking. When collocating the clients
with the Job Manager and Stream Monitor on the same node, they
achieved 800k and 2.5M requests. This helps to conclude that the al-
gorithms for adaptive management are not the bottleneck of the sys-
tem and are limited by the networking stack on the node. Note that
these experiments simulatemaximum load, where clients are contin-
uously sending requests, unlike real deployments, where requests
are spaced out. Subsequent evaluations will the same configuration,
with the 40Gb/s network and 4 RPC threads for both services.

Tasks CPU Use (%)
1 0.4
2 1.2
4 2.2
8 4.3
16 8.4
32 18.3

Table 1: Overhead of
the Task Monitor

The final experiment, shown in Ta-
ble 1, measures the CPU utilization of
the Task Monitor. A super observer,
identical to the Task Monitor, over-
sees the task monitor as we deploy
between 1 to 16 tasks on the node.
CPU utilization correlates with the
number of monitored processes, with
an average observational interval of
2 seconds, adjustable to balance reac-
tiveness and CPU usage. We choose 2
seconds empirically as a good trade-
off between reactiveness and over-

head. On a 20-core machine, we observe a 4-8% CPU utilization
with 8-16 tasks, with the utilization jumping to 16%whenwe started
oversubscribing the node.

5.4 Improve performance through adaptive data
streaming

This evaluation showcases HStream’s improvements in a multi-
tenant environment running multiple application kernels perform-
ing bursty I/O. The kernels include VPIC, HACC, and K-Means,
chosen for their diverse I/O behaviors: VPIC is a particle simu-
lation that generates significant I/O (32 MB per rank), HACC is
a simulation that executes checkpoints and provides a balanced
compute-to-I/O ratio (8 MB per rank), and K-Means is a clustering
algorithm that stores most of its data in memory and is compute
intensive (2 MB per rank). The messages generated by all 3 applica-
tions are small, less than 1kB. All three applications run I/O phases
between compute phases of varying lengths.

237

https://github.com/scs-lab/HStream

ICPP ’24, August 12–15, 2024, Gotland, Sweden J. Cernuda, J. Ye, A. Kougkas and X-H. Sun

Figure 5: Execution time of workloads based on the number
of clients.

The evaluation job consists of a collector that pulls data from the
applications, a key-by task that transforms the streams into keyed
streams, and partitions them into windowing tasks. The windowing
tasks collect up to 10 events, sort them, and send them to sink tasks
that write them to disk. The key is set as the filename, and we use 4
filenames per application to ensure parallelism and prevent bottle-
necks from the computing tasks. Thus, the only adaptable tasks are
the data collectors, which remain unchanged for Neon but can be
modified during runtime by HStream based on the applications’ de-
mands. Both engines are initially deployed across 16 nodes, with a
single collector task limit on each node. Each application receives 5
collectors, with VPIC receiving an additional one. The 3 applications
are then deployed weakly scaling from 80 to 640 nodes, with the
aim of an even split of processes between the applications, forcing
the ranks of different applications to coexist on the same node.

In Figure 5, it can be observed that HStream and Neon perform
similarly on a low scale, as HStream has limited capabilities to
adapt to I/O. In fact, a small performance loss is observed due to
the network overhead HStream suffers from the communication be-
tween the Job Manager and Stream Monitor. As the scale increases,
a greater disparity in the I/O generated by the applications becomes
apparent. At maximum scale, VPIC generates 10 GB, while K-Means
generates only 0.5 GB. At this same scale, Neon maintains the same
5 collectors per application, while HStream’s adaptive task man-
agement allows it to shift to an 11:3:1 ratio of collectors for VPIC,
HACC, and K-Means, respectively. This shift in collector pull rate to-
wards high I / O intake jobs helps to improve performance by up to
1.5× on VPIC, while showing little performance change on KMeans.

5.5 Improved latency through the hierarchy
To showcase HStream’s hierarchical capabilities, a workload based
on the ChronoLog paper [14] is used. ChronoLog proposes a hier-
archical log-store using event time as the primary key for log-order.
As a hierarchical log, ChronoLog initially submits all events to a
fast local NVMe-backed memory journal, from which the data are
continuously streamed out and formalized in the lower layers of
the hierarchy. To implement this part of the system, ChronoLog
proposes the use of a data streaming engine.

The evaluation job maintains the same four steps as the previous
evaluation: collection, key-by, aggregation, and sinking to file. For

Figure 6: Acquisition and delivery time of a stateful job.

this evaluation, we make greater use of the task state by making the
aggregation task a 5-minute tumbling window and using a single
unique key. Each processes generates 40 messages of a medium size
of 4MB, we can ensure nearly full memory utilization when using
160 processes, and surpassing it in subsequent tests. A 5-minute
window is unnecessary, but it ensures all data land in the window
regardless of startup delays or network lag spikes, a window of
30 seconds would have been generally enough having little effect
on the results when tested. To avoid any memory interactions, 8
compute nodes are allocated to the streaming engines, while 24 are
left available for the clients. We maintain the 20 client processes per
node. HStream’s Hierarchical Manager has access to both memory
and the node-local burst buffers supported by NVMe SSDs.

Because of the delaying effects of the windowing, measuring
pure latency is complicated, instead the experiment introduces two
new metrics: acquisition time, described as the average of time be-
tween event collection and inclusion on the task state; and delivery
time, described as the average time between the window closing
time and issuing their write to disk. We refer to the sum of both of
those metrics as the adjusted latency, as it removes the otherwise
dominant window time, even on a smaller number, and due to the
uneven arrival of events through the window, subtracting its length
from the latency measure did not result in correct values.

For the results, in terms of acquisition time, both HStream and
Neon behave similarly at low scales when maintaining the state
in memory. As HStream starts to transition state into NVMe (160
processes), the collision of the movement operations results in an
overall increase in latency for the events. As data volume further
increases, our hierarchical management algorithm ensures that
events can always be accepted into memory, thus outperforming
OS-managed memory. For delivery time, results improve from the
outset, showcasing the benefits of lazy serialization, allowing for
faster message sending at window closing. As the streaming en-
gines start using swap space or the hierarchy, the gap closes as the
RDMA operations can be performed faster when data is in memory.

5.6 A complete case study: An AI inference
platform

The final evaluation tests an AI inference service. The model
used is ResNet-50, whose weights are publicly available. The job

238

HStream: A hierarchical data streaming engine for high-throughput scientific applications ICPP ’24, August 12–15, 2024, Gotland, Sweden

Figure 7: Acquisition and run time of an AI inference service.

for this evaluation consists of a collector that pulls images from the
client queues, a map that transforms the high-resolution images to
the 224x224 images required by ResNet, a map that runs the ResNet
model, and a file sink to a client memory queue with the result.

The evaluation aims to showcase a workload that leverages both
the adaptive and hierarchical nature of HStream. The job for this
workload is non-keyed, giving HStream more opportunities to in-
crease and decrease the parallelism of both the collectors and infer-
ence operators. For the hierarchy, the disparity of CPU complexity
between the inference and transformation operators will cause the
communication queues of the operators to fill up. For Neon, this
will result in back-propagation, while HStream will manage the
input queue to the inference tasks hierarchically.

To set up the experiment, the ResNet-50model weights are stored
in a file accessible to all nodes on the cluster. The C++ TensorFlow
library is used for inference by the tasks. As the testing cluster
lacks GPUs, version 2.11.0 of the CPU-optimized library for x86_64
architecture is employed. HStream includes a series of utility classes
to handle both models and tensors within C++ for use inside any of
the operators. Similar to the previous evaluation, 8 compute nodes
are allocated for the streaming engines, and 24 to the clients. Each
client node executes 20 processes. Each client reads a subsample
of the ImageNet dataset and places the images on the queue. Each
client sends 1,000 images of 200 MB per image, a large size for a
streaming application. Both Neon and HStream begin with an initial
parallelism of 8 on the collectors and 4 on the other operators. We
measure the overall execution time and continue to use acquisition
time, defined as the time it takes for an event to reach the inference
task queue, as measuring overall latency yields incorrect results
due to the dominant effects of wait time on the queue.

In terms of results, while acquisition time shows that HStream
slightly outperforms Neon at low scales, at 16 processes, we start to
see the effects of the queues reaching close to full memory utiliza-
tion, at which point HStream starts to make use of the hierarchy
with an increase in acquisition time compared to Neon. However,
as an inflection point in memory capacity is reached, HStream’s
state management maintains its performance and catches up to
the increased latency of Neon’s OS-managed memory. In terms of
overall execution time, the adaptive parallelism of HStream makes
the biggest difference in terms of throughput. HStream’s adaptive-
ness allows it to increase the parallelism of the inference tasks

at runtime, showcasing a performance improvement of almost 2×
compared to Neon at the highest scale.

6 RELATEDWORK
6.1 Streaming as a Transfer Model in HPC
The increasing volume and velocity of data in HPC have driven the
need for more efficient data movement strategies than reliance on
PFS as a shared storage system. Streaming emerges as a memory-
to-memory connection directly between the user spaces of two
applications or systems. Adios2 [11] introduced the SST engine,
which leverages memory queues and incorporates HPC technolo-
gies such as RDMA. SciStream [7], based on the Globus infrastruc-
ture, offers a streaming-based transfer system connecting scientific
instruments and compute clusters across facilities. Cloud-based
systems have also been used in HPC. MQTT message queues are
used by Beneventi et al. [2] to enable model transfers in continuous
learning. STREAM [1] presents a Kafka-based system for telemetry
collection for the Frontier supercomputer.

6.2 Streaming as a Transformation Model
Attempts to bring data streaming to HPC have focus on 2 strategies:

Some have focused on the direct deployment of pre-existing
cloud systems, either by facilitating the processes [6] or by altering
engine to be able to use HPC hardware, such as Infiniband and
Omni-Path [12]. Despite this, cloud engines, even those adapted to
useHPC hardware, suffer from performance bottlenecks due to their
reliance on cumbersome software stacks, predominantly based on
Java runtime [16]. Another avenue has seen the proposals for the co-
location of Cloud and HPC clusters [10]. However, these approaches
demand a significant financial investment in hardware resources.

A second approach has seen the development of new data stream-
ing engines directly for HPC with HPC software at their core. A
first wave of this engines, utilized MPI as their communication
framework [19, 22]. Depending on MPI comes with drawbacks, as
MPI operates under a very performant but rigid network model
where all ranks must be known at start up and any failure on a task
leads to the entire engine failing [18]. Recent work by Matri et al.
introduced Neon [20]. Neon utilizes a full HPC stack built on C++,
and supporting Infiniband, RDMA, and intra-node shared mem-
ory communication. Neon maintains the core architecture of other
cloud engines and demonstrates significant performance improve-
ments over them. While Neon represents a significant step forward,
HStream showcases how changes to the existing architectures can
be made to better address the demands of scientific applications.

7 CONCLUSION
Thiswork introducedHStream, a new architecture for data streamign
in HPC. HStream aims to solve performance issues present in state-
of-the-art streaming when subjected to the high volumes, velocities
and burstiness of I/O generated by modern scientific applications.
Its core innovation lies in the separation of the data and compute
planes allowing finer control of the data through the system. This
is achieved through an adaptive parallelism controller, adapting
compute parallelism to adapt to the bursty and multi-tenant en-
vironments, and a hierarchical data management system, which
leverages high speed non-volatile storage systems present in HPC

239

ICPP ’24, August 12–15, 2024, Gotland, Sweden J. Cernuda, J. Ye, A. Kougkas and X-H. Sun

clusters to alleviate memory pressure and avoid thrashing under
the high data loads of HPC. By leveraging HStream’s adaptiveness,
we show up to a 1.5x decrease in the overall cluster-wide execution
time when serving under a multi-tenant deployment of applica-
tions. Similarly, HStream’s hierarchical management of task state
provides up to a 75% reduction in latency under high volume of
data by alleviating memory thrashing on a per-task basis. Lastly,
both mechanisms allow HStream to present up to a 2× increase in
overall throughput when serving as a holistic AI inference service
when compared to state-of-the-art HPC data streaming engines.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation (NSF), Office of Advanced Cyberinfrastructure, under
Grants CSSI-2104013 and Core-2313154. Additionally, this work is
partially supported by the U.S. Department of Energy (DOE), Office
of Science, Office of Advanced Scientific Computing Research, un-
der Contracts DE-SC0023263 and DE-SC0024593. We would like to
thank the Chameleon testbed, supported by the NSF, for providing
an environment for development and debugging.

REFERENCES
[1] Ryan Adamson, Tim Osborne, Corwin Lester, and Rachel Palumbo. 2023.

STREAM: A Scalable Federated HPC Telemetry Platform. (5 2023). https:
//www.osti.gov/biblio/1995656

[2] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca Benini. 2017.
Continuous learning of HPC infrastructure models using big data analytics
and in-memory processing tools. In Proceedings of the Conference on Design,
Automation & Test in Europe (Lausanne, Switzerland) (DATE ’17). EuropeanDesign
and Automation Association, Leuven, BEL, 1038–1043.

[3] Francesco Beneventi, Andrea Bartolini, Carlo Cavazzoni, and Luca Benini. 2017.
Continuous learning of HPC infrastructure models using big data analytics and
in-memory processing tools. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. 1038–1043. https://doi.org/10.23919/DATE.2017.7927143

[4] P. Chris Broekema, Rob V. van Nieuwpoort, and Henri E. Bal. 2012. ExaScale
High Performance Computing in the Square Kilometer Array. In Proceedings of
the 2012 Workshop on High-Performance Computing for Astronomy Date (Delft,
The Netherlands) (Astro-HPC ’12). Association for Computing Machinery, New
York, NY, USA, 9–16. https://doi.org/10.1145/2286976.2286982

[5] Jaime Cernuda, Hariharan Devarajan, Luke Logan, Keith Bateman, Neeraj Rajesh,
Jie Ye, Anthony Kougkas, and Xian-He Sun. 2021. HFlow: A Dynamic and Elastic
Multi-Layered I/O Forwarder. In 2021 IEEE International Conference on Cluster
Computing (CLUSTER). 114–124. https://doi.org/10.1109/Cluster48925.2021.00064

[6] Georgios Chantzialexiou, Andre Luckow, and Shantenu Jha. 2018. Pilot-
Streaming: A Stream Processing Framework for High-Performance Comput-
ing. In 2018 IEEE 14th International Conference on e-Science (e-Science). 177–188.
https://doi.org/10.1109/eScience.2018.00033

[7] Joaquin Chung, Wojciech Zacherek, AJ Wisniewski, Zhengchun Liu, Tekin Bicer,
Rajkumar Kettimuthu, and Ian Foster. 2022. SciStream: Architecture and Toolkit
for Data Streaming between Federated Science Instruments. In Proceedings of
the 31st International Symposium on High-Performance Parallel and Distributed
Computing (Minneapolis, MN, USA) (HPDC ’22). Association for Computing Ma-
chinery, New York, NY, USA, 185–198. https://doi.org/10.1145/3502181.3531475

[8] Peter J. Denning. 1968. Thrashing: Its Causes and Prevention. In Proceedings of
the December 9-11, 1968, Fall Joint Computer Conference, Part I (San Francisco,
California) (AFIPS ’68 (Fall, part I)). Association for Computing Machinery, New
York, NY, USA, 915–922. https://doi.org/10.1145/1476589.1476705

[9] Hariharan Devarajan, Anthony Kougkas, Keith Bateman, and Xian-He Sun. 2020.
Hcl: Distributing parallel data structures in extreme scales. In 2020 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE, 248–258.

[10] Nicolas Dube, Duncan Roweth, Paolo Faraboschi, and Dejan Milojicic. 2021.
Future of HPC: The Internet of Workflows. IEEE Internet Computing 25, 5 (2021),
26–34. https://doi.org/10.1109/MIC.2021.3103236

[11] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
Axel Huebl, Mark Kim, James Kress, Tahsin Kurc, Qing Liu, Jeremy Logan, Kshitij
Mehta, George Ostrouchov, Manish Parashar, Franz Poeschel, David Pugmire,
Eric Suchyta, Keichi Takahashi, Nick Thompson, Seiji Tsutsumi, Lipeng Wan,
Matthew Wolf, Kesheng Wu, and Scott Klasky. 2020. ADIOS 2: The Adaptable

Input Output System. A framework for high-performance data management.
SoftwareX 12 (2020), 100561. https://doi.org/10.1016/j.softx.2020.100561

[12] Supun Kamburugamuve, Karthik Ramasamy, Martin Swany, and Geoffrey Fox.
2017. Low Latency Stream Processing: Apache Heron with Infiniband & Intel
Omni-Path. In Proceedings of The10th International Conference on Utility and Cloud
Computing (Austin, Texas, USA) (UCC ’17). Association for ComputingMachinery,
New York, NY, USA, 101–110. https://doi.org/10.1145/3147213.3147232

[13] Harsh Khetawat, Christopher Zimmer, Frank Mueller, Scott Atchley, Sudhar-
shan S. Vazhkudai, and Misbah Mubarak. 2019. Evaluating Burst Buffer Place-
ment in HPC Systems. In 2019 IEEE International Conference on Cluster Computing
(CLUSTER). 1–11. https://doi.org/10.1109/CLUSTER.2019.8891051

[14] Anthony Kougkas, Hariharan Devarajan, Keith Bateman, Jaime Cernuda, Neeraj
Rajesh, and Xian-He Sun. 2021. ChronoLog: A Distributed Shared Tiered Log
Store with Time-based Data Ordering. In Proceedings of the 36th International
Conference on Massive Storage Systems and Technology (MSST 2020).

[15] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: A
Heterogeneous-Aware Multi-Tiered Distributed I/O Buffering System. In Proceed-
ings of the 27th International Symposium on High-Performance Parallel and Dis-
tributed Computing (Tempe, Arizona) (HPDC ’18). Association for Computing Ma-
chinery, New York, NY, USA, 219–230. https://doi.org/10.1145/3208040.3208059

[16] David Lion, Adrian Chiu, Michael Stumm, and Ding Yuan. 2022. Investigating
Managed Language Runtime Performance: Why JavaScript and Python are 8x
and 29x slower than C++, yet Java and Go can be Faster?. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 835–
852. https://www.usenix.org/conference/atc22/presentation/lion

[17] GK Lockwood, D Hazen, Q Koziol, RS Canon, K Antypas, and et al. Balewski,
J. 2017. Storage 2020: A Vision for the Future of HPC Storage. Technical Report
LBNL-2001072. Lawrence Berkeley National Laboratory. Retrieved from https:
//escholarship.org/uc/item/744479dp.

[18] Nuria Losada, Patricia González, María J. Martín, George Bosilca, Aurélien
Bouteiller, and Keita Teranishi. 2020. Fault tolerance of MPI applications in
exascale systems: The ULFM solution. Future Generation Computer Systems 106
(2020), 467–481. https://doi.org/10.1016/j.future.2020.01.026

[19] Emilio P. Mancini, Gregory Marsh, and Dhabaleswar K. Panda. 2010. An MPI-
Stream Hybrid Programming Model for Computational Clusters. In 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing. 323–
330. https://doi.org/10.1109/CCGRID.2010.33

[20] Pierre Matri and Robert Ross. 2021. Neon: Low-Latency Streaming Pipelines for
HPC. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD).
698–707. https://doi.org/10.1109/CLOUD53861.2021.00089

[21] Marta Mattoso, Jonas Dias, Kary A.C.S. Ocaña, Eduardo Ogasawara, Flavio Costa,
Felipe Horta, Vítor Silva, and Daniel de Oliveira. 2015. Dynamic steering of HPC
scientific workflows: A survey. Future Generation Computer Systems 46 (2015),
100–113. https://doi.org/10.1016/j.future.2014.11.017

[22] Ivy Bo Peng, Stefano Markidis, Erwin Laure, Daniel Holmes, and Mark Bull. 2015.
A data streaming model in MPI. In Proceedings of the 3rd Workshop on Exascale
MPI. 1–10.

[23] Andreas Peters and Lukasz Janyst. 2011. Exabyte Scale Storage at CERN. Journal
of Physics: Conference Series 331 (12 2011). https://doi.org/10.1088/1742-6596/
331/5/052015

[24] Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke
Logan, Jie Ye, Anthony Kougkas, and Xian-He Sun. 2021. Apollo: An ML-Assisted
Real-Time Storage Resource Observer. In Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing (Virtual
Event, Sweden) (HPDC ’21). Association for Computing Machinery, New York,
NY, USA, 147–159. https://doi.org/10.1145/3431379.3460640

[25] Kenneth J Roche. 2022. Introduction to HPC IO. Technical Report. Pacific North-
west National Laboratory.

[26] Robert B. Ross, George Amvrosiadis, Philip H. Carns, Charles D. Cranor, Matthieu
Dorier, Kevin Harms, Gregory R. Ganger, Garth A. Gibson, Samuel Keith Gutier-
rez, Robert Latham, Robert W. Robey, Dana Robinson, Bradley W. Settlemyer,
Galen M. Shipman, Shane Snyder, Jérome Soumagne, and Qing Zheng. 2020.
Mochi: Composing Data Services for High-Performance Computing Environ-
ments. Journal of Computer Science and Technology 35 (2020), 121–144.

[27] Galen M. Shipman, Jered Dominguez-Trujillo, Kevin Sheridan, and Sriram Swami-
narayan. 2022. Assessing the Memory Wall in Complex Codes. In 2022 IEEE/ACM
Workshop on Memory Centric High Performance Computing (MCHPC). 30–35.
https://doi.org/10.1109/MCHPC56545.2022.00009

[28] Xiaodong Yu, Viktor Nikitin, Daniel J. Ching, Selin Aslan, Doğa Gürsoy, and
Tekin Biçer. 2022. Scalable and accurate multi-GPU-based image reconstruction
of large-scale ptychography data. Scientific Reports 12, 1 (29 Mar 2022), 5334.
https://doi.org/10.1038/s41598-022-09430-3

240

https://www.osti.gov/biblio/1995656
https://www.osti.gov/biblio/1995656
https://doi.org/10.23919/DATE.2017.7927143
https://doi.org/10.1145/2286976.2286982
https://doi.org/10.1109/Cluster48925.2021.00064
https://doi.org/10.1109/eScience.2018.00033
https://doi.org/10.1145/3502181.3531475
https://doi.org/10.1145/1476589.1476705
https://doi.org/10.1109/MIC.2021.3103236
https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.1145/3147213.3147232
https://doi.org/10.1109/CLUSTER.2019.8891051
https://doi.org/10.1145/3208040.3208059
https://www.usenix.org/conference/atc22/presentation/lion
https://escholarship.org/uc/item/744479dp
https://escholarship.org/uc/item/744479dp
https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1109/CCGRID.2010.33
https://doi.org/10.1109/CLOUD53861.2021.00089
https://doi.org/10.1016/j.future.2014.11.017
https://doi.org/10.1088/1742-6596/331/5/052015
https://doi.org/10.1088/1742-6596/331/5/052015
https://doi.org/10.1145/3431379.3460640
https://doi.org/10.1109/MCHPC56545.2022.00009
https://doi.org/10.1038/s41598-022-09430-3

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data Streaming Engines
	2.2 The Data Streaming Engine Model
	2.3 Data Streaming: Challenges and Limitations

	3 Design and Implementation
	3.1 HStream Architecture
	3.2 Intelligent Stream Observer
	3.3 Reducing Network Pressure Via Adaptive Parallelism
	3.4 Alleviating Memory Pressure with Storage Hierarchies

	4 Design Consideration
	5 Evaluations
	5.1 Methodology
	5.2 Evaluations
	5.3 HStream Scalability
	5.4 Improve performance through adaptive data streaming
	5.5 Improved latency through the hierarchy
	5.6 A complete case study: An AI inference platform

	6 Related Work
	6.1 Streaming as a Transfer Model in HPC
	6.2 Streaming as a Transformation Model

	7 Conclusion
	Acknowledgments
	References

