
Hades: A Context-Aware Active Storage Framework
for Accelerating Large-Scale Data Analysis

Jaime Cernuda
Illinois Institute Of Techonogy
jcernudagarcia@hawk.iit.edu

Luke Logan
Illinois Institute Of Techonogy

llogan@hawk.iit.edu

Ana Gainaru
Oak Ridge National Laboratory

gainarua@ornl.gov

Scott Klasky
Oak Ridge National Laboratory

klasky@ornl.gov

Jay Lofstead
Sandia National Laboratory

gflofst@sandia.gov

Anthony Kougkas
Illinois Institute Of Techonogy

akougkas@iit.edu

Xian-He Sun
Illinois Institute Of Techonogy

sun@iit.edu

Abstract—Modern simulation workflows generate and analyze
massive amounts of data using I/O libraries like Adios2 and
NetCDF. Although extensive work has optimized the I/O
processes during the simulation phase, executing analytical
queries—which often require iterative traversals of large files
for insights—is cumbersome and usually constrained by low I/O
performance. Instead of waiting for the analysis phase to process
queries, quantities can be derived asynchronously during data
production and cached, speeding up future queries. In this
work, we introduce a context-aware I/O layer named ’Hades.’ It
is designed to efficiently derive insights from selected quantities
without compromising overall workflow performance. Hades
actively and asynchronously computes and stores these quantities
while the data is in transit. Hades leverages a hierarchical
buffering system with data access-aware prefetching to ensure
quick and timely access to relevant data. It offers a flexible
query interface empowering users to easily define derived
quantities and provide control over data placement decisions.
Hades is implemented using an Adios2 plugin engine and the
Hermes buffering platform, enabling transparent use by any
Adios-powered application or workflow. Experimental results
demonstrate performance improvements by up to 3-4x for tested
real-world scientific producer-consumer workflows.

Index Terms—Active Storage, Hierarchical Storage, Context
Awareness, Metadata Management, Data Operator, In-transit
Computing

I. INTRODUCTION

In high-performance computing (HPC), data-intensive
applications have become increasingly common, generating
and analyzing vast amounts of data [1]. These applications
are bottlenecked by their I/O phases [2], a departure from
traditional CPU-bound applications. The high complexity of
leveraging I/O to its maximum potential has led to modern
applications being dependent on sophisticated I/O libraries,
such as HDF5 [3], ADIOS [4], [5], or NetCDF [6]. These I/O
stacks are used to manage and execute the I/O required when
generating these vast datasets, which are typically stored on
a parallel file system (PFS) [7] due to their size.

Significant work has been performed to optimize the write (or
simulation) phase of the application [8]. However, the analysis
phase in scientific applications continues to face notable I/O
bottlenecks. This area remains underdeveloped, with only a
limited range of tools available for scientists to explore and
derive insights from their simulations. Outside HPC systems,
querying systems [9], [10] (usually based on SQL) have existed
for decades, allowing users to place their data into databases and
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Fig. 1. Hades extends I/O libraries to actively derive quantities of interest (e.g.,
statistics, integrals) during data production phases allowing for complex queries
of the data. Hades reduces workflow complexity, superfluous IO movements
and improves time-to-insights.

execute complex queries to retrieve the specific data required
for their analysis. Yet, none of these systems support the data
layouts used in scientific computing [3]. In HPC, systems such
as Paraview [11], VisIt [12], or the Adios query layer [13], have
emerged to aid scientists in this process through specialized
querying APIs. Yet, analyzing these datasets to extract valuable
features of interest requires heavy and costly I/O operations [14].
During analysis, applications must either comb through the
entire file to retrieve their intended data or execute large data
movements across the cluster into the compute memory. This
imposes significant pressure on the PFS and the metadata
servers, utilizes large amounts of expensive in-node memory,
and stresses the network’s bandwidth. To further exacerbate
this problem, a significant amount of the data read is rarely
required in its raw form and instead requires passing through a
layer of data transformation before the application uses it. This
increases the amount of data moment required; for example,
having to read three floating point numbers to calculate a single
vector norm. Optimizing this process is a requirement to face
the increasing amounts of data generation and to reduce the
time-to-insights for the scientific community.

In this work, we present Hades, an I/O engine capable of cal-
culating derived quantities and serving them to analysis applica-
tions. Hades presents scientists an intuitive calculator language to
define data-intensive derived quantity expressions useful for anal-
ysis. These derived quantities are actively pre-computed while
the data is produced and then queried in the analysis phase using
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a SQL-based API. Since this approach requires additional storage
capacity, Hades intelligently leverages storage hierarchies to effi-
ciently store and retrieve derived data. Hades balances this trade-
off through the use of a hierarchical buffering engine that is capa-
ble of levering all storage devices on the cluster with intelligent
prefetching and data placement algorithms. These algorithms can
make well-informed placement decisions based on the I/O char-
acteristics and structure provided by higher-level I/O libraries.

This work’s contributions are as follows:

1) Enabling the ability to perform insight derivation from
data in-transit through a flexible derived quantity calculator
accelerating converged scientific workflows.

2) Minimizing I/O stall times caused by derived data generation
and data analysis through context-aware hierarchical data
placement and prefetching policies.

3) Facilitating insight extraction from both original and derived
data with reduced latency using enriched metadata.

4) An open-source implementation of Hades with its design
experimentally validated.

II. BACKGROUND

A. Scientific Inquiry

The escalation of data volumes to exabyte scale poses
significant challenges in data analysis. Although raw data is
initially stored in monolithic files on the PFS, scientists need
elevated information known as derived quantities, requiring the
identification, extraction, and transformation of data. However,
the growth in data sizes complicates the identification of
quantities of interest within extensive datasets. PFSs, while
capable of handling large data volumes, fall short in providing
efficient, small-sized and selective data retrieval. In addition,
exploratory queries often require extensive metadata operations,
a known pain point for PFS. Furthermore, the transformation of
raw data into meaningful information demands computational
resources, leading to delays in insight extraction. Libraries like
Paraview [11], VisIt [12], or the Adios query layer [13], help
describe and present the data layout and representation. Yet, this
systems are design to work offline and cannot compute derived
quantities, identify regions of interest or track valuable insights
typically performed manually by traversing the original raw data.

B. High-Level I/O Libraries

I/O frameworks have become popular in the HPC community
to help alleviate the high complexity of I/O management in
the exascale era and to provide newer non-POSIX interfaces.
Adios (Adaptable I/O System) [4] is one such I/O framework
and is widely used by data-intensive scientific applications and
workflows. It has been designed to provide an adaptable interface
for data operations, making it capable of portably managing large
data volumes. Adios2 benefits are based on three core concepts:
The step, which refers to an execution phase in the data process-
ing workflow. Each step represents a distinct stage in the lifecycle
of data, allowing for incremental and sequential processing. By
dividing the workflow into steps, Adios establishes a defined
structured to data operations; variables, which in Adios are not
just data containers but are also associated with contextual meta-
data such as dimensions, type, and application-specific attributes.
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Fig. 2. Hades Architecture

Variables can represent simple scalars or complex multidimen-
sional arrays; engines, libraries or modules within Adios imple-
menting its interface. By employing different engines, Adios
offers adaptability and optimization for various data operations
and data formats. Hades is currently implement as an engine.

C. Hierarchical Data Management

HPC clusters have adapted to the data growth by integrating
additional storage tiers, including node-local and remote burst
buffers. While these adaptations enhance storage capacity
and performance, they introduce deep hierarchies that are
challenging to optimize and manage [15]. For this reason,
hierarchical data management systems have emerged to
simplify and automatically optimize the data storage and
retrieval process across the spectrum of available I/O devices.
State-of-the-art systems [15]–[17], can allocate data to any
layer of the hierarchy transparently. This allows user data to be
stored in a range of locations, from high-speed, low-capacity
tiers to slower, high-capacity ones. In this work, Hermes [15] is
our hierarchical data manager of choice. It is fully released and
presents a Put/Get API. Additionally, Hermes presents a factory
interface to its data placement and prefetching algorithms,
which by default is an LFU-based algorithm, allowing scientist
to develop new mechanisms to drive this processes.

This difficulty for scientist to extract insights from a complex
data and storage space sets the stage for the need to calculate
derived quantities in-transit and a better mechanism to extract
insights from datasets.

III. DESIGN

Hades is an I/O engine designed to provide scientists an
avenue for actively precomputing and storing quantities of inter-
est to reduce data movements in complex scientific workflows.
Scientists define the quantities to derive using a novel high-level
calculator language (HDCalc) that provides various mathematical
operators and functions, such as aggregation and filtering.
Hades asynchronously calculates derived quantities while data
is produced, avoiding compute and I/O penalties on the critical
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path. Hades stores application data and derived quantities in the
storage hierarchy using workload-specific data placement en-
gines. Data relevant to future scientific queries will be prefetched
and placed in faster storage tiers, accelerating query performance.
Hades is developed as a plugin to the widely-used Adios2 I/O
library along with an intuitive API extension for querying derived
quantities, requiring minimal application change to leverage. The
high-level architecture of Hades is depicted in Figure 2. Hades
is designed with the following objectives in mind:
1) Provide semantic derived quantity expressions: Users

should be able to define the quantities to derive using a
human-readable mathematical language, avoiding the burden
of developing full analytical applications.

2) Enable efficient and flexible insight extraction: Users
should be able to run complex queries on data and derived
data to easily gain meaningful insights.

3) Leverage intelligent hierarchical management: Data and
derived data should be intelligently placed in the storage
hierarchy to minimize data movement costs for derived
quantity calculation and querying.

4) Mediate resource contention: The calculation and storage
of derived data should not cause significant slowdowns to
producer phases due to CPU and storage resource contention.

A. A Semantic Language for Defining Derived Quantities
Modern scientific workflows are oftentimes divided into

separate phases for data production and analysis [18], [19],
where the analysis must repeatedly reload all data that
was produced. This distinct separation of phases reduces
time-to-insight as it requires significant data drilling and I/O
stalls. Hades transitions from this monolithic producer-consumer
approach towards an active storage design which produces and
analyzes data simultaneously. To enable this live analysis, Hades
introduces a high-level calculator language, HDCalc, which
provides users the ability to define custom derived quantities
using a human-readable mathematical notation. These quantities
can then be queried during the analysis and visualization phases
with minimal data movement and computational overhead.

HDCalc: a high-level mathematical language: HDCalc
provides various built-in mathematical operators, shown in Fig-
ure 3. Operators can include traditional arithmetic, aggregation,
filtering, integrals, derivatives, partial differentials, statistics, and
more. Operators are combined to form equations, potentially
consisting of multiple variables and constants. An example equa-
tion is shown in figure 4, which integrates a function f regarding
x and stores the result in Y . f and x are stored in row-major
order in a matrix and passed to Hades by the application. The
result of the equation will be automatically stored by Hades as a
new variable, which can be used in future equations. By default,
the storage duration of variables is persistent (i.e., the data will
be stored by Hades and remembered for analysis). Variables can
also be marked as temporary, allowing their space to be freed
when dependent equations have finished utilizing them. HDCalc
does not require users to specify data types explicitly. This is
because the data type of a variable is provided to Hades auto-
matically by a higher-level I/O library, such as Adios2. The data
types of variables and constants are numeric, including integer,
float, vector, and matrix. Lastly, macros can be used to define
equations that are used more than once to avoid code repetition.

Fig. 3. An overview of candidate operators in Hades

Fig. 4. An example of HDCalc. An application produces a matrix F with
columns x and f(x). A derived quantity Y is calculated as an integral of f(x)
regarding x. Another quantity Z is calculated as the square of Y + f(x).

Fig. 5. A depiction of how the equation in Figure 4 is compiled into an
OpGraph. Vertices represent calculation tasks, which encompass the operations
to perform on input data, the name of the output variable, and all metadata
required to run the operation. Edges represent the data dependencies between
operators. Operators cannot execute until all incoming edges are computed.
Vertices store various metadata, including the offset to begin I/O, dimensions,
data type, and the operation being performed on the inputs.

Compiling HDCalc into an executable OpGraph: After
creating the HDCalc file, it can be passed to Hades using
an environment variable. HDCalc is parsed and compiled
dynamically by Hades to minimize data movements and
calculations. The runtime uses high-level math parsing libraries,
such as SymPy [20] and muparser [21], to produce an optimized
parse tree. The parsing phase reduces arithmetic, aggregates
constants, substitutes macros, and identifies equations that can
be executed concurrently. The parse tree is compiled into a
low-level schema language, which is then converted into an
operation graph (OpGraph). The vertices of the OpGraph
represent the operations performed on input data, the name
of the output variable, and all metadata required to run the
operation. Edges represent the data dependencies between
variables. Figure 5 shows an example of the task decomposition
of the equation in Figure 4. An outgoing edge from variable
fx to Z indicates fx is required for Z to be derived.

Use Case: The Gray-Scott Workflow: Gray Scott [18] is
a computational fluid dynamics code that models the reaction
between chemicals. The model takes as input two components:
U and V . U represents the concentration of a substance that
promotes uniformity or inhibits the formation of patterns. V
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App
Name

Variable
Name

Number
process

Constant
Dimensions

Type Dimensions

App1 VarA 4 True int [4,4]
App2 VarB 2 False char [2,2,2]

Fig. 6. GlobalTable structure with example entries.

Start Count Blob
Name

Step Variable
Name

0 4 blob1 1 VarA
4 4 blob2 2 VarA

Fig. 7. Metadata table structure with example entries.

represents the concentration of a substance that promotes pattern
formation or acts as an activator. The model measures how U
and V change over time and space. One quantity calculated
during the analysis phase of this code is the probability density
function (PDF) of U and V . This is a data-intensive operation
that iterates over the dataset numerous times. As opposed to
waiting until the analysis phase, the PDF function of HDCalc can
be used to precompute this quantity before the analysis begins.

B. A Flexible Insight Extraction System

Scientific data queries are frequently conducted by manually
iterating over massive datasets and manually filtering for
information [22]. This is a consequence of I/O libraries and
storage systems that do not currently provide APIs to locate
subsets of data based on complex mathematical constraints [13].
This manual and synchronous calculation of data-intensive
operations leads to increased development complexity and
significant performance degradation caused by inefficient data
movements. Hades empowers scientific discovery by expanding
I/O libraries to support context-aware, user-driven derived
metadata, which can be used to identify interesting subsets
of data and derived data. By enriching the metadata stored
by I/O libraries to support queries over derived data, powerful
insights can be gained from complex scientific information
while bypassing significant computational and I/O slowdowns.
Leveraging enriched metadata to achieve contextualization:
Some of the practical goals of Hades are to calculate derived
quantities, manage the hierarchy, perform optimal I/O movement
and enable users to extract insights from their data. To achieve
these goals, Hades creates, maintains, and uses enriched
metadata through a number of metadata structures with various
forms and objectives.

Operational Metadata: metadata used in the lifetime of natural
Hades execution without user interaction. As shown in Figure 6
this includes variable metadata including variable names, data
types, shapes, per-process data distributions, etc. Figure 7 shows
another example in which Hades is tracking the specific content
of the blobs in the hierarchy. It does so by tracking the concrete
offset that the variable represents with respect to the global vari-
able of that a given step. This metadata is queried by Hades and
operators to contextualize the data attached to a specific variable
(identified by name) which is usually presented as a raw buffer.
This information can allow Hades to: transform the raw data into

a proper and transformable data type, for example, a vector; or
locate the location of the segment of the data buffer required by
a specific operator, allowing concrete data movements. A very
important use case for operational metadata is ensuring correct
data management when the number of producers and consumers
does not match, making Hades need to redistribute the data.

Enriched Metadata: metadata attached to data or derived
quantities used to elevate the querying capabilities of users.
Enriched Metadata can be divided into two categories, inherent
or external. Inherent metadata is enriched metadata that can
be captured without user intervention, the local and global
maxima/minima of a variable or derived quantity for a given
step, data ranges, timestamping, etc; More interesting, external
metadata is enriched metadata that requires some level of user
input to establish a label, a metadata entry on a table similar to
Figure 7 characterizing the data point. For example: tagging all
points/particles with a property above a threshold, categorizing
the data into the generated units (m, C, etc), establishing
bounding boxes including all elements with a certain property,
etc. Hades provides users the ability to define this tagging
operations is derived from a user-defined labeling process
which can be defined through an operator on an OpGraph and
individually customized per run through a yaml file.
Enhancing scientific inquiry with a query API: Hades
asynchronously calculates complex aggregations of scientific
data to produce insightful derived quantities. These quantities can
be queried using the InquireVariable method. This method can be
used to query simple metadata of a variable. Yet, more complex
queries, such as ranged data queries, must also bee suported,
allowing users to load subsets of a variable or derived quantity
that meets, for example, certain ranges using mathematical
constraints, such as less than and greater than, or falls under
a bounding box. Hades uses OpGraphs to execute these data
retrieval operators. These operators have access to both the en-
riched metadata, used to select the desired data, and the operation
metadata, used to efficiently extract the data from the hierarchy.
A user-defined graph can be submitted to Hades through the
query API. Patterns generated by this queries are passed through
the hierarchical layer, allowing prefetching of data when queries
are repeated over a number of steps, a common IO pattern.
When needed, all queries will wait until the subset of metadata
and data being queried has been fully derived by Hades.
Use Case: Soil temperature: As an example, the Weather Fore-
cast Model (WRF) [19] produces and analyzes a dataset contain-
ing various atmospheric and environmental properties over time
and space, such as soil and air temperature. Analysis of these
variables is of interest to various domains, including agriculture,
ecology, hydrology, civil engineering, and climate science.
Enriched metadata can be created to mark data points above a
certain average temperature range (between for example soil and
air). Queries can be performed to identify the spatial bounding
box where these locations exist. Making use the operational
metadata to physically locate and retrieve the data where, for ex-
ample, temperatures are expected to be dangerous for plant life.

C. Leveraging Context to Inform Accelerated Storage
Data placement decisions are typically made without

high-level knowledge of the I/O characteristics and behaviors of
scientific workflows [15], [23]. This results in suboptimal data
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movements, which exacerbate I/O overheads. Hades leverages
knowledge of data dependencies of derived quantities supplied
by the user in addition to hints supplied by higher-level I/O
libraries (i.e., Adios2) to inform data movement decisions. To
implement these decisions, Hades uses a hierarchical engine,
Hermes [15], and enhances it with dynamic policies for data
placement and prefetching to adapt to the specific workload.
Using I/O libraries to inform data movement: High-level
I/O libraries have numerous characteristics that can help guide
data placement. Adios2, for example, requires applications to
structure their code in a step-wise, checkpoint-restart fashion.
Each process begins a step using the BEGINSTEP function,
which either produces or loads a blob of data independently.
Typically, steps are followed by a phase of computation where
no I/O is happening. When the application finishes using the
data, it calls ENDSTEP to free up resources. To optimize data
production, Hades will initially place per-process data objects
independently in high-performance tiers (e.g., memory and
burst buffers) and begin calculating derived quantities relying
on this data asynchronously. During data analysis phases, blobs
are accessed using a predictable naming convention, which is
typically a function of the current step number. Hades leverages
this knowledge to prefetch data during BEGINSTEP that will
be accessed in the near future. During BEGINSTEP, Hades will
perform a look-ahead operation that will promote data based
on the next expected access time. This access time is estimated
by measuring the average time difference between BEGINSTEP

and ENDSTEP throughout the application run.
Decomposing equations into task graphs: In addition to
placing the raw data produced by the application, servicing data-
intensive equations requires intelligent management of storage,
memory, and compute resources. There are two main objectives:
ensuring that the equations finish executing before the analysis
phase queries them, and ensuring that the data production phase
is not significantly hampered by the increased resource consump-
tion from live calculation of data. To execute equations, Hades
first converts the equation into an OpGraph, where tasks operate
over different subsets of input data. Figure 5 shows an example
of the task decomposition of the equation in Figure 4. An out-
going edge from variable fx to Z indicates that fx is required
for Z to be derived. The data subsets used as inputs to tasks are
determined by the mathematical properties of the operator and
the amount of memory, storage, and CPU available for active
computation. For example, a matrix addition operator will divide
the input matrices into several evenly sized subsets which are
processed and stored independently. To address resource utiliza-
tion, users can configure Hades to bound the maximum amount
of memory used for tasks and the maximum number of workers
used to execute tasks. Tasks will be scheduled for execution
when all input data for the task are available. The Hades runtime
will prioritize the execution of tasks where input data is staged in
high-performance tiers to minimize data transfer costs and to po-
tentially free up precious storage resources for use by other tasks.
Scheduling data movements to optimize task processing: To
maximize I/O performance, data required for tasks to complete
will be staged in faster tiers of the storage hierarchy. Data derived
by the task will typically be stored with a lower priority than
simulation data to minimize data stalls to the main application.
This is because derived data is not typically accessed until a

distant consumer phase, so polluting buffering space can cause
unnecessary slowdowns for the producer. If the derived data is
used as an input to another equation, then it will be stored with a
higher priority. Data which are no longer needed for the compu-
tation of tasks will be moved to higher-capacity storage tiers to
free up space for handling bursts from the producer application.
Representing hierarchical data using blobs: Hades stores
application and derived variables as blobs. A blob is the
combination of a pointer to the data, the size of the data, and
various statistics. Blobs are associated with a score between 0
and 1. Higher scores will be placed in faster tiers of the storage
hierarchy. Hermes, our hierarchical engine, sets all blobs to
1 and decreases their score monotonically with time. In Hades,
scores are determined based on various statistics, including the
next expected access, access frequency, access recency, data size,
and the number of derived quantity calculations depending on
the data. Based on this score and capacity constraints, Hermes
will reorganize the blobs asynchronously across storage levels.

Algorithm 1: Calculation of Blob Score BScore

Data: Blob variables and parameters
Result: BScore

Input : Variable B, task graph G, prefetch score BPre,
Time window for accesses to be recent TRecent,
Hades importance score BHades, configurable
weights WTask, WHot, WPre, and WHades

Output : Blob score BScore

1 BTask← G.OutDegree(B) / G.MaxOutDegree();
2 BCount← # of times blob B was accessed;
3 BAvgCount← Avg # of times blobs accessed in TRecent;
4 BAccess← Timestamp of the last access to blob B;

5 BHot←BCount/BAvgCount×
(
1−BAccess

TRecent

)
;

6 BScore←
max(WTaskBTask,WHotBHot,WPreBPre,WHadesBHades);

7 return BScore

Blob Scoring: The blob score BScore of a variable B aims to
ensure that blobs accessed frequently or in the near future are
prioritized for placement in high-performance tiers. The blob
score is the foundation of how Hades decides the organization
of data in the storage hierarchy. The algorithm is shown in
Equation 1. First, the blob task score BTask is calculated,
which represents the relative number of active tasks depending
on the blob. The intuition is that the more derived quantity
tasks depend on the blob, the more it will be accessed in the
near future. It is calculated by dividing the outdegree of the
variable B in the task graph G by the maximum outdegree.

The blob hotness BHot is calculated as a function of access
frequency and access recency. It aims to prioritize data which
is frequently accessed. A configurable time window TRecent

(in seconds) is provided where blob reads and writes are
considered recent. The number of times the blob was accessed
BCount (either read or modified), the average number of times
blobs in the hierarchy are accessed per-window BAvgCount,
and the timestamp of the last access BAccess. When the
window ends, the blob hotness BHot will be multiplied by the
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relative difference between last access BAccess and window
size TRecent, where BAccess is always smaller than TRecent.

The prefetch score BPre represents how near in the future the
blob will be accessed, and is supplied externally by the prefetcher.
A higher score indicates the blob will be accessed soon. Lastly,
Hades can assign a custom importance score BHades to represent
additional factors of the specific I/O library interacting with
Hades. For example, Hades will assign metadata objects a score
of 1 to ensure they are always buffered in high-capacity tiers. The
final BScore is calculated as the maximum of the WTaskBTask,
WHotBHot, WPreBPre, and WHadesBHades to ensure that
blobs ranked important by at least one of these metrics are
positioned in high-performing tiers. Weights are configurable
numbers between 0 and 1. By default, all weights except WTask

are equal to 1. WTask is .7 by default, since derived quantities
are calculated asynchronously in the background during data
production and computation phases. Setting this score lower than
1 reduces storage contention between data produced by the ap-
plication and data analyzed and produced by derived quantities.

Initial Data Placement: When initially placing a blob, the
blob score is based solely on BTask and BHades, as this is the
only information known about the blob at this time. BHades

will be set to 1 if the blob is metadata related to Hades or the
I/O library, and 0 otherwise. BTask will be set based on the
task graph. Data will be placed in the fastest storage tier with
available capacity. The blob reorganizer will asynchronously
promote and demote blobs based on score after initial placement.

Context-Aware Blob Prefetching: The prefetcher aims to
anticipate the time at which a blob will be next accessed based
on characteristics of the higher-level I/O library. The prefetcher
leverages the current step number provided by Adios2 to
determine the next blobs to prefetch. Hades measures the
average time of the computation phase CAvg by calculating
the difference between BEGINSTEP and ENDSTEP functions
for each step. Hades will then prefetch the next n steps until
CAvg∗n is less than the user-configurable window size TRecent.

Dynamic Blob Reorganization: As the application runs, the
I/O requirements of the workflow and the available storage
capacity will change dynamically. To adapt to these changes,
the demotion engine is responsible for correcting the placement
of data in the storage hierarchy by asynchronously promoting
and demoting blobs based on the score of the blob, the relative
score of blobs within a tier, and the remaining capacity of a
tier. Periodically, the demotion engine calculates the 0, 25, 50,
75, and 100 percentile of blob scores in each tier. A blob will
be targeted for promotion if the blob score is larger than the
25 percentile of the tier. If there is space, the blob will be
moved immediately. Otherwise, the blobs in the candidate tier
with a lower score will be evicted until there is enough space.
If there is still not enough space, the blob will remain in place.

IV. EVALUATIONS

A. Methodology

hardware: All experiments were conducted on our local
research cluster, designed to support hierarchical storage
research. The cluster consists of a compute rack with 32 nodes.
The nodes are interconnected by two isolated Ethernet networks
(one of 40Gb/s and the other 10Gb/s), with RoCE enabled.

Each compute node has a dual Intel(R) Xeon Scalable Silver
4114 and 48 GB RAM. For storage, each node is equipped
with a NVMe PCIe x8 drive, a SATA SSD and a SATA HDD.

The operating system of the cluster is Ubuntu 22.04. All the
tests in the evaluations were performed 3 times and the average
result is reported. Unless noted otherwise, all data volumes are
larger than the allotted memory space. Adios2 is used to test
all competing evaluations. Adios2 is always configured to use
BP5, TwoLevelShm aggregation, and default configuration for
all tests. The parallel file system of choice is OrangeFS v2.9.8.

Software: Hades was implemented in 8K lines of C/C++ code
and is publicly available on GitHub1. Hades is built under
Adios2 v2.9.0 as a Plugin Engine and makes use of Hermes 1.1
to access the hierarchy. Adios2 is enabled with MPICH v4.1.1.
For communication, Hades uses Mochi Thallium v0.10.1 with
libfabric v1.18.0 and Argobots v1.1 under it. The metadata is
stored on SQLite v3.40.1. Currently, Hades implements only
simple arithmetic operators, filtering, and statistics.

B. Experimental Results

Our evaluations have the following objectives:

1) Evaluating the integrity and performance of our designs by
comparing Gray-Scott simulation outputs with and without
the integration of Hades.

2) Demonstrating the I/O performance improvements in
scientific workflows using Hades’ intelligent management
of deep memory and storage hierarchies (Figure 8).

3) Assessing the performance and analytical advantages
of Hades’ SQL-based metadata management in HPC
environments. (Figure 9).

4) Evaluating the impact of Hades on simulation and analysis
phases by actively computing derived quantities during data
production (Figure 10).

5) Measuring the end-to-end performance enhancement in
scientific workflows using Hades for active derivation and
hierarchical storage of data during production (Figure 11).

1) Operational Correctness: Hades offers the ability to
offset data-intensive calculations from the application and bring
it near the data. This can offer great performance benefits.
However, by changing the underlying I/O system, the validity
of the I/O can change and the correctness of the application
becomes a concern. We demonstrate the validity of our system
by running the publicly available [24] Gray-Scott workflow [18]
and comparing the simulation outputs with and without Hades.
As mentioned in the design, Hades includes an inline profiling
engine that leverages spdlog, a fast and performant C++
logging library, to track (if desired) all the variable data
and metadata flowing through the engine. Combined with an
LD_PRELOADable Adios2 profiling library, Hades is able to
present a public data set that records all values of the application
when executing with or without Hades. Hades implements and
compares almost all of the Adios2 interfaces (except the very
recent Adios2 span variables). This includes Adios2 metadata
operations (InquireVariable()), Put and Gets, and the min-max
interface of Adios2. All these interfaces are leveraged by at
least one side of the Gray-Scott workflow and are present in the
logs, which are available in the public repository of the project.
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Fig. 8. The performance benefits of leveraging storage hierarchies to buffer
workflow stages

2) I/O Scalability: Hades leverages the deep memory
and storage hierarchy to accelerate the I/O operations of
scientific workflows and to alleviate the increased storage
demand generated by the calculation of derived quantities.
This evaluation aims to showcase the I/O performance benefits
that the intelligent management of the hierarchy can bring to
scientific applications. This management, which is driven by
our data placement and prefetching engine, allows applications
to perform most of their I/O in high-performance storage tiers.

For this evaluation, we performed weak scaling on a synthetic
Adios2 application. The application initializes a global 2D char
array of size (num processes, B), where B is the volume of data
in each step. B takes the values of 256B, 64KB, and 1MB. Each
process performs N=500 steps. First, each process performs its N
write steps, only performing puts and then with a new engine, so
as to not share metadata, performs the same number of get opera-
tions. We exclusively time the I/O operations and we average the
results across all processes on the system. At maximum scale, the
application reads and writes 128GB. The Adios2 application runs
over an OrangeFS instance on 16 nodes on NVMe and HDD.

Results are presented in Figure 8. On the put side, we can see
that Hades’ hierarchical management significantly outperforms
single-layer I/O. This is achieved through the placement engine
which is capable of maintaining free memory space for the
application to write/read from data at almost all times, even

1anonymous url

Fig. 9. Performance differences of varying metadata approaches

when the dataset size is bigger than memory. The read side
presents a more interesting picture, as we can see Hades suffers
on the small Get operations. This is caused by the use of the
OS cache by Adios2 which is not accessible to Hades as we
self-manage all our data. This is rarely a problem, but for this
application, the inherent overhead of Hades combined with
the small I/O resulted in a comparatively higher impact on the
I/O performance. For bigger Get operations, more common on
HPC systems, we see the benefits that Hades brings.

3) Metadata Management Performance: Understanding
the context and importance of data, and subsets of data,
generated by an application is complex due to the performance
of metadata management. Storing and extracting this information
can be expensive and hinder the performance of the application.
Hades proposes the use of a query system based on a SQL
database to store, manage, relate, and query this metadata,
which is crucial for helping analysis applications understand
their data. This evaluation aims to show that, through careful use
of asynchronous operations, an application can limit the impact
of metadata management on the I/O path of the simulation
while reaping significant rewards in the analytics phase.

For this evaluation, we compare the management of metadata
through a file based metadata system and our SQL-based query
system. To do so, each process executes N steps of a write
phase, where three metadata inserts are executed per step:
The App metadata, where one process, a node master, inserts
the current step of the evaluation and the variables seen or
calculated; the Variable metadata, where each process inserts the
process-local metadata (shape, start, count, name, etc.) of any
variable seen or calculated; the Hierarchical metadata, where
each process inserts the current Blob Location for the given
step, this value will later be modified by Fades hierarchical
engine. Once finished, the processes execute the same number
of steps on a read phase where all of them query the step,
variable metadata, and Blob Location inserted on the same
respective step. We set N = 1k steps and we measure each
operation with its own timer, aggregating across all processes
at the application’s end. The results are shown in Figure 9.

As expected, writing to a database, is significantly slower than
performing I/O to a PFS. Yet, querying the system, through SQL
queries, and not having to drill through the dataset in search
of the desired information is almost infinitely more performant.
These results motivate Hades’ desire to make use of a database
for analytic optimization and help to understand the asyn-
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Fig. 10. Effects of calculating derived quantities on a producer/consumer
workflow

chronous design of metadata management in the system, as our
design removes the I/O overhead from the application I/O path.

4) The Benefit of Actively Deriving Quantities: To
optimize for the analysis (consumer) phase, Hades actively
computes derived quantities during the simulation (producer)
phase. This can lead to performance advantages for the analysis
phase, providing a reduction of total data movements and
computing requirements. However, this can potentially penalize
the simulation I/O path. This evaluation aims to quantify how
actively deriving quantities impacts both the producer and
consumer phases of a workflow.

For this evaluation, we run a synthetic application motivated
by weather sciences. The producer phase creates a dataset
representing a subdivided 3-D space. Each region of the space
contains 3 variables: 3-D position, soil temperature, and outdoor
temperature. The analysis phase aims to identify locations
where the average soil temperature and outdoor temperature
are larger than 25 degrees Celcius. If enabled, Hades actively
calculates the derived quantity of ”average temperature”. We
compare the execution time of this workload with Hades
deriving quantities, without Hades deriving quantities, and
without Hades. We run the experiment at varying scales
to demonstrate the weak scalability of the derived quantity
operators. Each application process generates 4GB of data in
total, resulting in a 1TB total I/O at 256 processes.

Results are shown in figure 10. We can see that the effects
of calculating the derived quantity are small but present.
The slowdown in the simulation phase is mainly due to I/O
contention and some CPU contention on the treads. Yet, the
overall benefit of the analytic phase is significant, presenting
a 20% speed up over the non-activated version as there is no
need for extra calculation and reduced data movement on the
aggregation step. Compared to the version without Hades, the
application can achieve almost a 3x performance improvement
on the analytic phase as it combines the benefits of both
derived quantities, the hierarchy and the enriched metadata.

5) End-To-End Evaluation of Scientific Workflow:
Scientific simulations oftentimes separate the production and
analysis of data into distinct phases, requiring extensive data
movements between the phases. In this evaluation, we aim
to quantify the end-to-end performance improvement of using
Hades to actively derive and hierarchically store quantities
while data is generated. Additionally, we showcase Hades
transparent design, as it has been built as an Adios2 engine,
it can be used with any Adios-enabled workflow.

For this evaluation, we use the Gray-Scott [18] workflow,

Fig. 11. Simulation and Analysis performance on the Gray-Scott workflow

which is a model of partial differential equations that captures
the interactions between two chemical species reacting with
each other and diffuse through a medium. It consists of two dif-
ferential equations that describe how the concentration of these
chemicals changes over time. The workflow produces a large
dataset consisting of chemical concentrations, diffusion rates,
and molecule positions within a 3-D cube of dimension L. This
dataset is then read and analyzed to produce visualizations of
the Probability Density Function(PDF), a statistical function that
describes the likelihood of a continuous random variable taking
on a particular value. When applied to the results of the Gray-
Scott system, the PDF can be used to describe the distribution of
concentration values over a given area or over the entire domain.
We run a strong scaling experiment of the workflow. The size of
the 3D stencil that defines the simulation (L) and the number of
iterations (N) are increased to 256 and 1000, respectively. This
leads to a global vector of doubles of size 256x256x256 with a
total I/O of 125 GB. Workload checkpointing is disabled, but all
other parameters are left on default. Runs not using Hades are
executed with OrangeFS as a PFS on 16 nodes using NVMe.

The results are presented in Figure 11. We can see that
both versions present, as expected, a very linear pattern over
the strong scalability evaluation. We note that the Gray-Scott
simulation is not data-bound limiting the benefits that Hades
can bring to the execution time. On the other hand, the
post-processing application, which calculates the PDF, requires
extensive I/O consumption. Hades hierarchical optimization and
the precalculation of the values for the computational phase
resulted in a 3-4x speedup for this phase.

V. DISCUSSIONS AND CONSIDERATIONS

Balancing Computational Load: Hades effectively minimizes
the time-to-insight by processing derived quantities during
data production. However, this can increase computational
demands, potentially straining the CPU, especially when derived
calculations are complex. While the current implementation
takes this into account, it does so for simpler operators. Thus,
there is a need to explore the limitations and trade-offs when
using operations that Hades does not currently cover. As an
open-source platform, Hades offers the scientific community
an opportunity to investigate these aspects further.

Optimizing Computation Placement: While many workflows
read significant more data than they write [25], [26], this is
not globally the case. Under this circumstances, Hades derived
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quantity calculation might not be optimal. Yet, our operational
metadata can be a solution for these scenarios as it enables
the identification and location of specific data segments for
on-demand computation of derived quantities. Exploring this
tradeoff – the choice between in-transit computation versus
on-demand computing when data is requested – opens up
possibilities for enhancing Hades’ adaptability and performance
in diverse and complex workflow structures.
Adapting to Diverse I/O Libraries: Currently, Hades’
design and architecture is validated using the Adios engine
infrastructure, which may be limiting in operational functionality.
Scientific computing uses a wide plethora of high-level I/O
libraries, data formats, and data models. To allow future
extensibility, Hades offers a community-driven plugin layer
where few basic APIs are offered to developers for extending
their libraries to use Hades. For example, libraries such as
pNetCDF and HDF5 use similar self-describing capabilities [27],
[28] and have separated their APIs from their storage engines,
similar to ADIOS [29]. Hence, one would simply inherit our
read()-write()-define()-query() functions through
the API interception to bring Hades into other libraries.

VI. RELATED WORK

Indexing Techniques in Databases: Indexing is a fundamental
aspect of databases, ensuring efficient data access. Two prevalent
indexing techniques are R-tree [30] and bitmaps [31]. These
techniques are not just confined to traditional databases but
have also found applications in software products tailored for
scientific data, such as SciDB [32] and FastBit [33]. These
products leverage these indexing techniques to expedite queries
over extensive scientific datasets. However, these techniques
is the overhead they introduce, especially when dealing with
high-velocity, voluminous scientific data.
I/O Libraries in Scientific Applications: Data-intensive
scientific applications often resort to specialized I/O libraries
for data storage. Libraries like HDF5 [3], ADIOS [4], [5], and
NetCDF [6] are popular choices. These libraries not only store
data but also associate it with metadata, enhancing future data
access efficiency. Yet, a lingering challenge remains: these
libraries do not adequately cater to the scientists’ requirement
to query through every element of their datasets. Systems such
as DataStager [34] which leverage asynchronous movement
of data strategically timed to occur when the application
is engaged in computational tasks, thereby minimizing I/O
wait times and enhancing overall system efficiency. Similarly,
PnetCDF Staging [35] provides similar optimizations. but
focused on collective parallel I/O for PnetCDF users.This
systems do not incorporate active storage components or offer
management capabilities for derived quantities.
First-Generation Metadata Tools: One of the pioneering
tools in this category is Starfish [36]. These tools primarily
concentrated on the storage of file-level metadata. Their main
function was to capture and store descriptive information about
data files, without delving deeper into the actual content or
structure of the data itself.
Second-Generation Metadata Tools: Advancements in
metadata management led to the development of second-
generation tools, exemplified by systems like SciDB [32]
and FastBit [33]. These tools went a step further by offering

direct indexing of data files. Such a feature is instrumental
in facilitating the discovery of raw data values within large
datasets. Instead of just describing the data, these tools provided
mechanisms to quickly locate specific data values within files.
Third-Generation Metadata Tools: The third generation wit-
nessed a more sophisticated approach to metadata management.
Tools such as SoMeta [37], TagIt [38], BIMM [39], SPOT
Suite [40], JAMO [41], MIQS [42], and Empress [43] introduced
feature indexing in a Key-Value Store (KVS) style. Notably,
MIQS adopted a unique approach by extending the data file itself,
rather than relying on an external database. While this method
simplifies the architecture, it might not offer the advanced func-
tionalities typically associated with dedicated database systems.

VII. CONCLUSIONS AND FUTURE WORK

In scientific workflows, distinct production and analysis phases
often lead to substantial data movements, hindering timely
insight generation. Hades addresses this challenge by optimizing
input/output processes through intelligent management of deep
memory and storage hierarchies. Comparative evaluations
demonstrate Hades’ superior performance over conventional
systems in large-scale data operations, attributed to its
hierarchical management approach. Its novel metadata man-
agement strategy leveraging enriched metadata and a querable
API, enhances analytics performance, albeit with a minimal
increase in data input overhead. Significantly, Hades computes
derived quantities concurrently with data production, offering
considerable reduction in complexity and performance increase
in the analysis phase. This efficiency is validated through
tests on both synthetic and real-world applications, including
the Gray-Scott workflow, with Hades achieving performance
improvements of 3-4x in real-world scenarios. These results
establish Hades as a groundbreaking tool in scientific computing.

As part of our future work, we aim to expand Hades by
introducing new operators for derived quantities. This expansion
will encompass complex mathematical operations such as partial
differential equations, eigenvalues, and integrals, broadening
its applicability across various scientific domains. Moreover,
we plan to optimize HDCalc’s performance by enabling the
execution of certain operators on computation accelerators,
including GPUs and FPGAs. This shift will reduce the CPU
load and facilitate the implementation of more sophisticated
and efficient operators. A significant enhancement will also
involve the integration of SQL support into Hades. Given SQL’s
extensive use in data query and analysis, developing a parser
that transforms SQL queries into OpGraphs will significantly
improve Hades’ usability. This integration aims to attract a
wider user base proficient in SQL, thereby aligning Hades with
modern data processing and analysis requirements.
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