
Modeling Aspects using Software Stability and UML
M.E. Fayad

 Computer Engineering Department
San Jose State University
One Washington Square

San Jose, CA 95192-0180
Ph: 408-924-7364
Fax: 408-924-4153

Email: m.fayad@sjsu.edu

Anita Ranganath
Computer Engineering Department

San Jose State University
One Washington Square

San Jose, CA 95192-0180

 Email: anitaarun@hotmail.com

ABSTRACT
Aspect oriented design is an emerging paradigm in software
development. It can be thought of as a counterpart to object-
oriented design that can aid in supporting orthogonal abstractions
– concerns that tend to cut across various components, or which
tend to affect more than one class. UML is a standard
methodology[11] adopted for object-oriented design. This paper
looks at the characteristics of aspects that need representation and
the possible UML elements that can be used to achieve this.
Briefly, we also describe how the software stability modeling
concepts can be useful in identifying aspects.

1. INTRODUCTION
An aspect is a modular unit that encapsulates a crosscutting
concern[8,9]. Aspects and components together model the
concerns in a system. Components are modular units of
functionality whereas an aspect is an abstraction of a concern that
crosscuts several components. The components are identified
based on an object-oriented approach. This area has undergone
considerable research and can be represented well using UML
notation. After proper design with UML notation, the
implementation phase becomes better laid out. With aspects
however, it is not the same case. They have no standard way of
being represented in UML models and moreover, aspects at the
present time do not have a clear way of being linked to UML
models.

As a result, the structure of aspect implementations and their
relationship with other UML model elements is unclear. This
makes aspect modeling is target language dependent. Once a
model is created, it becomes hard to re-use because of the lack of
standardization in representation. This calls for defining ways of
representing aspects. The following have to be kept in mind - one
needs to build UML models to represent the structure of aspects.
There must be a way to mark all model elements affected by
aspects. Aspects could affect different classes and also be affected
by different classes.

Aspects may affect classes at particular points in the class’s
structure that could be referred to as attachment points. Hence

attachment elements must be defined in UML. Aspects are
dynamic in nature and hence may affect different classes at
different points in time; so the order must be shown when
multiple aspects are being applied. Mechanisms must be provided
for expressing both the points at which elements of different
concerns must be joined and the relationships that govern how the
joins are made.

2. ASPECTS IN THE DESIGN PHASE
Aspects usually are considered to play an important role in the
implementation phase. However, the basis for a good
implementation lies in a good design and analysis phase. In this
phase if the aspects in the system being modeled are identified
and if the classes that they will affect are determined, then the
implementation becomes much simpler. The Software Stability
modeling concepts introduced in [1,2,3] can be a very useful way
of identifying aspects. Using this approach, we find the core goals
of the system defined by the EBTs (Enduring Business Themes),
and the workhorses of achieving these goals called the BOs
(Business Objects) and then the application specific classes called
the IOs (Industrial Objects) that could be replaced without
causing a rippling effect through the entire model. The EBTs
capture the core goals of the system. The BOs make the EBTs
which are implicit concepts proposing the ways to achieve the
concepts. The architecture of the software stability models is
therefore layered in nature making it easy to view the classes that
would be affecting other classes or components (refer Figure 1).
Most EBTs and BOs in the stability model cut across other classes
and hence could be modeled as aspects. The Stability model
makes it convenient to understand the classes that would have a
lasting effect on other classes (that is the EBTs) since they form
the innermost layer and the BOs that form the next layer. It will be
advantageous to model the BOs as aspects because they affect two
layers of classes in the model as they lie in between. They have an
effect on the EBTs and the IOs of the system. If they are modeled
as aspects, then they are given room to change over time and
become better maintainable. If aspects are introduced in the
design phase, then it may be possible to view the situations where
particular aspects recur and this can lead to the development of
patterns in aspect oriented development which can be very useful
as it will promote reuse. Also, modeling can serve as good
documentation to provide a better understanding of the problem
considered.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright 2003

Figure 1. Software Stability concepts layout

Let us consider a simple e-commerce example as an illustration. A
customer makes purchases online using a credit card. The
customer can view and select items which he can add to his
shopping cart. The shopping cart will help the customer purchase
a number of items in a single transaction. The class diagram using
the traditional modeling approach is as shown below in Figure 2.

Product
speciality
brand

1..*

ItemToBuy
price
quantity

addItem()
removeItem()

1

Customer
name
billingAddress
shippingAddress
creditCardInfo

viewItem()
selectItem()

1..*

1

CreditCard
ownerName
number
expiryDate

charge()
authorize()

1
ElectronicShoppingCart
totalAmt
numberOfItems

placeOrder()
cancelOrder()

1..*

11..*

1

1

aided by

added to

 Figure (2) – Traditional Model (E-commerce example)

The same problem when modeled using the software stability
concepts yields the following solution.

In the stability model (Figure 3), we recognize the classes
Trading, Convenience and Security as the EBTs since they form
the core goals in this example. EBTs are conceptual and hence we
need the more concrete BOs to achieve these goals. For example,
the EBT of Security is achieved through an Authorization class
that encapsulates the authorization procedure methods.

ShoppingCart
totalAmt
numberOfItems
placeOrder()
cancelOrder()

<<IO>>

Customer
name
billingAddress
shippingAddress
viewItem()
selectItem()

<<IO>>

Security
policy
choosePolicy()

<<EBT>>
CreditCard
ownerName
'number
expiryDate
charge()

<<IO>>
Authorization

type
checkForValidity()
verifyNumber()
throwError()

<<BO>>

ensured by of

ItemToBuy
price
quantity
addItem()
removeItem()

<<IO>> Product
speciality
brand
addToInventory()
deleteFromInventory()
specifyCapability()

<<BO>>

Trading
type
terms
exchange()

<<EBT>>
for

Convenience
gain
timeSpent
effortGainAnalysis()
lessenEffort()

<<EBT>>

AnyMedia
type
property
defineMediaProperties()
identifyMedia()
defineCapability()

<<BO>> achieved through

AnyParty
requirement
makePayment()
acceptGoods()

<<BO>> participates in

provided for

uses

 Figure (3) – Stability model for E-commerce example

Then at the periphery, we use IOs that are application specific.
From the above model, it is easy to see that Security (which is in
the innermost layer of EBTs) has an effect on the classes
(Authorization, CreditCard) in the layers above it. So security has
an affect on one or more classes and hence can be modeled as an
aspect. The modeling using the software stability concepts helped
us recognize that security was a concern that needed
representation, which was not the case in the traditional model.
Moreover, the authorization class cleanly encapsulates the needed
procedure for security in the example.

Designs of most systems are aimed at achieving maximum
efficiency and performance. These will be modeled as EBTs in the
stability model. The conceptual goals are recognized through the
BOs of the system. The model provides consideration of the goals
right from the modeling stage. For example, instead of looking at
persistence, performance, and quality-control as additional
features, one can model them as EBTs and clearly define the
classes that work towards them (through BOs).

Stable
Base

Unstable Leafs- IOs Layer

System Core Knowledge- EBTs Layer

Concrete Objects- BOs Layer

 EBTs BOs IOs

The EBTs and BOs can be implemented as aspects since they
have an affect on one or more classes. Moreover, they can evolve
independently and as the code is now localized and hence easily
maintainable. Using the software stability concepts may make the
recognition of aspects easier when compared to the traditional
modeling approach. It will also streamline the process of aspect-
oriented development.

However, there maybe cases where aspects are needed
temporarily. Take an example where you use a logging aspect for
debugging. The logging code is needed only during testing, and
once the code is working as desired, the logging code can be
removed. In such cases, though the logging aspect does have a
prevailing presence during the testing phase, it may not be
required after this stage. Modeling the logging code as an aspect
can be helpful in inserting it uniformly in all the classes as well as
removing it uniformly once the task of debugging is completed. In
such cases, where aspects just make a task easier but have no core
functionality in the system, we do not represented them as an EBT
or BO in the stability model. However, these aspects are easier to
recognize since they are needed only in the development stage and
they involve a routine insertion of code without really affecting
the functionality of the code.

3. PROPERTIES OF ASPECTS THAT
NEED REPRESENTATION
Consider this example. Assume there are classes called ‘Circle’,
‘Square’, and ‘Rectangle’ (refer to Figure 4). Each of them has
methods that define how to draw the particular shape in its
particular ‘draw’ method. In addition, the class will have
properties required to define that shape – for example the circle
will have a center defined by a point and a point and a radius
whereas a rectangle will have four points indicating its vertices.
Assume the purpose is to display each of the above shapes. So any
time the draw method is called, one needs to call the display
method. The display method is now common to all the three shape
classes. The code for the display method will have to repeat in
each of the shape classes – it is said to crosscut these classes.
Moreover if we add another shape to be displayed, then the
display method will have to repeat in it too. It can be said that the
display method crosscuts the shape classes. If we model the
display method as a separate entity (called aspect) that can be
used by each of the classes, then we have isolated the code for
displaying, avoiding unnecessary repetition of code. This also
makes the easily maintainable because all the changes have to
made in one place.

Let us first look at the terms that go with aspect-oriented
programming[4,6,7] with respect to the example above. These are
with reference to the programming constructs used with
AspectJ[5].

 Circle
radius

setCenter()
drawCircle()
display()

Square
side

setVertices()
drawSquare()
display()

Rectangle
length
breadth

setvertices()
drawRect()
display()

Common to all classes is the
method display()

 Figure (4) – Example of Aspect

3.1. Aspect as a module: Aspect is a modular unit and may
be treated like a class in some sense in that it implements a
feature’s behavior and declares when that feature must execute
just as a class in object oriented programming encapsulates data
and functions to manipulate the data. These will resemble the
attributes and operations or methods of classes. However, the
difference between aspects and classes in object-oriented
programming is that an aspect represents a common concern that
crosscuts other components whereas a component is usually
designed to handle one specific functional concern. In the
illustration above, displaying is an aspect since it has affect in
each of the shape classes and it does not show some unique
behavior that is characteristic of the class it is present in. The
display code is essentially the same in each of the shape classes.

3.2 Join Point: These are the points where one or more classes
crosscut. It could be at a particular method call, a constructor call,
read/write access to a field, exception handler execution, object
and class initialization execution. Join points will be clear points
of execution within a program. In the example above, the
drawCircle(), drawSquare(), drawRect() are all joinpoints. After
each of them occur, we need a call to display(), the aspect comes
into play when these methods occur.

As another example consider a case where the execution of a
particular function or a call to a particular method needs to be
logged. This function or method will be part of a particular class
or interface. Instead of including the log procedure within the
class where the method is present, one could define a join point at
that particular method and indicate a link to the log procedure. So
the method becomes a join point. We must provide for a way to
represent these join points. These must be marked and
associations must be made to the aspects that will affect them.

3.3 Pointcut: An aspect affects many classes. The points in the
classes where the aspects functionality is used are the joinpoints.
There could be a collection of join points indicating all the classes
affected and the points where the aspect’s functionality comes
into play. This is referred to as a point cut. Point cuts are
essentially a set of joinpoints. Also, the point cut defines exactly
the position in the class where the aspect applies. For example, it
could be before the method in the class, after the method, or in
particular condition. For the case in Figure (2), the point cut will
be the collection of the three join points - drawCircle(),
drawSquare(), and drawRect(). The point cuts could be viewed as
pure weaving instructions. One should be able to indicate all the
joinpoints and the operation (called advice) that needs to be
executed and where.

3.4. Advice: An advice specifies what is to be executed upon
reaching a join point. It could be a method call, an object
instantiation, a field access, etc. It could also be a control where
the execution of the method or any other operation depends on
certain conditions. The advice could execute either before, after,
or around a join point’s execution. A ‘before advice’ will execute
before the join point; an ‘after advice’ will execute after a join
point. An ‘around advice’ acts like a control, indicative of
whether the particular method or function at that join point should
execute or not. The above example illustrates the case of an after
advice. It is a requirement that after the shapes have been drawn,
the display is updated. So the advice in this case will be the
method of displaying.

As an example of the around advice, consider the case where one
needs to apply synchronization. The classes which participate
define a method lock() and a method unlock() which must be
called before and after the actual work is done (called
semaphores). Here the lock and unlock procedures can be
encapsulated in a synchronization aspect and in this case will be
like a control with respect to those classes.

3.5 Introduction: An introduction is used when one needs to
add more capability to an existing set of classes by adding new
class members like constructors, methods and fields. Sometimes
the classes may be part of an inheritance tree. With the help of an
introduction, one can add capability to a set of such classes thus
altering the inheritance relationship. When an introduction is used
for a non-derived class, it merely enhances the class’s capability.
The introduction is weaved in statically at compile time.

In addition to the above elements, one needs a representation for
aspect priority in a multi-aspect environment. When a class has
multiple aspects affecting it, there has to be an indication of order
of application of the aspects.

So, basically we need to represent two kinds of crosscutting – one
is structural and the other is behavioral. An example of structural
crosscutting is the introduction. Behavioral crosscutting is
expressed through the join points, point cuts and advices.

Aspects can be represented as stereotypes of standard UML
classes [11]. It can have attributes and operations, and may
represent a subclass of an existing modeling element (class), but
has a different implication.

Structural crosscutting, such as introductions, can be represented
using collaboration templates. Behavioral crosscutting forms a
part of UML interaction diagrams and is shown at the link that is
used to communicate the message between objects. Weaving
instructions for introductions define the classes in the base
hierarchy that need to be crosscut, that is, the actual arguments to
the collaboration template parameters. On the other hand, for
advices, weaving instructions specify which links in a base model
need to be crosscut – the points at which the advices need to be
run.

The join points are distinct points of execution in a program. So
they are shown highlighted in UML interaction diagrams.
Pointcuts imply where the advices act and can be represented as
stereotypes within an aspect structure. Advices are operations,
always associated with a point cut, and are also part of the aspect
structure. The figure shows a representation for aspects.

 Figure (5) - Representation of an aspect

4. SOFTWARE STABILITY AND AOP
We looked at aspects and software stability model in Section 2.
The EBTs and BOs that form aspects are identified in the design
phase. They are then mapped to AOP concepts discussed in
Section 3 and represented in UML. This forms the basis for the
implementation phase of the software application. Thus, starting
from Software Stability concepts in the design phase ensures
stability in the system while incorporation of aspects renders the
system adaptable and easily maintainable.
CONCLUSION
The advantages of aspect-oriented programming are many. Aspect
oriented design can play a very important role in aspect-oriented
programming approach since it can help in identifying aspects at
an early stage. However, a good modeling notation is necessary.
Allowing UML to support aspect-oriented design can be very
advantageous as UML is widely adopted and understood.

The usefulness of software stability concepts in identifying
aspects is illustrated with an example. Starting from a stable
model for the system, the EBTs and BOs are implemented as

 <<aspect>>

 <<pointcut>>

 <<advice>>

aspects. The principles of AOP and software stability work to the
advantage of each other both ensuring the stability of the system
being modeled and its maintainability.

REFERENCES:
[1] M.E. Fayad, and A. Altman. “Introduction to Software
Stability.” Communications of the ACM, Vol. 44, No. 9,
September 2001.

[2]M.E Fayad. “Accomplishing Software Stability.”
Communications of the ACM, Vol. 45, No. 1, January 2002.

[3]M.E. Fayad. “How to Deal with Software Stability.”
Communications of the ACM, Vol. 45, No. 4, April 2002.

[4] Gregor Kiczales, John Lamping, Anurang Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier and John Irving.
Aspect Oriented Programming. In Mehmet Aksit and Satoshi
Matsuoka (Eds.), Proceedings of ECOOP'97. Jyvaskyla, Finland.
June 3-13, 1997. Lecture Notes in Computer Science. Vol. 1241.
Springer-Verlag, pp. 220-242.

[5] AspectJ website www.eclipse.org

[6] I want my AOP! Parts 1, 2, 3 in Java World by Ramnivas
Laddad

[7] Aspect Oriented Programming, by Tzilla Elrad, Robert. E.
Filman and Atef Bader from Communications of the ACM,
October 2000 Vol 44.

[8] Discussing Aspects of AOP by Tzilla Elrad from
Communications of the ACM, Oct. 2001

[9] Aspect Oriented Programming, Gregor Kiczales et al,
Proceedings of ECOOP, 1997

[10] Unified Modeling Language User’s Guide, Grady Booch,
James Rumbaugh, L.Jacobson

[11] Designing Aspect Oriented Crosscutting in UML, Dominik
Stein, Stefan Hannenberg and Rainer Unland, Aspect Oriented
Modeling with UML, (as part of the AOSD), 2002.

