
DPDK Nishanth Shyamkumar

Illinois Institute of Technology

March 2025

Achieving high network performance on a CPU

1Illinois Institute of Technology

End Host
Networking

• An ‘end host’ in networks are the end point
devices in a network connection.

• These can be your Laptop, Desktop, Mobile
phones, Server machines etc.

• They generally rely on Operating Systems to
provide networking features

• The main processing hardware is a CPU.

2Illinois Institute of Technology

Browsing the web

• What happens when you type a URL and click ‘Enter’

3Illinois Institute of Technology

System
works
together

• There is an interplay between the application’s
frontend and backend.

• Similarly between the application backend and
the OS Kernel

• Finally between the Kernel and the network
device

• Specifically, in the case of Mozilla Firefox, they
have a backend network engine called ‘Necko’
which deals with Protocol Parsing and using
‘Network Sockets’.

4Illinois Institute of Technology

Traditional
Browser
Stack

User / Kernel space ??
5Illinois Institute of Technology

Linux
Network’s
Generality

• The Linux Operating System handles multiple
network protocols. It HAS to, in order to be useful for
all the myriad users.

• Packet header is used by the OS to make decisions
on how to handle the packet.

• Increases code complexity(many if-then branches).

• All these conditions and checks are extra
instructions running on a CPU.

• Additional instructions for Firewall rule checking.

6Illinois Institute of Technology

Linux
Networks’
Generality

7Illinois Institute of Technology

How CPUs affect network performance
• At first following Moore’s Law, transistor density

doubled every 2 years

• Single core CPUs kept increasing their clock
frequency.

• Higher frequency, more cycles in a unit of time.

• More cycles allows for more instructions to be
processed in that unit of time.

8Illinois Institute of Technology

How CPUs affect network performance

• Hit Dennard’s scaling and high power draw became a limitation.

• Power *** Voltage^2 * Frequency

• Solution was to use multiple cores running at a lower clock
frequency (Multi-processing).

• Meantime, network port speeds increased exponentially from
10Mb/s to 400Gb/s.

9Illinois Institute of Technology

Time limitation at high speeds
• Simple mathematical example.

A CPU clock at 2GHz frequency and a network card running at 1Gb/s.

1 CPU cycle = 0.5 nanoseconds (ns)

10Illinois Institute of Technology

Time limitation at 1Gb/s throughput
• How many 64B Ethernet packets make 1Gb/s of traffic?

It’s 1.48 Mpps (million packets per second).

Amount of time to process 1 packet = 1 / 1.48M ~ 600-700 ns

i.e, for a 2GHz clock frequency = 1200-1400 CPU cycles to process the packet.

11Illinois Institute of Technology

What about at 100Gb/s ?
• How many 64B Ethernet packets make 100Gb/s of traffic?

It’s 148 Mpps (million packets per second).

[EC: Can you figure out how it becomes 148Mpps. Think of an Ethernet frame on the
wire.]

Amount of time to process 1 packet = 1 / 148M ~ 6-7 ns

i.e, for a 2GHz clock frequency = 12-14 CPU cycles

12Illinois Institute of Technology

Packet Lifecycle

DMA ?

13Illinois Institute of Technology

CPU overworked

• CPU needs to be super efficient to handle all the processing in 12-14 cycles

• We have to consider real limitations such as:

1. Memory access times (L1 cache – 4 cycles; L3 cache 40 cycles)

2. CPU scheduling

3. Page table walking

4. PCIe read/write latencies

We will address these in the coming slides, but it should be clear now that the CPU
has limitations to how quickly it can process packets on a single core.

14Illinois Institute of Technology

DPDK

• Framework for handling fast packet processing on a CPU.

• Bypasses the Kernel network stack. Runs in User space.

• Streamlined using OS and Computer Architecture principles.

Analogy:
Linux network stack – Commercial airplane, each passenger is a protocol/functionality

DPDK – Fighter jet, limited passengers, but very fast.

15Illinois Institute of Technology

The architecture behind DPDK

The concepts we will cover here
are:
• Memory Pools
• Hugepages
• Interrupts and polling
• Packet copying
• NUMA alignment
• PCIe latency

16Illinois Institute of Technology

Memory Pools
• DPDK operation:

 A pool of memory is allocated and assigned when the program starts up, but before any
packet processing has begun.

When the program requests a buffer for example, it obtains the memory from the pre-allocated
memory pool. Avoids runtime allocation.

When program has finished using the buffer, it isn’t freed, but instead recycled back into the
pool, so that it can be used later.

This removes the memory allocation overhead.

17Illinois Institute of Technology

Memory
Pools

• White – Available objects

• Grey – In use objects

18Illinois Institute of Technology

Image source:
https://doc.dpdk.org/guides/pr
og_guide/mempool_lib.html

2. Hugepages
• The normal page size in Linux is generally 4KB.

• Pages are abstractions used by the OS to give the illusion that every process has
access to more than available RAM.

• To maintain this illusion, a page table is required.

• To speed up page table lookup, a Translation Lookaside Buffer(TLB) is used.

• TLB has super fast lookup, but expensive memory and logic.

19Illinois Institute of Technology

TLB

TLB size:
2048 entries
for Intel
Xeon Gen 3

20Illinois Institute of Technology

Hugepages
• Too much data accessed in a short time will fill up the TLB and cause page table

walking on a MISS.

• Increases latency drastically, since page table resides in main memory.

• To avoid this scenario, DPDK always uses hugepages.

21Illinois Institute of Technology

Hugepages
• Instead of the traditional 4KB, hugepages are 2MB or 1GB in size.

• More data in memory is covered by a single mapping.

• Mbufs(DPDK Packet buffer representation) are 2KB in size.

1000 Mbufs being accessed for a 4KB page will require 500 entries.

• 1000 Mbufs being accessed for a 2MB page will require only 1 entry.

• Reduces need to do page table walking.

22Illinois Institute of Technology

Hugepages

 2 entries per page 1000 entries per page

23Illinois Institute of Technology

3. Polling
• When the network device receives a packet, it notifies the CPU with an interrupt.

• The CPU processes this interrupt and consumes the packet.

• Interrupts interrupt the running process on the CPU to handle the packet. This
context switching is expensive in terms of instruction cache warmth.

• An interrupt for every packet for 148Mpps, can stunt the performance.

24Illinois Institute of Technology

Interrupt driven

25
What does Saving and Restoring Process context mean ?

Illinois Institute of Technology

Polling
• Instead of the device notifying the CPU, the driver code in the CPU continuously polls the

device registers for change of state.

• If register state change is observed, the packets are then read and processed.

• Avoids polluting instruction cache.

• Prevents context switching per packet.

• Polling code runs even when no packets arrive, making it waste CPU cycles. This is the
reason why any DPDK process will show 100% CPU utilization

26Illinois Institute of Technology

Poll mode

27Illinois Institute of Technology

4. Zero copy
• Before a packet arrives, the network driver will instruct the device to transfer the packet to kernel memory.

• When packet arrives, the device DMAs the packet to this kernel memory

• Kernel memory is not visible to user space.

• So if user application needs to use the data, it should provide a user space buffer.

• The kernel code will then copy the packet from kernel memory to user provided buffer memory.

• This byte by byte copying of data uses many clock cycles, hurting performance

28Illinois Institute of Technology

Copy operation

29Illinois Institute of Technology

Zero copy
• DPDK avoids using any kernel memory.

• Instead uses user space memory and instructs the network device to directly send the
packet over there.

• Avoids copying from kernel to user-space. Which is why it is called Zero copy.

• Disadvantage is the loss of security. There is no protection against a misbehaving DPDK
driver.

• But great from a network performance perspective.

30Illinois Institute of Technology

Zero copy

31Illinois Institute of Technology

5. NUMA alignment
• In modern processors, there can be multiple CPU sockets, each having it’s own

memory and IO controllers.

• Data in memory closer to the socket is accessed quickly improving performance.

• Data in memory in another socket takes an interconnect penalty, reducing
performance.

• That is, the memory access is non uniform. Which is why it’s called Non Uniform
Memory Access (NUMA).

32Illinois Institute of Technology

NUMA sockets

33Illinois Institute of Technology

NUMA alignment
• On DPDK application bootup, it ensures that data structures and packet buffers are

assigned to the right CPU socket in order to improve performance.

• Users need to make sure that the CPU cores assigned to run the DPDK program are
aligned with the PCIe device.

34Illinois Institute of Technology

6. PCIe
• Common high speed communication bus used to transfer data between IO device

and main memory/CPU.

• Has its’ own communication protocol(TLP) with its’ own overheads.

• DPDK drivers take this into account, and try to minimize the overheads by batching
PCIe reads and writes.

• Tries to avoid the communication bus becoming the bottleneck.

• User has to ensure PCIe bandwidth is sufficient.

35Illinois Institute of Technology

DPDK modes of operation (RTC)

Run to Completion (RTC)

A single RTC cycle comprises of Read packet → Process packet
→ Send packet

Very efficient for keeping the L1 Data cache warm

36Illinois Institute of Technology

RTC

37Illinois Institute of Technology

DPDK modes of operation (Pipeline)

Multiple stages where each stage runs on a specific core.

One stage for reading packets, a 2nd stage for processing packets
and a 3rd stage for transmitting packets.

DPDK Rings used to synchronize data between the cores

38Illinois Institute of Technology

Pipelining

39Illinois Institute of Technology

DPDK modes of operation (Pipeline)
• More stages can be added or removed as needed.

• Great for L1 Instruction cache warmth. [Why ?]

• Stages are connected using DPDK rings

40Illinois Institute of Technology

DPDK mbuf

• DPDK packet buffer used to store packet data and packet
metadata.

• Packet metadata is stored in the mbuf header.

• Each mbuf is 2KB in size (including mbuf header).

• Can be chained to hold jumbo packets.

41Illinois Institute of Technology

DPDK mbuf

Image source:
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html

42Illinois Institute of Technology

Horizontal scaling

• As mentioned earlier , 12-14 cycles is too small a time to process a
packet on the CPU.

 What can be done to mitigate this?

• Use multiple CPU cores and share the workload aka horizontal scaling.

• For example, 4 cores can share the number of arriving packets equally,
such that each core is processing 148/4 = 37Mpps.

• This means each core now can process a packet in 12-14 * 4 = 48 – 56
CPU cycles. A lot more breathing room.

43Illinois Institute of Technology

Horizontal scaling

44Illinois Institute of Technology

HW queues and RSS

• The question now is ‘How do we split the packets’ ?

• Modern Network Interface Cards (NICs) have multiple HW
queues.

• The arriving packets can be split by the NIC to each of it’s HW
queues.

• A generally supported algorithm to do the splitting on NICs, is
Receive Side Scaling (RSS).

45Illinois Institute of Technology

RSS

46Illinois Institute of Technology

HW queues and RSS

• Each processing core in DPDK is assigned to a specific HW queue.

• It reads packets from that queue, and processes it.

• If no packets arrive on that queue, it will not process any packets.

• Enabling RSS makes efficient use of cores.

47Illinois Institute of Technology

Core-queue
mapping

48

CPU:Queues
Can be 1:1 or
1:n, but not
n:1

Illinois Institute of Technology

DPDK Demo on
FABRIC

49Illinois Institute of Technology

References
• A look at Intel’s Dataplane Development Kit – Dominik Scholz

• Data Plane Development Kit (DPDK) – A Software Optimization
guide to the user space based network applications – Heqing Zhu

• DPDK Programmer’s Guide
 https://doc.dpdk.org/guides/prog_guide/index.html

• . Skeleton code documentation
https://doc.dpdk.org/guides/sample_app_ug/skeleton.html

• DPDK API documentation
https://doc.dpdk.org/api/index.html

50Illinois Institute of Technology

https://doc.dpdk.org/guides/prog_guide/index.html
https://doc.dpdk.org/guides/sample_app_ug/skeleton.html

THANK YOU

51Illinois Institute of Technology

52Illinois Institute of Technology

	Slide 1: DPDK Nishanth Shyamkumar Illinois Institute of Technology March 2025
	Slide 2: End Host Networking
	Slide 3: Browsing the web
	Slide 4: System works together
	Slide 5: Traditional Browser Stack
	Slide 6: Linux Network’s Generality
	Slide 7: Linux Networks’ Generality
	Slide 8: How CPUs affect network performance
	Slide 9: How CPUs affect network performance
	Slide 10: Time limitation at high speeds
	Slide 11: Time limitation at 1Gb/s throughput
	Slide 12: What about at 100Gb/s ?
	Slide 13: Packet Lifecycle
	Slide 14: CPU overworked
	Slide 15: DPDK
	Slide 16: The architecture behind DPDK
	Slide 17: Memory Pools
	Slide 18: Memory Pools
	Slide 19: 2. Hugepages
	Slide 20: TLB
	Slide 21: Hugepages
	Slide 22: Hugepages
	Slide 23: Hugepages
	Slide 24: 3. Polling
	Slide 25: Interrupt driven
	Slide 26: Polling
	Slide 27: Poll mode
	Slide 28: 4. Zero copy
	Slide 29: Copy operation
	Slide 30: Zero copy
	Slide 31: Zero copy
	Slide 32: 5. NUMA alignment
	Slide 33: NUMA sockets
	Slide 34: NUMA alignment
	Slide 35: 6. PCIe
	Slide 36: DPDK modes of operation (RTC)
	Slide 37: RTC
	Slide 38: DPDK modes of operation (Pipeline)
	Slide 39: Pipelining
	Slide 40: DPDK modes of operation (Pipeline)
	Slide 41: DPDK mbuf
	Slide 42: DPDK mbuf
	Slide 43: Horizontal scaling
	Slide 44: Horizontal scaling
	Slide 45: HW queues and RSS
	Slide 46: RSS
	Slide 47: HW queues and RSS
	Slide 48: Core-queue mapping
	Slide 49: DPDK Demo on FABRIC
	Slide 50: References
	Slide 51: THANK YOU
	Slide 52:

