
• FABRIC, as a testbed, affords 

significant flexibility compared to 

other deployment environments.

• This flexibility allows for new 

techniques that are much more 

general, supporting any 

components, topology, or protocols.

Introduction

•Debugging is a significant barrier to 

developing experiments on FABRIC.

•A research-friendly debugger should 

not be reliant on hardware or 

protocol support, since that is often 

the focus of the research.

•Data collection could pave the way 

for automated assistance in tracking 

down and solving bugs.

Motivation

•We extended Fablib to support 

adding VMs as “smart” bump-in-the-

wire monitors.

•Monitors communicate with an 

analyzer out-of-band, and insert 

unique IDs to frames.

•Analyzer collects information on 

packet headers, ID, and location into 

database.

•Database contains flow-level data, 

position, and packet-specific ID.

Approach
•Packet tracing can be done from a 

central point or the Jupyter instance, 

with significantly fewer commands 

than spawning and analyzing 

tcpdump jobs.

•Devices which do not support 

capturing their interfaces can be 

monitored as easily as any node.

• Lays a foundation for more active 

debugging by enabling anywhere 

probing and on-the-fly editing of 

header field values.

Results

A Network Debugger for FABRIC Experiments

Alexander Wolosewicz
Illinois Tech http://crease.cs.iit.edu/

Try CREASE out
on FABRIC!Nik Sultana

Illinois Tech

Ashish Gehani
SRI

Vinod Yegneswaran
SRI

Packets across the network are recorded into a 

central database. The database can be queried 

to reduce the graph to one relevant to the issue.

We thank Komal Thareja and Mert

Cevik for technical assistance.

This work is supported by NSF CIRC

2346499.

Acknowledgement


