
Demo: Disaggregated Dataplanes
Heena Nagda

Georgia Institute of Technology
Rakesh Nagda

University of Pennsylvania
Nik Sultana

University of Pennsylvania
Boon Thau Loo

University of Pennsylvania

Abstract—Modern programmable network hardware enables
in-network computing—pushing increasingly-complex logic into
the network to improve the performance, flexibility and reliability
of network services. But the current network programming
paradigm is constrained to programming a single network device
at a time. The lack of support for in-network programs that
use several and heterogeneous network hardware simultaneously
constrains the scale and behaviour of in-network programs.

Dataplane Disaggregation is a new paradigm that addresses
this problem. It distributes computations across programmable
network hardware including switches and smart NICs. This
paradigm transforms a monolithic in-network program into a
distributed system executing on possibly heterogeneous resources.

The goal of this demo is to make an accessible presentation
of Dataplane Disaggregation to the wider distributed systems
community. This is intended to stimulate discussion on effective
ways to program distributed and heterogeneous systems. Our
demo is based on the Flightplan system prototype. Flightplan is
open-source and comes with detailed documentation and support
scripts, yet it requires some effort to set up and run. This impedes
its study by others. Our demo runs completely in the browser
and does not burden viewers with any installation effort at all.

The technical contribution of this demo consists of a cus-
tomised visualisation of Flightplan experiments. Moreover, the
demo is well-suited to virtual events—as is being planned
for ICDCS’21—since it can be run independently and asyn-
chronously by viewers of the demo. This is especially helpful
for viewers with slow or intermittent Internet connections. We
make the demo’s source code freely available online for use by
others, including researchers who want to build similar demos.

Index Terms—software-defined networking, dataplane disag-
gregation, distributed systems, network virtualisation, datacenter
networking

I. INTRODUCTION

In-network computing [1] leverages the performance and
programmability of recent network hardware to run com-
putations in the network. Such hardware is said to have
a programmable dataplane [2]. Examples of such hardware
include programmable switches [3] and smart NICs [4].

A network can have several programmable dataplanes but
the current dataplane-programming paradigm is constrained
to programming a single dataplane at a time. An in-network
program might require more than one dataplane—it might
require their combined resources, or the coordination of parts
of the network. Therefore the lack of support for in-network
programs that use several and heterogeneous dataplanes con-
strains the scale and behaviour of in-network programs: either

This material is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contracts No. HR0011-19-C-0106,
HR0011-17-C-0047, and HR0011-16-C-0056. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DARPA.

limiting in-network programs to what can be executed on a
single dataplane, or burdening the programmer with writing
and debugging complex cross-dataplane logic to manually
have a program use multiple dataplanes.

To support in-network computing, Dataplane Disaggrega-
tion was developed to enable programming several, possibly-
heterogeneous dataplanes simultaneously. This involves: trans-
forming a monolithic in-network program into a distributed
system, exploring different placements for the program’s parts
in the network, and providing runtime support for fault-
handling.

Flightplan [5] provides a prototype implementation of
dataplane disaggregation but despite the availability of its
source code and extensive documentation, it is laborious to
set up. A pre-installed VM would be typically large—tens of
gigabytes—and would be opaque to non-specialists.

Demo Goal. The demo seeks to provide an accessible presen-
tation of Flightplan, and aims for the following:

• Rely heavily on concrete examples to make the ideas
in the Flightplan paper more widely accessible. The ex-
amples are based on experiments featuring disaggregated
dataplane programs.

• Engage with a wider community beyond Software-
Defined Networking (SDN). The demo aims to stimulate
discussion and comparisons with related ideas in other
domains and subcommunities.

• Encourage viewer interaction to a degree similar to live
tutorials but without burdening attendees with compiling
and configuring a research prototype.

• Given that the event is virtual, the demo needs to tolerate
asynchrony and delay. This is done by running the demo
in the browser and providing documentation and visual
cues so viewers can play the demo independently. As a
result, the demo will also persist beyond the demo session
at ICDCS.

The demo is designed to be simple to use and understand,
and can be controlled by the user through the mouse. Fig. 1
shows a glimpse of what is shown to the user, and Fig. 2
provides more details. Users are given an intuitive visualisation
of the behaviour of dataplane programs. We built the demo by
customizing a platform for teaching and demonstration [6].

The demo is accessible online at https://flightplan.cis.upenn.
edu/demo together with supporting documentation.

https://flightplan.cis.upenn.edu/demo
https://flightplan.cis.upenn.edu/demo


Fig. 1: The demo will consist of a set of experiments in which
various dataplane programs process different types of packets
flowing through the network. In addition to the topology-based
view shown above, the demo will also graph numeric variables
of interest to each experiment. Several visual cues are used to
help viewers understand the dataplane programs’ behaviour.
More examples are shown in Fig. 2.

II. DEMO PLAN

The demo has three stages: (i) Introduction: The presenter
introduces the demo system, explains how to use it, and shows
some example experiments. (ii) Viewing: Attendees can run
the demo asynchronously in their browser. (iii) Interaction:
Feedback and suggestions are gathered from attendees, who
can also raise discussion points or ask questions about Flight-
plan or the demo.

III. DEMO CONTENT

The demo will feature experiments drawn from the
Flightplan paper and code release.1 These experiments are
sequenced to introduce the viewer gradually to different
aspects of the demo platform, and presented to the user in
the main menu (Fig. 2a).

User Interface. The demo relies heavily on two kinds of visu-
alisation. (i) a 3D rendered network topology that shows ani-
mated packets traveling through it. (ii) 2D graphs that describe
quantitative aspects of experiments. These quantitative aspects,
such as packet loss, are hard to appreciate by observing the
packets travelling in the 3D topology. The demo supports
positional and temporal tags that help the viewer understand
points of interest throughout the experiments. Positional tags
are clickable and provide information about network devices
and programs executing in the network.

1Flightplan’s code is at: https://github.com/eniac/Flightplan

Experiments. The experiments are sequenced to build up
to experiment 5 which combines the features encountered
in earlier experiments. Experiment 5 is then refined through
splitting and offloading to supporting devices consisting of
other programmable dataplanes. The most complex example
is experiment 8 which shows different splits of different
programs running simultaneously in the network.

The remainder of this section details each experiment:

1) Introduction: This is a tutorial introduction of the
demo’s interface to the user. During the course of this
experiment, tags pop up to explain the functionality of
the demo’s various features.

2) FEC booster: This experiment features the Forward
Error Correction (FEC) network booster [7]. Packets are
sent over a lossy link in the topology. Some packets are
lost while crossing this link. Lost packets are recovered
using FEC decoding. Fig. 2d shows a screenshot of this
experiment. The graph shows the effect of FEC.

3) HC booster: This experiment demonstrates the Header
Compression (HC) booster. This booster compresses and
decompresses the packet headers. The experiment shows
the reduced traffic on the link due to the compression.

4) MCD booster: Our Memcached (MCD) booster pro-
vides in-network caching of Memcached entries. The
experiment demonstrates the cache’s role in reducing the
traffic load on the Memcached server.

5) Crosspod: This experiment demonstrates the
Crosspod.p4 program that combines the FEC,
HC, and MCD boosters in one program.

6) Split Crosspod into 3 parts: This experiment refines
experiment 5 and features the Crosspod.p4 program
split into three parts. The forwarding logic is kept on
the switch, while two subprograms containing network
boosters are each mapped to supporting devices. The ex-
periment shows packets flowing through the dataplanes
that form the distributed program.

7) Split Crosspod into 6 parts: This refines experi-
ment 6 into finer-grained spits. In this experiment, the
Crosspod.p4 program is split into six parts. The for-
warding logic is kept on the switch, but the booster func-
tions are offloaded to five supporting devices. Fig. 2b
shows this experiment’s introduction screen, and Fig. 2c
shows part of the experiment’s execution.

8) “Figure 7”: This experiment features the example
shown in Figure 7 of the Flightplan paper [5]. It shows
various programs split in various ways, and being si-
multaneously executed in the network. The goal of this
experiment was to test complexity and scale.

9) Fail-over mechanism: This experiment demonstrates
the fail-over mechanism used in Flightplan’s ‘Full’ run-
time [5, §5.3]. We simulate the failure of a network
device and observe Flightplan failing-over to a backup
device. Packets then start flowing through this backup
device. The experiment also graphs the packets flowing
through the supporting devices over time.

https://github.com/eniac/Flightplan


10) Untunneled traffic: This experiment provides a baseline
for the next experiment (on tunneled traffic). It shows the
path followed by the packets in the absence of tunneling,
under the influence of routing alone. The experiment is
adapted from an example written by third-parties and
included in the P4 tutorial [8].

11) Tunneled traffic: This experiment shows the effect of
the in-network tunneling logic, adapted from a third-
party example in the P4 tutorial [8]. Rather than follow-
ing the routing-defined path, the packets follow the path
specified by the configured tunneling.

12) QoS: This experiment demonstrates in-network priori-
tisation based on Quality of Service (QoS), adapted
from a third-party example in the P4 tutorial [8]. In
the experiment’s visualisation, higher-priority packets
are shown using a different colour. Using this visual
cue we observe the prioritisation of packets changing as
they move through the network.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback,
and our colleagues for their feedback on different versions
of the demo: Haoxian Chen, Max Demoulin, Joel Hypolite,
Pardis Pashakhanloo, Lei Shi, Nishanth Shyamkumar, Caleb
Stanford, and Ke Zhong.

REFERENCES

[1] T. A. Benson, “In-Network Compute: Considered Armed and Dangerous,”
in Proceedings of the Workshop on Hot Topics in Operating Systems, ser.
HotOS ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 216–224.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, Jul. 2014.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast Pro-
grammable Match-Action Processing in Hardware for SDN,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, p. 99–110, Aug. 2013.

[4] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “SmartNIC Perfor-
mance Isolation with FairNIC: Programmable Networking for the Cloud,”
in Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, ser. SIGCOMM
’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 681–693.

[5] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,
S. Burad, A. DeHon, and B. T. Loo, “Flightplan: Dataplane
Disaggregation and Placement for P4 Programs,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, Apr. 2021. [Online]. Available: https:
//www.usenix.org/conference/nsdi21/presentation/sultana

[6] H. Nagda, R. Nagda, I. Pedisich, N. Sultana, and B. T. Loo, “FDP:
a teaching and demo platform for SDN,” in CoNEXT ’20: The
16th International Conference on emerging Networking EXperiments
and Technologies, Barcelona, Spain, December, 2020, D. Han and
A. Feldmann, Eds. ACM, 2020, pp. 524–525. [Online]. Available:
https://doi.org/10.1145/3386367.3431886

[7] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. A. Kant, A. J. McAuley, A. Poylisher, A. DeHon, and B. T.
Loo, “In-network computing to the rescue of faulty links,” in
Proceedings of the 2018 Morning Workshop on In-Network Computing,
NetCompute@SIGCOMM 2018, Budapest, Hungary, August 20, 2018,
X. Jin and C. Kim, Eds. ACM, 2018, pp. 1–6. [Online]. Available:
https://doi.org/10.1145/3229591.3229595

[8] “P4 Tutorial,” https://github.com/p4lang/tutorials, accessed April 2021.

(a) Choice of experiments to run.

(b) Intro screen to the “Split 6” experiment (point 7 in §III).

(c) Part of the “Split 6” experiment (point 7 in §III).

(d) Part of the FEC experiment (point 2 in §III).

Fig. 2: Screenshots from the demo

https://www.usenix.org/conference/nsdi21/presentation/sultana
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://doi.org/10.1145/3386367.3431886
https://doi.org/10.1145/3229591.3229595
https://github.com/p4lang/tutorials

