
A Survey on Packet Filtering
Nik Sultana

Illinois Institute of Technology

Hyunsuk Bang

Illinois Institute of Technology

Elena Yulaeva

CAIDA/UC San Diego

Ricky K. P. Mok

CAIDA/UC San Diego

kc claffy

CAIDA/UC San Diego

Richard Mortier

Cambridge University

Abstract
Packet filtering has remained a key network monitoring primitive

over decades, even as networking has continuously evolved. In

this article we present the results of a survey we ran to collect

data from the networking community, including researchers and

practitioners, about how packet filtering is used. In doing so, we

identify pain points related to packet filtering, and unmet needs

of survey participants. Based on analysis of this survey data, we

propose future research and development goals that would support

the networking community.

CCS Concepts
• Networks → Network security; Network measurement; Net-
work monitoring;

Keywords
Packet Filtering, Network Monitoring, Traffic Classification

1 Introduction
Network monitoring is critical to managing network performance

and security. It relies on the ability to selectively capture and an-

alyze packets from the network, both on- and off-line. Packet fil-

ters [10] are functions that select packets from a stream. Filters are

a key primitive that enable packet capture through two distinct

features: (1) languages for expressing constraints on which packets

should be captured, (2) techniques for capturing traffic at high data

rates. Both have co-evolved alongside data networking over many

years [2, 3, 12, 15]: convenient constraint expression was driven by

the diversity of deployed protocols, while high-rate filtering was

driven by increasing link capacities.

Our research goalwas to form five inter-related pieces of knowl-

edge based on survey data captured from the networking commu-

nity: (1) which packet filtering tools and techniques are prevalent;
(2)what are the perceived pain points of those tools and techniques;
(3) how are those tools and techniques used in participants’ work-
flows; (4)what are the filtering needs of participants that those tools
and techniques do not address; and (5) how are responses correlated
(e.g., “participants who do𝑋 are more likely to do𝑌 ”). Based on this

knowledge, we formulated further packet filtering related research

questions relevant to the networking community.

This paper describes data collection (§2), the results of that data

collection (§3), and an analysis of correlations we could find within

those results (§4). The paper concludes by discussing the survey’s

limitations (§5) and proposing future research directions to the

broader networking community (§6). The questions used in this

survey are provided in Appendix A.

2 Methodology
We designed an anonymous online survey for distribution among

both research and practitioner data networking communities. Its de-

sign went through eleven iterations with small focus groups drawn

from both communities, allowing us to calibrate the survey’s struc-

ture and refine question wording to improve comprehension while

keeping the survey reasonably short. Feedback received allowed us

to scope our questions to address our points of interest within the

broad ecosystem of relevant commercial and research tools.
1

We obtained IRB exemption from IIT (the institution from which

the survey was run) on the grounds that this was an online sur-

vey configured not to collect any Personally Identifiable Informa-

tion (PII), and targeting a professional population. To maximize

reach and usability, we used a well-established survey system.

The survey was advertised through various online channels used

by network researchers and practitioners, at in-person events and

through personal contacts to reach more potential participants. The

survey ran from September to November 2023 and had 91 partici-

pants. When we released the survey we committed to releasing the

resulting data, and this is now freely accessible online.
2

We exclude from our analysis responses to a question that asked

participants to describe the largest network that they managed, due

to an error that was not caught before the survey went live: the

offered options failed to cover the entire range (“Between 1 and

10 switches or routers” and “Between 100 and 1000 switches or

routers” were offered, missing out the range 10—100).

3 Results
We now present a breakdown of survey responses relating to re-

search goals (1—4) (§1). As not all participants answered all ques-

tions, we report two values in each case:𝑛% indicates the percentage

of participants who picked a specific answer out of the subset of par-
ticipants answering that question, and 𝑛% indicates the percentage

of participants who picked a specific answer out of the total number
of participants in the survey.

3.1 Population

69% (6̃2%) of participants use traffic filtering tools in a profes-

sional capacity, with experience ranging from 4 months to over

25 years (Fig. 1). Many use these tools frequently (20% (1̃8%) daily,

25% (2̃2%) weekly, and 28% (2̃4%) monthly). 28% (2̃4%) report that

they rarely use these tools. This likely explains a key pain point

discussed later, “reme[m]bering how to use them when I rarely do”.

1
Feedback example: Any words that have to deal with “flows” may point to someone
thinking about Sflow or Netflow. Words like “traffic” or “packet capture” point more
towards using tools like tcpdump or Wireshark. If you want to stay neutral between the
tools, I would say something along the lines of “filtering or visualizing the network data”.
2
http://packetfilters.cs.iit.edu/

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024

http://packetfilters.cs.iit.edu/


Figure 1: Experience reported by survey participants.

3.2 Tools and Techniques

86% (7̃6%) of respondents used Wireshark or TShark, 84% (7̃4%)

used tcpdump, and 29% (2̃5%) used custom programs reliant on

libpcap.3 15% (1̃3%) of respondents used custom-generated eBPF

filters. Other tools mentioned that were not in the question set

include NetFlow and FPGA cards. Several reported using one or

more Intrusion Detection Systems (IDS), principally Snort (9% and

8̃%), Suricata (13% and 1̃1%) and Zeek/Bro (11% and 1̃0%).

3.3 Context

We sought to understand where and how filtering was carried out.

3.3.1 Environment. Most participants applied filtering tools

in corporate or campus networks (50% and 4̃4%), home networks (48%

and 4̃2%), datacenter networks (38% and 3̃3%), ISPs (26% and 2̃3%),

and backbone networks (15% and 1̃3%). Other options mentioned

included experiment testbed networks.

3.3.2 Capturing method. 67% (5̃7%) use an agent on an end-

point (a general-purpose network node), 41% (3̃5%) use port mirrors,

21% (1̃8%) use taps, and 14% (1̃2%) use packet mirrors.
4

3.3.3 Traffic feed. Most applied traffic filtering online, at

1Gbps (58% and 4̃3%), 10Gbps (42% and 3̃1%), 10—100Gbps (25%

and 1̃9%), 400Gbps (3% and 2̃%). Offline filtering, occurring when

packet captures are analyzed after the fact, was applied to captures

of less than 1GB (31% and 2̃3%), captures of 1—10GB (25% and 1̃9%),

and 10—100GB (13% and 1̃0%). One respondent mentioned target-

ing both high-capacity links and large files “Multiple 40—100 Gbps
deployments. PCAPs of all sizes, including some well north of 1 TB”.

3.3.4 Diversity of filters. Most respondents (67% and 2̃9%)

reported repeatedly using the same filter expressions because work-

loads and protocols do not change much over time. Specific reasons

given included “restricted scope of usage”, “usually the same process
every time”, “generally troubleshooting the same issues (i.e. CPE stack
implementation like DHCP options)”, and “I am often performing a
similar task, eg: following a protocol for a single application under
diagnosis, or looking at all traffic from a physical device”.

3
In this question, participants could indicate they used more than one tool. Therefore

percentages can sum to more than 100%.

4
Packet mirroring extends port mirroring by applying additional filtering to mirrored

traffic [4].

The remainder (33% and 1̃4%) tended to use diverse filter expres-

sions. For example, one responded “Each scenario I’m troubleshoot-
ing is different. Because of the volume of data I need to limit [the
filter] to exactly what I need. Too much data just becomes noise.”.

3.3.5 Reasons for filtering. Most used filtering to diagnose

connectivity (74% and 5̃6%), followed by doing research (65% and

4̃9%), diagnosing performance (51% and 3̃8%), and diagnosing net-

work configuration (45% and 3̃4%). Free-form answers in this cate-

gory included “Protocol validation compliance” and “What the heck
is breaking windows install? Oh. Something is trying to download
that teenytiny little thingy from a non-fqdn-host.”

Almost a quarter of participants (32% and 2̃4%) also used filters

for security-related diagnosis, to determine indications of compro-

mise, detect scanning, detect exfiltration or data leaks, with 17%

(1̃3%) using filters as building blocks for firewalls, access control

lists (ACLs), and to divert a subset of traffic to an IDS.

3.4 Pain Points

The main challenges participants identified with existing tools

were limited performance and scalability (57% and 3̃6%), followed

by protocol support (33% and 2̃1%), lack of stateful filter expression

primitives (29% and 1̃9%), poor extensibility or difficulty of using

that extensibility in practice (21% and 1̃3%), and limited expres-

siveness (17% and 1̃1%). 17% (1̃1%) felt the learning curve was too

steep or documentation needed improvement, while 14% (9̃%) felt

existing tools to be adequate.

Focusing on stateful filters – where subsequent matching behav-

ior depends on one or more previously matched packets – 19% (9̃%)

of respondents indicated use of such filters. This is less than those

who indicated that support for such filters is lacking (29% and 1̃9%).

From participants’ replies, stateful filters are used to “follow SCTP
or TCP payloads, and distinct streams which requires ‘state’.”

Another pain point concerned complexity: “While I wouldn’t
necessarily call zeek scripts ‘filters’, they can get pretty complex. Es-
pecially when you start to track state across several workers nodes.
Additionally, the DNS and SSL/TLS stuff is very complex due to the
nature of the protocols and what’s actually seen on the wire.”

3.5 Workflows and Patterns of Use

Filter generation 52% (2̃4%) of participants reported generating

filters via a specialized language, e.g., tcpdump or Wireshark ex-

pressions, BPF or eBPF assembly, Zeek’s filter language, or Snort’s

signature language, and 17% (8̃%) used a general purpose language,

e.g., C++, while 14% (7̃%) generated filters automatically using cus-

tom, home-grown tools, and 5% (2̃%) automatically using third-party

tools, e.g., bpfc.

Complexity Regardless of how they were expressed, 40% (1̃9%)

of participants reported that their filter expressions usually con-

sisted of just a single line, 47% (2̃2%) reported their filters were

usually fewer than 5 lines, 7% (3̃%) reported usually 5—20 lines, and

7% (3̃%) reported usually more than 20 lines.

Free-form comments provided interesting insights into how tools

are used, which we categorize as follows:

Expressiveness. Some used low-level languages to write fine-

grained filters, as necessary, e.g., “In rare cases, I observe things by

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024



manually writing eBPF programs for it.” and “Sometimes using BPF
expressions to further filter subsets of the capture.”

Staging. A number of respondents used iterative and multi-stage

approaches when creating filters, e.g., “Build them up in [an editor]
and then paste them in”, “Manual trial and error”, “I will use wireshark
to build and test the filter, then once it works reuse it with other
tools.” One described developing a filter to find those computers

being controlled by an unauthorized user, starting from a set of

computers that were known to have been under this user’s control,

and iteratively widening this set to include machines observed to

have communicated with those in the set. During development, the

filter itself was used to communicate the scale of the compromise

between network and machine administrators.

Integration. Several described use of filters in a larger analysis

system, e.g., “On the rare occasion I’ll use Python’s SCAPY [to analyze
pcap files]”, “We may also use Splunk to search/filter through capture
logs”, and “We do complex things outside the filtering system.”

3.6 Desirable Features

Based on the survey data, we believe the following features would

be particularly relevant to the users of packet filtering.

W1 High performance. Many indicated performance was a key

concern (§3.4).

W2 Clear and consistent filter specification. Although only 17% ex-

plicitly complained of limited expressiveness (§3.4), respondents

also expressed a need for clear and consistent specification of filters,

e.g., “Not really, I’m pretty comfortable with existing syntax as long as
the underlying parts work as advertised.” and “Something similar to
Wireshark DisplayFilters would be nice, though I dislike gotchas like
the NOT modifier https://wiki.wireshark.org/DisplayFilters#gotchas”.
W3 Community. Many of the comments concerning learning curve

and documentation could be at least partially addressed by a com-

munity of fellow users, helping deliver “Debugging support”, “ease of
use by newbies”, “documentation”, “examples and sample commands”,
and even a “professional support community”.
W4 Integration with standards. One respondent suggested that fil-

tering syntax “should be generated based on protocols. should be part
of standards” which might also address the points above.

W5 Modern interface tools. Two expressed an interest in using

Large Language Models [6] to develop filters: “Given the prevalence
of LLMs, using natural language to describe a filter and have the
LLM convert that to tool-specific syntax will be very useful.” and
“A generative AI for tcp dump filters would be nice. While it’s not
really something syntax related, it would be useful. Being able to
interactively drill down on with something that is "aware" of the goal
could be useful.”

4 Analysis
We next analyze the survey answer data (goal 5 from §1), dividing

into two categories: profiles of particular types of participants, e.g.,
those who use many different types of filters, and correlations be-
tween data features, e.g., for network type 𝑋 respondents reported

using tool 𝑌 . Raw survey results were coded for analysis as follows:

Dummy variables. Each multiple-choice question option becomes

a dummy variable, a new dimension in a vector encoded as “1” or

“0” depending on whether the respondent selected it. For example,

choice of tools and techniques offered “libpcap” and “Zeek/Bro” as

Table 1: Coding process converted responses into three types
of variables (§4): D (Dummy), E (Enumerated), G (Grouped).
Question Categories are drawn from §3. For example, En-
vironment refers to the question that offered 5 choices
of network environments: Home network, Corporate net-
work/campus, Datacenter, ISP network, Backbone network.
Population encompasses 3 questions, each of a different type.

Question Category # of coded variables

Dependent variables (DVs)
Tools Used (§3.2) 9×D
Population (§3.1) 2×E and 1×G
Environment (§3.3.1) 5×D
Capturing (§3.3.2) 4×D
Reasons for filtering (§3.3.5) 8×D
Traffic feed (§3.3.3) 8×D

Independent variables (IVs)
Pain points (§3.4) 5×D
Filter diversity (§3.3.4) 1×E
Filter generation (§3.5) 5×D
Complexity (§3.5) 1×E
Statefulness (§3.4) 1×E

options, each of which would be represented as an extra dimension

in the vector representing a respondent’s answers with the value

indicating if that option was selected or not.

Enumerated values. Each choice is encoded as a small integer

value in a single dimension. For example, frequency of use is repre-

sented as a single dimension taking values 0 (“daily”), 1 (“weekly”),

2 (“monthly”), 3 (“never”). Later analysis can scale or reorder these

values as appropriate.

Grouped values. Responses are grouped into categories. The only

example of this concerned participants’ experience where “Up to 1

year” consisted of three answers: “10 months”, “4 months”, “1 year”.

This grouping was performed manually into the categories that are

shown in Fig. 1.

4.1 Profiles

We analyze conditional frequencies in multi-dimensional contin-

gency tables using Determinacy Analysis [8, 9], computing proper-

ties of explanatory rules—statements of the form “if 𝑋 then 𝑌 ” that

describe the degree of dependence of one variable (𝑌 ) on any com-

bination of one or more independent variables (𝑋 ). Rule accuracy
(A) represents the proportion of respondents for whom the rule is

true, computed as the count of responses with a respective vari-

able value divided by the count of responses with that dependent

variable value, while rule completeness (S) reflects the proportion
of cases explained by the rule, computed as the count of items

with both 𝑋 and 𝑌 divided by the count of items with 𝑌 . Finally,

contribution (C) of each factor in a rule is defined as a difference

between the accuracy of this rule and the accuracy of the rule with

the respective factors removed.

We used the SuAVE online platform [17] for survey analysis

and visualization to examine the conditional frequencies of respon-

dents’ profile characteristics. SuAVE also includes a collection of

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024

https://wiki.wireshark.org/DisplayFilters#gotchas


Jupyter notebooks that implement various survey analysis and data

management operations, including Determinacy Analysis.

4.1.1 Does any set of characteristics distinguish the 33%
who have high filter diversity, needing to generate new filters
often, from the other 67%? Participants who frequently generate

new filters tend to write more complex expressions than partici-

pants who reuse filters. Experience plays a pivotal role, with novices

more likely to reuse filters and more experienced individuals more

inclined to generate new filters, although this effect varies. Filter

type, whether stateful or stateless, also influences this distinction,

with each contributing differently to the rules’ accuracy. Notably,

the use of automatic tools for generating expressions/filters signifi-

cantly boosts the accuracy of rules for participants who prefer not

to change filters often. Table 2 quantifies this analysis.

4.1.2 What are the characteristics of users of stateful fil-
ters, and are they distinguishable from those using stateless
filters? Differences between participants using stateful and state-

less filters center on expression complexity, experience, expression

diversity, the tools used, and the method of generation. Stateful

filter users typically write longer expressions and use a broader

range of tools, including advanced tools like Zeek/Bro and Suricata,

indicating a need for complexity and diversity in their filtering

practices. They also tend to create new filters more frequently. In

contrast, stateless filter users often write shorter expressions, rely

on a narrower set of tools, and are more likely to use the same filters

consistently. Automatic generation of expressions or filters, espe-

cially using third-party tools, is particularly influential for those

using stateless filters. Table 3 quantifies this analysis.

4.1.3 What characterizes the participants experiencing
each pain point? Examining the groups defined by each pain

point reveals similarities and differences in their experiences and

behaviors. Protocol Support affects 2̃1% of respondents, primarily

those using stateful filters, involved in gathering traffic samples

for analysis, and online monitoring of 400 Gbps links. They often

cite poor extensibility and limited expressiveness as accompany-

ing concerns. Limited Performance and Scalability affects 3̃6%

of respondents, notably those monitoring 400 Gbps links online

and/or 10—100 GB PCAP files offline. They state that their filter

complexity is usually more than 20 lines. Other characteristics in-

clude the use of such tools as custom BPF generation and Zeek/Bro.

Those respondents tend to generate filters using automatic custom

tools and use various tools for building filters for other systems

such as a downstream firewall. Poor Extensibility affects 1̃3% of

respondents, and refers more to the context of use than specific

factors, for example online monitoring of 400 Gbps links. Other

characteristics of respondents experiencing this pain point include

the need to build filters for other systems and to write lengthy

filter expressions. Lack of Stateful Filter Expression Primitives
affects 1̃9% of respondents, and is closely linked to the perception

of limited expressiveness. Those affected typically write long ex-

pressions, use filters for monitoring 10 Gbps links, and build filters

to gather traffic samples for analysis, and for use in other network

monitoring tools. Those respondents usually have a moderate level

of experience with using tools and generate expressions automati-

cally using custom tools or manually using command line tools or

GUI. Limited Expressiveness affects 1̃1% of respondents, many

of whom also struggle with the lack of stateful filter primitives and

poor extensibility. Characteristics include the automatic genera-

tion of expressions with third-party tools, building filters for other

systems, and usage across different monitoring scales. Experience

levels tend to be lower.

Across these groups, the intersection of technical challenges

(e.g., protocol support and performance) with tool-related issues

(e.g., expressiveness and filter primitives) creates a complex space

where factors – including the type of monitoring activity, the com-

plexity and generation method of filter expressions, and the specific

tools and techniques employed – distinguish participants’ expe-

riences. However, characteristics common to several groups of

participants do exist, such as the need for better extensibility and

expressiveness, and the need for better user experience. This sug-

gests areas for improvement in tool and filter design.

4.2 Correlations

We study the correlation between the IVs and DVs (Table 1) using

multinomial regression. For each IV coded into multiple dummy

variables, we construct multiple models (one per dummy variable)

with the same set of DV(s). Our implementation uses the fitnmr
function in Matlab, employing the ordinal model type and the

logit link function. Our analysis focuses on understanding how

various user characteristics may lead to different pain points and

the creation of filters. Table 4 shows the sets of models we tested.We

inspected the statistical significance of both the model coefficients

and the regression models to derive correlations.

4.2.1 Pain points. Model set M1 revealed several correlations

between participants and pain points. We found that participants

who generate custom eBPF filters reported a lack of protocol sup-

port as a pain point. Given the low-level nature of eBPF, supporting

additional protocols can involve substantial development and test-

ing effort. Participants using libpcap did not report performance

and scalability issues as a pain point, presumably because there

is community-wide awareness of other frameworks that provide

better performance and scalability (e.g., DPDK [3]). Participants

with less experience reported lack of stateful filters as a pain point.

M3.4 in Table 4 revealed correlations between pain points and

reasons for using packet filters. We found that the protocols sup-

ported by current packet filtering libraries can satisfy the needs

of participants who deployed filters for conducting research and

diagnosing network connectivity. Furthermore, lack of stateful fil-

ter expression primitives was not a pain point for gathering traffic

samples and building filters for another system (e.g., firewall, IDS)

presumably as the other system can be highly provisioned and

horizontally-scaled to perform filtering, compensating for the in-

ability to filter upstream—at an earlier point in the network.

4.2.2 Filter generation. M3.2 in Table 4 revealed that how

participants generated their filters is affected by their purpose.

Filters for network configuration were less likely to be created man-

ually using a special language, presumably as such tasks are well-

established and simple/standardized filters exist to detect misconfig-

uration. Similarly, connectivity testing did not prefer automatically-

generated filters in custom tools, presumably for the same reason.

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024



Table 2: The profile of participants who need to generate new filters often, in terms of different factors (shown in the left
column). For example, we find that participants who often need to generate new filters tend to use filters whose size is >5 lines.
The (A=·,C=·) notation shows the accuracy and contribution values (§4.1), to indicate significance. A high-accuracy but low-
contribution result is weaker than one with a high contribution. If the contribution is larger, then accuracy increases.

Factor Need to generate new filters often Use the same filters

Complexity (A=67,C=52) Expressions exceed 5 lines. (A=65,C=36) Expressions under 5 lines.

Experience (A=45,C=30) 11—15 years. (A=67,C=38) Less than 1 year.

Statefulness (A=63,C=48) Yes (A=62,C=33) No

Filter generation (A=33,C=19) Automatically, using custom tools. (A=100,C=71) Automatically, using third-party tools.

Table 3: Analyzing the profile of participants who use stateful and stateless filters. This table uses the same notation as Table 2.

Factor Stateful Filters Stateless Filters

Complexity
(A=33,C=25) Expressions contain 5-20 lines.

(A=33,C=25) Expressions contain >20 lines.

(A=88,C=51) Expressions contain 1 line.

(A=80,C=43) Expressions contain 2-4 lines.

Experience (A=40,C=31) >20 years. (A=88,C=50) 16-20 years.

Filter diversity (A=38,C=30) Create new filters often. (A=81,C=43) Use the same filters.

Tools Used
In addition to tcpdump and Wireshark, use of

(A=44,C=36) Zeek/Bro and (A=30,C=21) Suricata.
General use of tcpdump and Wireshark.

No significant contribution.

Filter generation No significant contribution.

(A=100,C=62) Automatically, using third-party tools.

(A=77,C=40) Manually, using a specialized language.

Table 4: / / indicate that all / some / none of the mod-
els in that model set were statistically significant (𝑝 < 0.05).
E.g., considering M3.3, “reasons for filtering” correlates with
the statefulness variable; that is, those reasons given for fil-
tering significantly determine whether to use stateful or non-
stateful filters. In contrast, M4.3 indicates that the type of
network has no significant bearing on whether stateful or
non-stateful filters are required.

Model sets IV(s) DV Results

M1

Tools Used &

Population

Pain points

M2 Population Filter generation

M3.1

Reasons for filtering

Complexity

M3.2 Filter generation

M3.3 Statefulness

M3.4 Pain points

M4.1

Environment

Filter generation

M4.2 Complexity

M4.3 Statefulness

M4.4 Pain points

M3.1 showed that filters for security or performance purposes

were more complex, presumably due to higher specificity as they

must cover everything from simple worm signatures, to exfiltration

indicators (e.g., for HeartBleed [14]), to IDS evasion [7].

M.3.3 showed sampling traffic for analysis was more likely to use

stateless filters, albeit only with marginal significance (𝑝=0.066). We

believe that this follows similar reasoning to the stateless filtering

described in §4.2.1, i.e., developing complex upstream filtering is not

needed if downstream resources can support high-quality filtering.

4.2.3 Other. Finally, we could not find significant correlations

between network environment and several DVs (M4.1—4.4), prob-

ably as many participants managed multiple networks including

their home network. Re-running the survey with more diverse par-

ticipants might help examine this further. Manual generation of

filters was the most popular approach (§3.5) but we did not find

a significant relationship between the approach used to generate

filters and the level of experience reported by participants (M2).

This might mean that there are well-established “best practices”

in packet filtering that are quickly adopted by newcomers. We ob-

served that those reporting lower filter diversity (§3.3.4) tended to

use longer filters (§3.5), and those reporting higher filter diversity

used fewer lines in their filters.

5 Limitations
The data from the survey indicates the views of a relatively small

sample of the population, and is not necessarily representative of the

total population. Another limitation is that analysis is hamstrung

by lack of knowledge of participants’ backgrounds. This could have

been mitigated by adding more questions, but we tried to keep the

survey brief to encourage participation. If the survey is repeated

in the future, we hope that the outcomes from the first survey will

encourage more participants to engage.

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024



6 Concluding Proposals

We propose some research objectives based on the survey’s findings.

P1 Flexible upstream filtering. Observations in §4.2.1 and §4.2.2

suggest that the abundance and affordability of downstream pro-

cessing resources disincentivize the development of flexible up-

stream filtering, as a 400Gbps link could be split into 4×100Gbps
streams for analysis on a cluster. However, as link capacities con-

tinue to increase steadily even outside of hyperscale datacenters [1,

13], network operators will need to balance performance (W1)
against expense. We suggest a research goal might be to decom-

pose filters so that parts could be pushed upstream to reduce the

load on downstream processing resources, and thus the expense in

procuring and maintaining those resources.

P2 Integrated behavior of distributed filters. P1 divides labor be-

tween upstream and downstream filters rather than migrating fil-

ters upstream wholesale, as complex and stateful filters would be

challenging to move upstream and made to work at high data rates.

This division of labor necessitates coordination between filters, not

an entirely new idea (workflow descriptions in §3.5 already indicate

that some run distributed filtering infrastructure) but it underscores

the need for coordination of high-performance filtering points. A

research goal would be to compose and coordinate distributed

filters, without causing “surprising” behavior (W2) [11], and to

serve different participants (§3.3.4) and their workflows (§3.5). P3
Explainability of performance. Independent of level of experience,
participants tend to manually generate filters (§4.2.3). As well as

controlling what they capture, this affords control over resources

used by a filter, ensuring high performance (W1). Even simple filters

can have unwanted behavior that wastes resources, e.g., checking

for transport headers that do not occur in your network [14]. A

research goal would be to provide per-filter, ahead-of-time perfor-

mance estimates, e.g., how many clock cycles a filter would take on

a specific target architecture. This enables the principle of “paying”

for what you use, as seen in performance-vs-security trade-offs

in extensible access control [16]. For packet filtering, this perfor-

mance estimate could be provided as part of a capacity plan that is

parametrized by total data rate and expected traffic composition.

P4Explainability of behavior .Widely-used filtering languages have

several quirks (W2), more likely to be triggered by complex fil-

ters. We observed that security-related filters tend to be more com-

plex (§4.2.2), increasing the risk of unwanted filtering behavior

leading, in turn, to outages or gaps in visibility. A research goal

would be to convert filters into more legible equivalent forms, per-

haps using natural language interfaces (W5); Net2Text explored
a similar idea for connectivity [5]. In this case, this goal would

help network operators and administrators better understand the

behavior of complex or third-party filters. This interface would also

provide ease of reference when a community is not available (W3),
such as when scenarios, filters, or protocols are highly specific.

Finally, as networks continue to evolve, we suggest that this type

of survey might usefully become census-like, running regularly to

continually understand how better to provide the primitives on

which our networks rely.

Acknowledgments
We thank the anonymous reviewers and the following for feed-

back: Jeronimo Bezerra, Adrian Bucurica, Richard Clayton, Jon

Crowcroft, Peter Dordal, Adrian Farrel, Babar Kamran, Hyojoon

Kim, Jeff Mogul, Denis Ovsienko, Ben Pfaff, Nishanth Shyamku-

mar, Italo Da Silva, Jim Tufts, Anthony Ulloa, Vinod Yegneswaran.

This work was supported by a Google Research Award, the De-

fense Advanced Research Projects Agency (DARPA) under contract

HR0011-19-C-0106, and National Science Foundation (NSF) under

awards 2120399, 2131987, 2319959, 2346499. Any opinions, conclu-

sions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of funders.

References
[1] 2023. NSF FABRIC project announces groundbreaking high-speed network

infrastructure expansion. https://learn.fabric-testbed.net/knowledge-base/

nsf-fabric-project-announces-groundbreaking-high-speed-network-infrastructure-expansion/.

(2023).

[2] 2024. Corsaro 3: the Parallel Edition. https://github.com/CAIDA/corsaro3/tree/

master. (2024). Accessed: 2024-02-26.

[3] 2024. Data Plane Development Kit. https://www.dpdk.org/. (2024). Accessed:

2024-02-26.

[4] 2024. Juniper Networks mirror encapsulation (Jmirror). https://wiki.wireshark.

org/jmirror. (2024). Accessed: 2024-02-26.

[5] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.

2018. Net2Text: query-guided summarization of network forwarding behaviors.

In Proceedings of the 15th USENIX Conference on Networked Systems Design and
Implementation (NSDI’18). USENIX Association, USA, 609–623.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. 2018.

BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing. https://arxiv.org/abs/1810.04805

[7] Mark Handley, Vern Paxson, and Christian Kreibich. 2001. Network intrusion

detection: evasion, traffic normalization, and end-to-end protocol semantics. In

Proceedings of the 10th Conference on USENIX Security Symposium - Volume 10
(SSYM’01). USENIX Association, USA, 9.

[8] R. Kuusik and G. Lind. 2010. Some developments of determinacy analysis. In

Advanced Data Mining and Applications: 6th International Conference, ADMA 2010,
Proceedings, Part I (Lecture Notes in Computer Science), Vol. 6. Springer Berlin
Heidelberg, Chongqing, China, 593–602. November 19-21.

[9] Philip A. Luelsdorff and Sergej V. Chesnokov. 1996. Determinacy form as the

essence of language. Prague Linguistic Circle Papers 2 (1996), 205–234.
[10] J. Mogul, R. Rashid, and M. Accetta. 1987. The Packer Filter: An Efficient Mech-

anism for User-Level Network Code. SIGOPS Oper. Syst. Rev. 21, 5 (nov 1987),

39–51. https://doi.org/10.1145/37499.37505

[11] Eric S Raymond. 2003. The Art of Unix Programming. Addison-Wesley Profes-

sional.

[12] Luigi Rizzo. 2012. netmap: ANovel Framework for Fast Packet I/O. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston,

MA, 101–112. https://www.usenix.org/conference/atc12/technical-sessions/

presentation/rizzo

[13] Michael Smitasin. 2023. Network Tapping for Zeek: A Deep Dive. Presentation

at ESnet’s CI Engineering Lunch & Learn Series. (2023).

[14] Nik Sultana. 2019. What we talk about when we talk about pcap expressions.

In Proceedings of the 4th ACM International Workshop on Real World Domain
Specific Languages, RWDSL@CGO 2019, Washington, DC, DC, USA, February 17,
2019, Robert J. Stewart and Greg J. Michaelson (Eds.). ACM, 2:1–2:9. https:

//doi.org/10.1145/3300111.3300113

[15] Gerry Wan, Fengchen Gong, Tom Barbette, and Zakir Durumeric. 2022. Retina:

analyzing 100GbE traffic on commodity hardware. In Proceedings of the ACM SIG-
COMM 2022 Conference (SIGCOMM ’22). Association for Computing Machinery,

New York, NY, USA, 530–544. https://doi.org/10.1145/3544216.3544227

[16] Robert N. M. Watson. 2013. A decade of OS access-control extensibility. Commun.
ACM 56, 2 (feb 2013), 52–63. https://doi.org/10.1145/2408776.2408792

[17] Ilya Zaslavsky, M.M. Burton, and T.E. Levy. 2017. A new approach to online visual

analysis and sharing of archaeological surveys and image collections. In Heritage
and Archaeology in the Digital Age: Acquisition, Curation, and Dissemination of
Spatial Cultural Heritage Data. 133–150.

A Questions
This appendix lists the questions in our survey. The survey dataset

includes answers for each question.
2

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024

https://learn.fabric-testbed.net/knowledge-base/nsf-fabric-project-announces-groundbreaking-high-speed-network-infrastructure-expansion/
https://learn.fabric-testbed.net/knowledge-base/nsf-fabric-project-announces-groundbreaking-high-speed-network-infrastructure-expansion/
https://github.com/CAIDA/corsaro3/tree/master
https://github.com/CAIDA/corsaro3/tree/master
https://www.dpdk.org/
https://wiki.wireshark.org/jmirror
https://wiki.wireshark.org/jmirror
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/37499.37505
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://doi.org/10.1145/3300111.3300113
https://doi.org/10.1145/3300111.3300113
https://doi.org/10.1145/3544216.3544227
https://doi.org/10.1145/2408776.2408792


Q1 Which tools/libraries do you use for traffic filtering, packet

capture, deep inspection or intrusion detection, or traffic

monitoring as part of network monitoring?

• libpcap with your custom program

• libnids with your custom program

• tcpdump

• Wireshark or tshark

• Custom generation of BPF

• Custom generation of eBPF

• Zeek/Bro

• Suricata

• Snort

• Other (Describe)

Q2 Do you use these tools in a professional capacity now?

Q3 Approximately for how long have you used these tools?

Q4 Approximately how frequently do you use these tools?

• Daily

• Weekly

• Monthly

• Rarely

Q5 On which types of networks do you use these tools?

• Home network

• Corporate network/campus

• Datacenter

• ISP network

• Backbone network

• Other (Describe)

Q6 How big is the largest network you used these tools on?

• Between 1 and 10 switches or routers

• Between 100 and 1000 switches or routers

• Between 1000 and 10,000 switches or routers

• More than 10,000 switches or routers

Q7 For capturing traffic on network links, which techniques

do you use?

• Agent on the end-point (i.e., a general-purpose network

node)

• Port mirrors on switch/router (e.g., using SPAN or RSPAN)

• Packet mirrors on switch/router (e.g., using ERSPAN)

• Optical/Electrical Taps

• Other (Describe)

Q8 For what types of activities do you use the tools mentioned

above?

• Diagnosis: Connectivity

• Diagnosis: Network configuration

• Diagnosis: Security (indication of compromise, scanning

detection, detecting exfiltration or data leaks)

• Diagnosis: Performance

• Gathering traffic sample for analysis (e.g., for compliance

with regulation)

• Building filters for another system (e.g., firewall, ACL, to

divert a subset of traffic to an IDS)

• Research

• Curiosity (e.g., seeing chatter from IoT devices)

• Other (Describe)

Q9 “Pain points” you experience when using these tools.

• Protocol support (e.g., IPv6, legacy protocols, etc).

• Performance and scalability is too limited.

• Poor extensibility, or difficulty of using that extensibility

in practice.

• Lack of stateful filter expression primitives (whose behav-

ior is influenced by one/more previously-matched packet/frame(s)).

• Expressiveness is too limited.

• Other (Describe)

Q9.5 Can you give concrete examples of the type of pain points

you chose in the previous question?

Q10 When filtering network traffic, what is your typical usage

scenario?

• Online (live / real-time) monitoring of 1Gbps link

• Online monitoring of 10Gbps link

• Online monitoring of 10-100Gbps link

• Online monitoring of 400Gbps link

• Offline (not real time) monitoring of <1GB pcap file

• Offline monitoring of 1GB-10GB pcap file

• Offline monitoring of 10-100GB pcap file

• Other (Describe)

Q11 Expression diversity you typically encounter when filter-

ing traffic.

• I often need to write/generate new filters. (Describe why)

• I mostly use the same filter expressions/specifications. (De-

scribe why – e.g., workloads and protocols don’t change

much.)

Q12 How do you generate expressions/filters?

• Manually using a command line tool or GUI. (Please give

details.)

• Manually using a general purpose language (e.g., C++).

(Please give details.)

• Manually using a specialized language (e.g., tcpdump or

Wireshark expressions, BPF or eBPF assembly, Zeek’s filter

language, Snort’s signature language, etc). (Please give

details.)

• Automatically by using third-party tools (e.g., bpfc). (Please

give details.)

• Automatically by using custom, home-grown tools. (Please

give details if publicly available)

Q13 Typical filter expression complexity (regardless of whether

expressed in C++, tcpdump’s language, etc)

• One line

• Fewer than 5 lines

• Between 5 and 20 lines

• Greater than 20 lines

Q14 Do you tend to need stateless filters (i.e., filters that behave

uniformly across all frames/packets) or stateful filters.

• Stateless

• Stateful (Please provide examples)

Q15 Do you have examples of challenging (e.g., tricky to un-

derstand or change) but frequently-used filter expressions

or scenarios you can share?

Q16 Do you have examples of complex filter expressions or

scenarios you can share?

Q17 Do you have examples of filtering tasks that existing tools

or languages struggle with, or cannot handle?

Q18 Do you have examples of what your ideal syntax would

look like for some filter expressions? And what sort of be-

havior would you expect for that syntax?

ACM SIGCOMM Computer Communication Review Volume 54 Issue 3, July 2024


	Abstract
	1 Introduction
	2 Methodology
	3 Results
	3.1 Population
	3.2 Tools and Techniques
	3.3 Context
	3.4 Pain Points
	3.5 Workflows and Patterns of Use
	3.6 Desirable Features

	4 Analysis
	4.1 Profiles
	4.2 Correlations

	5 Limitations
	6 Concluding Proposals
	Acknowledgments
	References
	A Questions

