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Agenda
- Disk API


- HDD geometry and access


- Disk scheduling



§ Disk API



Blocks and Sectors
- The OS manages data persisted to disks (and some other devices) in 

fixed or variable sized blocks


- Typically 512 bytes - 64 KB in size


- Minimum addressable unit in a HDD is a 512-byte sector



HDD usage
- Naive approach: treat a disk as a random-access array of sectors

sector #

(aka logical  

block address)

data

- But HDDs have characteristics that would make this very suboptimal!


- Need a better understanding of them to use them efficiently



§ HDD geometry and access



HDD geometry
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Block requests ⇒ Disk sectors

0 1
2
3

456
7
8

9

10

20

30

11
21

31

19
29

39

12 22 3238 28 18

13 23
33

1727
37 1416

24
34

26
36

15

25

35



E.g., read sector 10
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E.g., read sector 10
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E.g., read sector 10
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Seek, Rotate, Transfer
- Mechanical movement to place head over appropriate track


- Phases: accelerate, coast, decelerate, settle 


- Typical time ≈ 5-10ms



Seek, Rotate, Transfer
- HHDs have a fixed RPM (rotations per minute)


- Typical values: 5400 (laptop), 7200, 10000 (workstation)


- E.g., for 7200 RPM drive:


- 7200 / minute = 120 / second ≈ 1 / 8.3 ms


- Average of 8.3 × ½ =  4.1 ms to rotate target sector under head



Seek, Rotate, Transfer
- Depends on RPM and sector density


- Typical speeds of 100+ MB/s


- But sustaining this speed is dependent on transferring data from 
sequential sectors!



Geometry tweaks
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- Track skew: allow time for 
advancing to next sector in 
adjacent tracks

- Zones: optimize tracks for 
storage density (outer zones 
have more sectors/track)



Access characteristics
- Seek & Rotation are time consuming; Transfer is fast


- Sequential disk workloads yield significantly better throughput


- I.e., contiguous sectors with minimal head movement


- Random workloads are seek & rotation dominated



E.g., random throughput
Given a 7200 RPM HDD with an average seek time of 6 ms and a maximum 
transfer rate of 200 MB/s, what is the average throughput for random 64 KB 
(contiguous) disk requests?


- Avg seek time = 6 ms


- Avg rotational latency = (1 / 7200 RPM) × ½


- Avg transfer time = 64 KB / (200 MB/s)


- Throughput = 64 KB / (6 + 4.1 + 0.31)

= 4.1 ms

= 0.31 ms

= 6.1 KB/ms = 6 MB/s



§ Disk scheduling



The problem
- Requests for blocks come from many sources (e.g., via the filesystem)


- In what order should these requests be scheduled?


- Can we optimize the requests before carrying them out?


- Where should this scheduler be implemented?


- The OS?


- The disk (firmware)?



Goals
- Maximize throughput


- This means minimizing seeks and maximizing sequential transfers


- Maybe avoid going to disk at all, if possible (caching)


- Minimize access latency and avoid starvation


- Keep in mind that requests are coming in from different processes!



FCFS

- Assuming seek & rotate = 10 ms on average


- Approximately how long to satisfy following sector requests?


- 10000, 50000, 10001, 50001, 10002, 50002


- 10000, 10001, 10002, 50000, 50001, 50002

≈ 60 ms

≈ 20 ms

spindle

① ②③ ④ ⑤⑥ ⑦ ⑧⑨ start



SSTF (shortest seek time first)

- Potential starvation if new requests closer to the head keep arriving


- Unpredictable latency for individual requests (large standard deviation)


- OS may not have information to implement this precisely (but disk does)

spindle

① ②③ ④ ⑤⑥ ⑦ ⑧⑨ start



Elevator algorithms
- SCAN and variants


- Sweep across platter picking up requests — variations include only 
servicing requests that came in by start of sweep, and “circular” sweep


- E.g., circular sweep:

spindle

① ②③ ④ ⑤⑥ ⑦ ⑧⑨ start



OS/HDD collaboration
- Balanced disk scheduling leverages both OS and hardware


- OS aims to leverage strengths of HDDs


- Maintains queue(s) to reorder block requests


- Merge requests for adjacent blocks


- Cache(s) to avoid accessing disk when possible


- HDDs are also heavily optimized


- Native command queueing (NCQ) reorders requests internally


- Cache for buffering reads/writes



What about SSDs?
- SSDs are much faster than HDDs, especially for random access


- Render many long-standing filesystem and scheduling optimizations 
(based on HDDs) irrelevant


- But so long as a price gap exists between the two, modern OSes will 
need to support HDDs!



The big picture
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