
Hard disk drives
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- Disk API

- HDD geometry and access

- Disk scheduling

§ Disk API

Blocks and Sectors
- The OS manages data persisted to disks (and some other devices) in

fixed or variable sized blocks

- Typically 512 bytes - 64 KB in size

- Minimum addressable unit in a HDD is a 512-byte sector

HDD usage
- Naive approach: treat a disk as a random-access array of sectors

sector #

(aka logical  

block address)

data

- But HDDs have characteristics that would make this very suboptimal!

- Need a better understanding of them to use them efficiently

§ HDD geometry and access

HDD geometry

platter
magnetic

surface

magnetic

surface

read/write heads

on moving arms multiple

platters

cylinders,

aka tracks

sector

Block requests ⇒ Disk sectors

0 1
2
3

456
7
8

9

10

20

30

11
21

31

19
29

39

12 22 3238 28 18

13 23
33

1727
37 1416

24
34

26
36

15

25

35

E.g., read sector 10

0 1
2
3

456
7
8

9

10

20

30

11
21

31

19
29

39

12 22 3238 28 18

13 23
33

1727
37 1416

24
34

26
36

15

25

35

seek

E.g., read sector 10

0
1

23
4

5
6

7 8
9

10 20 30

11 21 31

19
29

39

12
22

32
38

28
18

13
23

33
17

27
37

14
16

2434
26

36

152535

rotate

E.g., read sector 10

0
1

2 3 4
5

6
789102030

11
21

31

19
29

39

12
22

32

38
28

18
13

23
33

17
27

37
14

16
24

34
26

36

15 25 35

transfer

Seek, Rotate, Transfer
- Mechanical movement to place head over appropriate track

- Phases: accelerate, coast, decelerate, settle

- Typical time ≈ 5-10ms

Seek, Rotate, Transfer
- HHDs have a fixed RPM (rotations per minute)

- Typical values: 5400 (laptop), 7200, 10000 (workstation)

- E.g., for 7200 RPM drive:

- 7200 / minute = 120 / second ≈ 1 / 8.3 ms

- Average of 8.3 × ½ = 4.1 ms to rotate target sector under head

Seek, Rotate, Transfer
- Depends on RPM and sector density

- Typical speeds of 100+ MB/s

- But sustaining this speed is dependent on transferring data from
sequential sectors!

Geometry tweaks

0 1
2
3

456
7
8

9

19

28

37

10
29

38

18
27

36

11 20 3935 26 17

12 21
30

1625
34 1315

22
31

24
33

14

23

32

- Track skew: allow time for
advancing to next sector in
adjacent tracks

- Zones: optimize tracks for
storage density (outer zones
have more sectors/track)

Access characteristics
- Seek & Rotation are time consuming; Transfer is fast

- Sequential disk workloads yield significantly better throughput

- I.e., contiguous sectors with minimal head movement

- Random workloads are seek & rotation dominated

E.g., random throughput
Given a 7200 RPM HDD with an average seek time of 6 ms and a maximum
transfer rate of 200 MB/s, what is the average throughput for random 64 KB
(contiguous) disk requests?

- Avg seek time = 6 ms

- Avg rotational latency = (1 / 7200 RPM) × ½

- Avg transfer time = 64 KB / (200 MB/s)

- Throughput = 64 KB / (6 + 4.1 + 0.31)

= 4.1 ms

= 0.31 ms

= 6.1 KB/ms = 6 MB/s

§ Disk scheduling

The problem
- Requests for blocks come from many sources (e.g., via the filesystem)

- In what order should these requests be scheduled?

- Can we optimize the requests before carrying them out?

- Where should this scheduler be implemented?

- The OS?

- The disk (firmware)?

Goals
- Maximize throughput

- This means minimizing seeks and maximizing sequential transfers

- Maybe avoid going to disk at all, if possible (caching)

- Minimize access latency and avoid starvation

- Keep in mind that requests are coming in from different processes!

FCFS

- Assuming seek & rotate = 10 ms on average

- Approximately how long to satisfy following sector requests?

- 10000, 50000, 10001, 50001, 10002, 50002

- 10000, 10001, 10002, 50000, 50001, 50002

≈ 60 ms

≈ 20 ms

spindle

① ②③ ④ ⑤⑥ ⑦ ⑧⑨ start

SSTF (shortest seek time first)

- Potential starvation if new requests closer to the head keep arriving

- Unpredictable latency for individual requests (large standard deviation)

- OS may not have information to implement this precisely (but disk does)

spindle

① ②③ ④ ⑤⑥ ⑦ ⑧⑨ start

Elevator algorithms
- SCAN and variants

- Sweep across platter picking up requests — variations include only
servicing requests that came in by start of sweep, and “circular” sweep

- E.g., circular sweep:

spindle

① ②③ ④ ⑤⑥ ⑦ ⑧⑨ start

OS/HDD collaboration
- Balanced disk scheduling leverages both OS and hardware

- OS aims to leverage strengths of HDDs

- Maintains queue(s) to reorder block requests

- Merge requests for adjacent blocks

- Cache(s) to avoid accessing disk when possible

- HDDs are also heavily optimized

- Native command queueing (NCQ) reorders requests internally

- Cache for buffering reads/writes

What about SSDs?
- SSDs are much faster than HDDs, especially for random access

- Render many long-standing filesystem and scheduling optimizations
(based on HDDs) irrelevant

- But so long as a price gap exists between the two, modern OSes will
need to support HDDs!

The big picture
User Process User Process User Process User Process

file / device APIs (e.g., open, close, read, write)
user space

kernel space

File system layer

Block I/O layer I/O scheduler buffer cache

Device driver

HDD

Device driver

HDD

Device driver

SSD

Device driver

VFS EXT3 NFS page cache

