
I/O
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- I/O architecture overview

- Basic I/O device model

- I/O protocol variants

- E.g., x86/xv6 IDE disk driver

§ I/O architecture overview

The last piece: I/O
- Computers are arguably useless without I/O!

- Vast number of different types of I/O devices across
many different categories

- Keyboards, displays, printers, network cards, …

- Need an abstract interface that can accommodate
different types and combinations of devices

- API & communication protocol

CPU RAM

I/O

memory bus

I/O architecture

CPU RAM

Graphics

general I/O bus
(e.g., PCI)

peripheral I/O bus
(e.g., SCSI, SATA, USB)

§Basic I/O device model

Basic I/O device
- Two parts: API + implementation

- Minimal API:

- Status, Data, and Command registers

- Implementation:

- Microcontroller + RAM

- Firmware (ROM / EEPROM)

- Other special purpose hardware

Hidden implementation

(Black box)

CommandDataStatus API

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

Hidden internals

(Black box)

CommandDataStatus

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

process A initiates protocol

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

#1

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3 #4

B

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3 #4
I/O complete

B

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3 #4

Questions/Issues?

B

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol issues

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3 #4

Steps #1 & #4 burn

CPU time just polling

the status register …

B

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol issues

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3 #4

Step #2 forces the CPU

to copy data between

buffers (very tedious!)

B

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Basic protocol issues

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #3 #4

How to access status,

data, command registers?

#2

§ I/O protocol variants

B

A

while (Status == Busy)
 ; // spin
Write data to Data register
Write command to Command register
while (Status == Busy)
 ; // spin

Polled vs. Interrupt-driven I/O

CPU

Device

A

#1:

#2:
#3:
#4:

#1 #2 #3 #4

Instead of polling, device

can notify CPU via interrupt

when status has changed

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

Polled vs. Interrupt-driven I/O

CPU

Device

A

#1:

#2:
#3:
#4:

#1

B

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

Polled vs. Interrupt-driven I/O

CPU

Device

A

#1:

#2:
#3:
#4:

#1

interrupt

AB

A

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

Polled vs. Interrupt-driven I/O

CPU

Device

A

#1:

#2:
#3:
#4:

#2 #3#1 #4

interrupt

BAB

A

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

Polled vs. Interrupt-driven I/O

CPU

Device

A

#1:

#2:
#3:
#4:

#2 #3#4#1

interrupt interrupt

BABAB

A

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

Polled vs. Interrupt-driven I/O

CPU

Device

A

#1:

#2:
#3:
#4:

#2 #3#4#1

interrupt interrupt

BABAB

A

Polled vs. Interrupt-driven I/O

CPU

Device

A
#2 #3#4#1

interrupt interrupt

B

A

CPU

Device

A
#1 #2 #3 #4

polled I/O

interrupt-driven I/O

caveat: context switch time not accounted for!

Polled vs. Interrupt-driven I/O
- Interrupts are not always better!

- Fast devices can lead to very frequent interrupts — flood CPU with
interrupt handlers (livelock)

- May use a hybrid polled & interrupt-driven approach

- Also: interrupt coalescing

- Compromise between system overhead and responsiveness

Programmed I/O vs. Direct Memory Access
#1:

#2:
#3:
#4:

May be able to have device

copy data from RAM directly

(CPU just provides address

as part of command)

BABAB

A

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

CPU

Device

A
#2 #3#4#1

interrupt interrupt

Programmed I/O vs. Direct Memory Access
#1:

#2:
#3:
#4:

BABAB

A

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

CPU

Device

A
#3#4#1

interrupt interrupt

Polled + PIO vs. Interrupts + DMA

CPU

Device

B

A

CPU

Device

A
#1 #2 #3 #4

Polled + PIO

Interrupts + DMA
BABAB

A

A
#3#4#1

interrupt interrupt

while (Status == Busy)
 Wait for interrupt;
Write data to Data register
Write command to Command register
while (Status == Busy)
 Wait for interrupt;

I/O programming API
#1:

#2:
#3:
#4:

How to access status,

data, command registers?

- Two approaches: (1) special instructions & (2) memory-mapped I/O

- (1) Special assembly instructions that address device-specific “ports”

- (2) Hardware registers map to special address ranges

Protocol variants summary
- Checking hardware status: polling vs. interrupts

- Data transfer: programmed I/O (PIO) vs. direct memory access (DMA)

- Control API: special instructions vs. memory-mapped I/O

- To encapsulate and simplify access to hardware with different protocol
variations, we write separate device drivers

- Also allows us to mix and match devices in different OS modules

§E.g., x86/xv6 IDE disk driver

xv6 idewait routine
// wait for hard disk to be ready
static int idewait() {
 int r;
 while(((r = inb(0x1f7)) & (IDE_BSY|IDE_DRDY)) != IDE_DRDY)
 ;
 return 0;
}

- Busy loop polling for disk to
be ready

- Note special x86 “in” &
“out” instructions

- 0x1f7 = IDE status register

xv6 iderw routine
// add new request to queue
void iderw(struct buf *b) {
 acquire(&idelock);

 struct buf **pp;
 for(pp=&idequeue; *pp; pp=&(*pp)->qnext)
 ;
 *pp = b; // add new request to end

 if(idequeue == b) // if queue was empty
 idestart(b); // send request to disk

 while((b->flags & (B_VALID|B_DIRTY)) != B_VALID){
 sleep(b, &idelock); // block until complete
 }
 release(&idelock);
}

- Manages a queue of disk
buffer requests (reads/writes)

- If empty, starts the new
request, else queues it

- Uses sleep to block

xv6 idestart routine
// Start hard disk request
static void idestart(struct buf *b) {
 idewait();
 outb(0x3f6, 0); // enable interrupt
 outb(0x1f2, sector_per_block); // number of sectors
 outb(0x1f3, sector & 0xff); // logical block address
 outb(0x1f4, (sector >> 8) & 0xff); // ...
 outb(0x1f5, (sector >> 16) & 0xff); // ...
 outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((sector>>24)&0x0f));
 if(b->flags & B_DIRTY){
 outb(0x1f7, write_cmd); // write command
 outsl(0x1f0, b->data, BSIZE/4);
 } else {
 outb(0x1f7, read_cmd); // read command
 }
}

- Sends command details to
device (when ready)

- Writes data (PIO) if needed

- Interrupt is delivered when
operation completes (note:
not DMA!)

xv6 ideintr routine
// Hard disk interrupt handler
void ideintr(void) {
 struct buf *b;
 acquire(&idelock);

 // Read data if needed.
 if(!(b->flags & B_DIRTY) && idewait(1) >= 0)
 insl(0x1f0, b->data, BSIZE/4);

 // Wake process waiting for this buf.
 b->flags |= B_VALID;
 b->flags &= ~B_DIRTY;
 wakeup(b);

 if(idequeue != 0)
 idestart(idequeue); // start next request

 release(&idelock);
}

- If read request, load data
from device to buffer

- Wake up blocked process

- Queue up next request

