
§Locks and locking strategies

ac
qu

ire acquire

TA TB

Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

E.g., locking

count

TA TB

Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

count
all

oc
at

ed

E.g., locking

ac
qu

ire acquire

TA TB

Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

count

use

E.g., locking

all
oc

at
ed

acquire

TA TB

Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

count

re
le

as
e

E.g., locking

all
oc

at
ed

acquire

TA TB

Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

count

allocated

use

E.g., locking

Locking strategies
- We may use a single lock to guard access to all shared resources

- We call this a global or coarse-grained locking strategy

- Or we may assign locks to individual resources (or subsets of resources)

- We call this a fine-grained locking strategy

E.g., coarse-grained locking

count buff logfile GUI

TA TCTB TD

count buff logfile GUI

TA TCTB TD

E.g., coarse-grained locking

count buff logfile GUI

TA TCTB TD

E.g., coarse-grained locking

Coarse-grained locking …
... is (typically) easier to reason about

... but results in a lot of lock contention

... may result in poor resource utilization

E.g., fine-grained locking

count buff logfile GUI

TA TCTB TD

Fine-grained locking …
... may reduce (individual) lock contention

... may improve resource utilization

... can result in a lot of locking overhead

... but can be much harder to verify correctness!

E.g., fine-grained locking problem

count buff logfile GUI

TA TCTB TD

deadlocked!

E.g., lock API: pthreads “mutex”
// initialize mutex (can also use PTHREAD_MUTEX_INITIALIZER for defaults)
int pthread_mutex_init(pthread_mutex_t *mtx, pthread_mutexattr_t *attr);

// acquire lock on mutex (if mutex is already locked, block the calling thread)
int pthread_mutex_lock(pthread_mutex_t *mtx);

// release lock on mutex (a blocked thread may acquire it)
int pthread_mutex_unlock(pthread_mutex_t *mtx);

// destroy mutex (only safe on an unlocked mutex)
int pthread_mutex_destroy(pthread_mutex_t *mtx);

E.g., protecting counter increment
int counter = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *inc(void *num) {
 for (int i=0; i<1000000; i++) {
 pthread_mutex_lock(&lock);
 counter += 1;
 pthread_mutex_unlock(&lock);
 }
 printf("Thread %ld counter = %d\n", pthread_self(), counter);
 pthread_exit(NULL);
}

int main() {
 pthread_t tid[5];
 for (int i=0; i<5; i++){
 pthread_create(&tid[i], NULL, inc, NULL);
 printf("Created thread %ld\n", tid[i]);
 }
 for (int i=0; i<5; i++) {
 pthread_join(tid[i], NULL); // wait for other threads
 }
 pthread_mutex_destroy(&lock);
 return 0;
}

Created thread 139882746513152
Created thread 139882738120448
Created thread 139882729727744
Created thread 139882721335040
Created thread 139882712942336
Thread 139882721335040 counter = 4782346
Thread 139882729727744 counter = 4904819
Thread 139882738120448 counter = 4976793
Thread 139882746513152 counter = 4986816
Thread 139882712942336 counter = 5000000

- Lots of lock contention!

- Note that counter values are

still unpredictable until the end

- Can we fix this?

E.g., protecting counter increment
int counter = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *inc(void *num) {
 pthread_mutex_lock(&lock);
 for (int i=0; i<1000000; i++) {
 counter += 1;
 }
 printf("Thread %ld counter = %d\n", pthread_self(), counter);
 pthread_mutex_unlock(&lock);
 pthread_exit(NULL);
}

int main() {
 pthread_t tid[5];
 for (int i=0; i<5; i++){
 pthread_create(&tid[i], NULL, inc, NULL);
 printf("Created thread %ld\n", tid[i]);
 }
 for (int i=0; i<5; i++) {
 pthread_join(tid[i], NULL); // wait for other threads
 }
 pthread_mutex_destroy(&lock);
 return 0;
}

Created thread 140077130561280
Created thread 140077122168576
Created thread 140077113775872
Created thread 140077105383168
Created thread 140077096990464
Thread 140077122168576 counter = 1000000
Thread 140077113775872 counter = 2000000
Thread 140077105383168 counter = 3000000
Thread 140077130561280 counter = 4000000
Thread 140077096990464 counter = 5000000

- Less locking overhead

- Predictable counter outputs

- But virtually no concurrency

E.g., protecting counter increment
int counter = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void *inc(void *num) {
 pthread_mutex_lock(&lock);
 for (int i=0; i<1000000; i++) {
 counter += 1;
 }
 printf("Thread %ld counter = %d\n", pthread_self(), counter);
 pthread_exit(NULL);
 pthread_mutex_unlock(&lock);
}

int main() {
 pthread_t tid[5];
 for (int i=0; i<5; i++){
 pthread_create(&tid[i], NULL, inc, NULL);
 printf("Created thread %ld\n", tid[i]);
 }
 for (int i=0; i<5; i++) {
 pthread_join(tid[i], NULL); // wait for other threads
 }
 pthread_mutex_destroy(&lock);
 return 0;
}

Created thread 139755903194880
Created thread 139755894802176
Created thread 139755886409472
Created thread 139755878016768
Created thread 139755869624064
Thread 139755903194880 counter = 1000000

(hangs)

- Mutex isn’t released before
thread termination — remaining
threads are blocked forever

- Must pay careful attention to
lock usage!

Lock implementation
- Basic idea: need an “acquire” function that lets only one caller through

while others block
typedef struct { int locked; } lock_t;

void acquire(lock_t *l) {
 while (1) {
 if (!l->locked) {
 l->locked = 1;
 break;
 }
 }
}

void release(lock_t *l) {
 l->locked = 0;
}

Lock implementation
void acquire(lock_t *l) {
 while (1) {
 if (!l->locked) {
 l->locked = 1;
 break;
 }
 }
}

problem: calling thread may be preempted

	 between testing the value of the thread  
	 and setting its value

- Race condition may allow multiple threads to acquire the lock!

- Cannot easily fix this problem in software — rely on hardware support

“Test-and-Set” operation
- Many architectures support an atomic test-and-set operation

- E.g., on x86 we have the “atomic exchange” instruction: xchg

- Can use it to implement acquire:

note: pseudo-assembly!

 # set up "new" value in reg
 # swap values in reg & lock

 # spin if old value ≠ 0

acquire:
 movl $1, %eax
 xchgl l->locked, %eax
 testl %eax, %eax
 jne acquire

Spin lock
- This implementation ensures mutex, but  

is very expensive

- Blocked threads are burning CPU time  

to repeatedly check the lock status

- “Starvation” issue: no guarantee if/when a thread stuck looping will

acquire the lock!

acquire:
 movl $1, %eax
 xchgl l->locked, %eax
 testl %eax, %eax
 jne acquire

Ticket lock
- Clever starvation-free alternative to test-and-set based spinlock

void acquire(lock *lock) {
 int tkt = lock->ticket++; // need atomic ++
 while (tkt != lock->turn)
 ; // spin
}

void release(lock *lock) {
 lock->turn = lock->turn + 1;
}

typedef struct {
 int ticket;
 int turn;
} lock_t;

lock_t lock = { 0, 0 };

- Once a thread gets a “ticket”, it will eventually acquire the lock

- Requires an atomic increment instruction; e.g., xadd on x86

Eliminating “spin”
- Would like to minimize CPU usage of tasks blocking on a lock

- Ideally: try to check/acquire lock again only when there’s good reason
(e.g., it’s been released by another thread)

- Typically rely on OS support for distinct scheduler state and explicit
unblocking mechanism

- e.g., in xv6, processes may be “SLEEPING”, and sleep/wakeup

functions allow processes to block on and wait for notifications on
specific “channels”

E.g., xv6 sleep/wakeup
// Put calling process to sleep on chan
void sleep(void *chan)
{
 proc->chan = chan;
 proc->state = SLEEPING;
 sched(); // context switch away from proc
 proc->chan = 0;
}

// Wake up all processes sleeping on chan
void wakeup1(void *chan)
{
 struct proc *p;
 for(p=ptable.proc; p<&ptable.proc[NPROC]; p++)
 if(p->state == SLEEPING && p->chan == chan)
 p->state = RUNNABLE;
}

- What happens if sleep and wakeup are called concurrently?

- Race condition! Process calling sleep may either be continue to run or

be put to sleep — latter scenario is termed a “lost wakeup”

- Fix this with mutex around critical sections

E.g., xv6 sleep/wakeup
void wakeup(void *chan)
{
 acquire(&ptable.lock);
 wakeup1(chan);
 release(&ptable.lock);
}

void wakeup1(void *chan)
{
 struct proc *p;
 for(p=ptable.proc; p<&ptable.proc[NPROC]; p++)
 if(p->state == SLEEPING && p->chan == chan)
 p->state = RUNNABLE;
}

- Note that acquire/release still make use of spinlocks

- But they are held only for a fairly short period of time

void sleep(void *chan, struct spinlock *lk)
{
 if(lk != &ptable.lock){
 acquire(&ptable.lock);
 release(lk);
 }

 proc->chan = chan;
 proc->state = SLEEPING;
 sched(); // note: scheduler releases lock
 proc->chan = 0;

 if(lk != &ptable.lock){
 release(&ptable.lock);
 acquire(lk);
 }
}

E.g., sleep/wakeup in wait/exit
// Wait for a child process to exit
int wait(void)
{
 struct proc *p;
 int havekids, pid;

 // this lock ensures we will not miss the wakeup
 acquire(&ptable.lock);
 for(;;){
 for(p=ptable.proc; p<&ptable.proc[NPROC]; p++){
 if(p->parent != proc)
 continue;
 if(p->state == ZOMBIE){
 pid = p->pid;
 release(&ptable.lock);
 return pid;
 }
 }

 // sleep on channel identified by parent proc
 sleep(proc, &ptable.lock);
 }
}

// Exit the current process.
void exit(void)
{
 struct proc *p;
 acquire(&ptable.lock);

 // wake up parent process to reap this one
 wakeup1(proc->parent);

 // init adopts & reaps orphaned children
 for(p=ptable.proc; p<&ptable.proc[NPROC]; p++){
 if(p->parent == proc){
 p->parent = initproc;
 if(p->state == ZOMBIE)
 wakeup1(initproc);
 }
 }

 proc->state = ZOMBIE;
 sched();
 panic("zombie exit");
}

Producer/Consumer problem
- One of many classical — i.e., paradigmatic — concurrent problems

- Setup: concurrent producer & consumer threads sharing a finite buffer

typedef struct {
 int queue[BSIZE];
 int n_items;
 int head;
 int tail;
} buffer_t;

// Consumer
while (1) {
 consume(buf->queue[buf->head]);
 buf->head = (buf->head + 1) % BSIZE;
 buf->n_items--;
}

// Producer
while (1) {
 buf->queue[buf->tail] = produce();
 buf->tail = (buf->tail + 1) % BSIZE;
 buf->n_items++;
}

…

…

(may be more than 1)

(may be more than 1)

Producer/Consumer problem

- Must guard access to all shared data with a mutex

- But access to shared buffer must also be carefully synchronized

- I.e., consumer may only consume from non-empty buffer,  
and producer may only produce into buffer with open slots

// Consumer
while (1) {
 consume(buf->queue[buf->head]);
 buf->head = (buf->head + 1) % BSIZE;
 buf->n_items--;
}

// Producer
while (1) {
 buf->queue[buf->tail] = produce();
 buf->tail = (buf->tail + 1) % BSIZE;
 buf->n_items++;
}

Producer/Consumer problem

- More subtle race condition: when consumer updates n_items, multiple
producers may fall through spin barrier (and vice versa)

- Must check condition in mutex, but unlock to allow other thread to run

// Consumer
while (1) {
 while (buf->n_items == 0)
 ; // spin barrier

 pthread_mutex_lock(&lock);
 item = buf->queue[buf->head];
 buf->head = (buf->head + 1) % BSIZE;
 buf->n_items--;
 pthread_mutex_unlock(&lock);
 consume(item);
}

// Producer
while (1) {
 while (buf->n_items == BSIZE)
 ; // spin barrier

 item = produce();
 pthread_mutex_lock(&lock);
 buf->queue[buf->tail] = item;
 buf->tail = (buf->tail + 1) % BSIZE;
 buf->n_items++;
 pthread_mutex_unlock(&lock);
}

Producer/Consumer problem
- Ridiculous!

- Prefer a way to block producer until

consumer makes space available

- Similar to sleep/wakeup

mechanism in kernel

// Producer
while (1) {
 pthread_mutex_lock(&lock);
 while (buf->n_items == BSIZE) {
 pthread_mutex_unlock(&lock);
 // hope consumer decrements n_items
 pthread_mutex_lock(&lock);
 }
 pthread_mutex_unlock(&lock);

 item = produce();

 pthread_mutex_lock(&lock);
 buf->queue[buf->tail] = item;
 buf->tail = (buf->tail + 1) % BSIZE;
 buf->n_items++;
 pthread_mutex_unlock(&lock);
}

Condition variable
- Gives us mechanism for:

- Representing a condition used for thread synchronization

- Where a thread might wait (block) until the condition changes

- Where a thread might signal other blocked threads to wake up and  

re-check the condition

E.g., pthreads “cond”
// initialize condition variable (or use PTHREAD_COND_INITIALIZER for defaults)
int pthread_cond_init(pthread_cond_t *cv, pthread_condattr_t *attr);

// block on cv and release mtx (which must be held by calling thread)
// mtx is automatically re-acquired before returning
int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mtx);

// unblock one thread that is blocked on cv
int pthread_cond_signal(pthread_cond_t *cv);

// unblock all threads that are blocked on cv
int pthread_cond_broadcast(pthread_cond_t *cv);

Producer/Consumer problem

// Producer
while (1) {
 pthread_mutex_lock(&lock);
 while (buf->n_items == BSIZE)
 pthread_cond_wait(&has_space, &lock);
 pthread_mutex_unlock(&lock);

 item = produce();

 pthread_mutex_lock(&lock);
 buf->queue[buf->tail] = item;
 buf->tail = (buf->tail + 1) % BSIZE;
 buf->n_items++;
 pthread_mutex_unlock(&lock);

 pthread_cond_signal(&has_items);
}

// Consumer
while (1) {
 pthread_mutex_lock(&lock);
 while (buf->n_items == 0)
 pthread_cond_wait(&has_items, &lock);

 item = buf->queue[buf->head];
 buf->head = (buf->head + 1) % BSIZE;
 buf->n_items--;
 pthread_mutex_unlock(&lock);

 pthread_cond_signal(&has_space);

 consume(item);
}

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t has_space = PTHREAD_COND_INITIALIZER,
 has_items = PTHREAD_COND_INITIALIZER; released while

blocking

