
Concurrency
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- Concurrency: what, why, how

- Threads and Multithreading

- Parallelization and its limits

- Writing concurrent programs

- Locks and locking strategies

- Semaphores and synchronization

§Concurrency: what, why, how

What is concurrency?
- Concurrency exists when two or more tasks overlap in their execution

- Parallelism, requiring multiple CPUs, is one way of realizing concurrency

- e.g., tasks run at the same time on different CPUs

- Concurrency can also be achieved via time-multiplexing

- e.g., via context switches on a single CPU

- Parallelism and time-multiplexing may coexist

- e.g., N tasks running on M CPUs, N > M > 1

Concurrency and Parallelism

t0 t1 t0 t1
context  
switch

parallelism

concurrency

time-multiplexing parallelism + time-mux

t0 t1 t2 t3

CPU1 CPU2

Non-determinism
- Both parallel and non-parallel forms of concurrency are non-deterministic

- I.e., the execution order of different portions of the overlapping tasks is
not pre-determined

- E.g., both orderings below are possible:

assume slices  
are atomic

ɠ

ɡ

ɢ

ɣ

ɤ

ɥ

ɦ

ɧ

ɨ

ɩ

ɠ

ɢ

ɤ

ɦ

ɨ

ɡ

ɣ

ɥ

ɧ

ɩ

Process-level concurrency
- Multitasking OSes inherently support process-level concurrency

- By default, processes run independently and may overlap in execution

- As we’ve seen, kernel runs each process in its own virtual sandbox

- “Share-nothing” architecture: separate memory and control flow

- Context switches triggered by traps & interrupts

- Processes cannot easily interfere with each other!

e.g., Unix fork

int glob = 0;

main() {
 pid_t pid;
 for (int i=0; i<5; i++)
 if ((pid = fork()) == 0) {
 glob += 1;
 printf("Child %d glob = %d\n", i, glob);
 exit(0);
 } else
 printf("Parent created child %d\n", pid);
}

Parent created child 97447
Parent created child 97448
Parent created child 97449
Child 1 glob = 1
Parent created child 97450
Child 2 glob = 1
Parent created child 97451
Child 4 glob = 1
Child 3 glob = 1
Child 0 glob = 1

- fork creates a child process, running concurrently with the parent

- Same program (initially), but separate control flow and address space

Single thread of execution
- Processes typically begin life with a single thread of execution

- One path through the program (i.e., singular flow of control)

- One stack (that reflects the active and preceding stack frames)

- Blocking this thread (e.g., with I/O) blocks the entire process

- This model precludes intra-process concurrency

- Why might we want more than one thread?

Intra-process concurrency
- There are many scenarios where support for concurrency within a

process may come in handy. Generally, we might want to:

1. Improve CPU utilization

2. Improve I/O utilization

3. Improve performance via parallelization (most elusive!)

1. Improve CPU utilization
- E.g., consider interleaved but independent CPU & I/O operations:

while (1) {
 result = long_computation(); // CPU-bound operation
 update_log_file(result); // blocks on I/O
}

- Single threaded execution forces CPU-bound operation to wait for I/O
to complete

- Logically, should be able to start a new computation while logging the
result from the previous loop

2. Improve I/O utilization
- E.g., consider multiple operations that block on unrelated I/O:

read_from_disk1(buf1); // block for input
read_from_disk2(buf2); // block for input
read_from_network(buf3); // block for input
process_input(buf1, buf2, buf3); // process inputs

- Single threaded execution forces I/O calls to take place sequentially  
— i.e., cannot start a request before the previous one completes

- Would prefer to initiate I/O operations simultaneously!

3. Improve performance
- E.g., consider independent computations over large data set:

int A[DIM][DIM], // src matrix
 B[DIM][DIM], // src matrix
 C[DIM][DIM]; // dest matrix

/* C = A x B */
int i, j, k;
for (i=0; i<DIM; i++) {
 for (j=0; j<DIM; j++) {
 C[i][j] = 0;
 for (k=0; k<DIM; k++)
 C[i][j] += A[i][k] * B[k][j];
 }
}

each result cell can be

computed independently!

Multiple threads
- In each preceding scenario, we could use multiple threads within a single

process, each of which runs concurrently and blocks independently

- Each thread of execution should:

- Share the address space of other threads in the same process

- Maintain its own thread-specific state and data

Code Data
Global (shared)

Stack Regs
Thread-local

t0

t1

context
switch

Implementing threads
- Each thread requires:

- a stack

- for maintaining function activation records, local variables, etc.

- a thread control block (thread-specific analog of the PCB)

- PC, SP, and other register values; TID; state and accounting info, etc.

- CPU time (as allocated by the scheduler)

- Threads can be implemented at either the user or kernel level

User-level (aka green) threads
- Invisible to the kernel, which continues to schedule each process as a

single-thread of execution

- Thread data/metadata is tracked by the process (user-level code)

- Allocates stacks and TCBs as user-space data structures

- Thread scheduling and context switches are triggered by system timers

(e.g., SIGALARM on Unix)

- Alternatively, can implement purely cooperative thread (aka “fiber”)

multitasking — only context switch on manual “yield” call

N:1 mapping of user→kernel threads

user space

kernel space

Process P0 Process P1

thread library thread library

Task 0: glob = 0
Task 1: glob = 1000
Task 2: glob = 2000
Task 0: glob = 3000
Task 1: glob = 4000
Task 2: glob = 5000
Task 0: glob = 6000
Task 1: glob = 7000
Task 2: glob = 8000
Task 0: glob = 9000
Task 1: glob = 10000
Task 2: glob = 11000
Task 0: glob = 12000
Task 1: glob = 13000
Task 2: glob = 14000

void taskmain(int argc, char **argv) {
 for (int i=0; i<3; i++) {
 /* specify task fn, arg, stack size */
 taskcreate(task_fn, (void *)i, 32768);
 }
}

int glob = 0;

void task_fn(void *num) {
 for (int i=0; i<5; i++) {
 printf("Task %d: glob = %d\n", (int)num, glob);
 for (int j=0; j<1000; j++) {
 glob += 1;
 }
 taskyield(); /* give up CPU */
 }
}

e.g., Libtask (swtch.com/libtask)

http://swtch.com/libtask/

taskcreate(void (*fn)(void*), void *arg, uint stack)
{
 Task *t;
 t = taskalloc(fn, arg, stack);
 taskcount++;
 id = t->id;
 t->alltaskslot = nalltask;
 alltask[nalltask++] = t;
 ...
}

static Task*
taskalloc(void (*fn)(void*), void *arg, uint stack)
{
 Task *t;

 /* allocate the task and stack together */
 t = malloc(sizeof *t+stack);
 memset(t, 0, sizeof *t);
 t->stk = (uchar*)(t+1);
 t->stksize = stack;
 t->id = ++taskidgen;
 t->startfn = fn;
 t->startarg = arg;

 /* do a reasonable initialization */
 memset(&t->context.uc, 0, sizeof t->context.uc);
 ...

 return t;
}

Task **alltask;

taskyield(void)
{
 taskswitch();
 ...
}

taskswitch(void)
{
 contextswitch(&taskrunning->context, &taskschedcontext);
}

int swapcontext(ucontext_t *oucp, ucontext_t *ucp) {
 if(getcontext(oucp) == 0)
 setcontext(ucp);
 return 0;
}

GET:
 movl 4(%esp), %eax /* %eax=arg */
 ...
 movl %ebp, 28(%eax)
 ...
 movl $1, 48(%eax) /* %eax */
 movl (%esp), %ecx /* %eip */
 movl %ecx, 60(%eax)
 leal 4(%esp), %ecx /* %esp */
 movl %ecx, 72(%eax)
 movl $0, %eax
 ret

SET:
 movl 4(%esp), %eax /* %eax=arg */
 ...
 movl 28(%eax), %ebp
 ...
 movl 72(%eax), %esp
 pushl 60(%eax) /* new %eip */
 movl 48(%eax), %eax
 ret

#define setcontext(u) SET(&(u)->uc_mcontext)
#define getcontext(u) GET(&(u)->uc_mcontext)

struct mcontext {
 ...
 int mc_ebp;
 ...
 int mc_ecx;
 int mc_eax;
 ...
 int mc_eip;
 int mc_cs;
 int mc_eflags;
 int mc_esp;
 ...
};

struct ucontext {
 mcontext_t uc_mcontext;
 ...
};

void contextswitch(Context *from, Context *to) {
 swapcontext(&from->uc, &to->uc);
 ...
}

User-level threads pros/cons
- Pros

- Lightweight implementation

- No kernel overhead

- Context switching is fast

- No need to switch to kernel

- Portable (OS-independent)

- Cons

- Reinvents the wheel (scheduler)

- Cannot run on multiple CPUs

(no parallelism)

- Only one scheduling entity

known to kernel

- Multithreaded task is treated the

same as a single-threaded task

Kernel-level (aka native) threads
- Kernel is aware of all threads in each process

- TCBs stored in kernel space

- Thread creation and scheduling carried out by kernel

- Context switch between threads in the same process is cheaper (why?)
than inter-process context switch, but still requires interrupt/trap

1:1 mapping of user→kernel threads

user space

kernel space

Process P0 Process P1

Kernel-level threads pros/cons
- Pros

- Reuses scheduler for threads

- Support for intra-process

thread-level parallelism

- Can take advantage of

multiple CPUs

- Cons

- Threads are “heavyweight”

system entities

- Much more expensive to

create and maintain

Compromise: hybrid model
- Kernel provides a limited number of scheduling entities to each process;

user code is responsible for running a user thread in each entity

- Supports fast thread context switches and parallel execution

- Limits total thread burden on system

- At cost of increased complexity and user/kernel coupling

M:N mapping of user→kernel threads

thread library

user space

kernel space

Process P0

thread library

Process P1

Threading APIs
- Threading APIs support thread creation, management, and coordination

- May be language/library/runtime/OS-specific

- Many modern libraries support user-level threads

- Most popular Unix low-level threading API = POSIX threads, “pthreads”

- OpenMP is a more abstract threading API for exploiting parallelism

POSIX threads (pthreads)
- C language threading API — 100+ functions in 4 categories

- Thread management

- Mutexes

- Condition variables

- Synchronization

- API doesn’t specify a user- or kernel- level thread implementation

- Most modern Unix implementations support 1:1 or M:N threading

more on these later!

e.g., pthreads thread mgmt API
/* thread creation */
int pthread_create (pthread_t *tid,
 const pthread_attr_t *attr,
 void *(*thread_fn)(void *),
 void *arg);

/* wait for termination; thread "reaping" */
int pthread_join (pthread_t tid,
 void **result_ptr);

/* terminates calling thread */
int pthread_exit (void *value_ptr);

int counter = 0;

void *inc(void *num) {
 for (int i=0; i<10000; i++) {
 counter += 1;
 }
 printf("Thread %ld counter = %d\n",
 pthread_self(), counter);
 pthread_exit(NULL);
}

int main() {
 pthread_t tid;
 for (int i=0; i<5; i++){
 pthread_create(&tid, NULL, inc, NULL);
 printf("Created thread %ld\n", tid);
 }
 pthread_exit(NULL); // terminate main thread
 return 0; // never get here!
}

Created thread 139859278001920
Thread 139859278001920 counter = 10000
Created thread 139859269609216
Thread 139859269609216 counter = 20000
Created thread 139859261216512
Thread 139859261216512 counter = 30000
Created thread 139859252713216
Created thread 139859244320512
Thread 139859252713216 counter = 40000
Thread 139859244320512 counter = 50000

Run 1:

Run 2:
(?!?)

Created thread 139949404641024
Created thread 139949396248320
Created thread 139949387855616
Thread 139949396248320 counter = 20035
Created thread 139949379462912
Thread 139949404641024 counter = 10000
Created thread 139949371070208
Thread 139949387855616 counter = 20833
Thread 139949379462912 counter = 28523
Thread 139949371070208 counter = 34961

