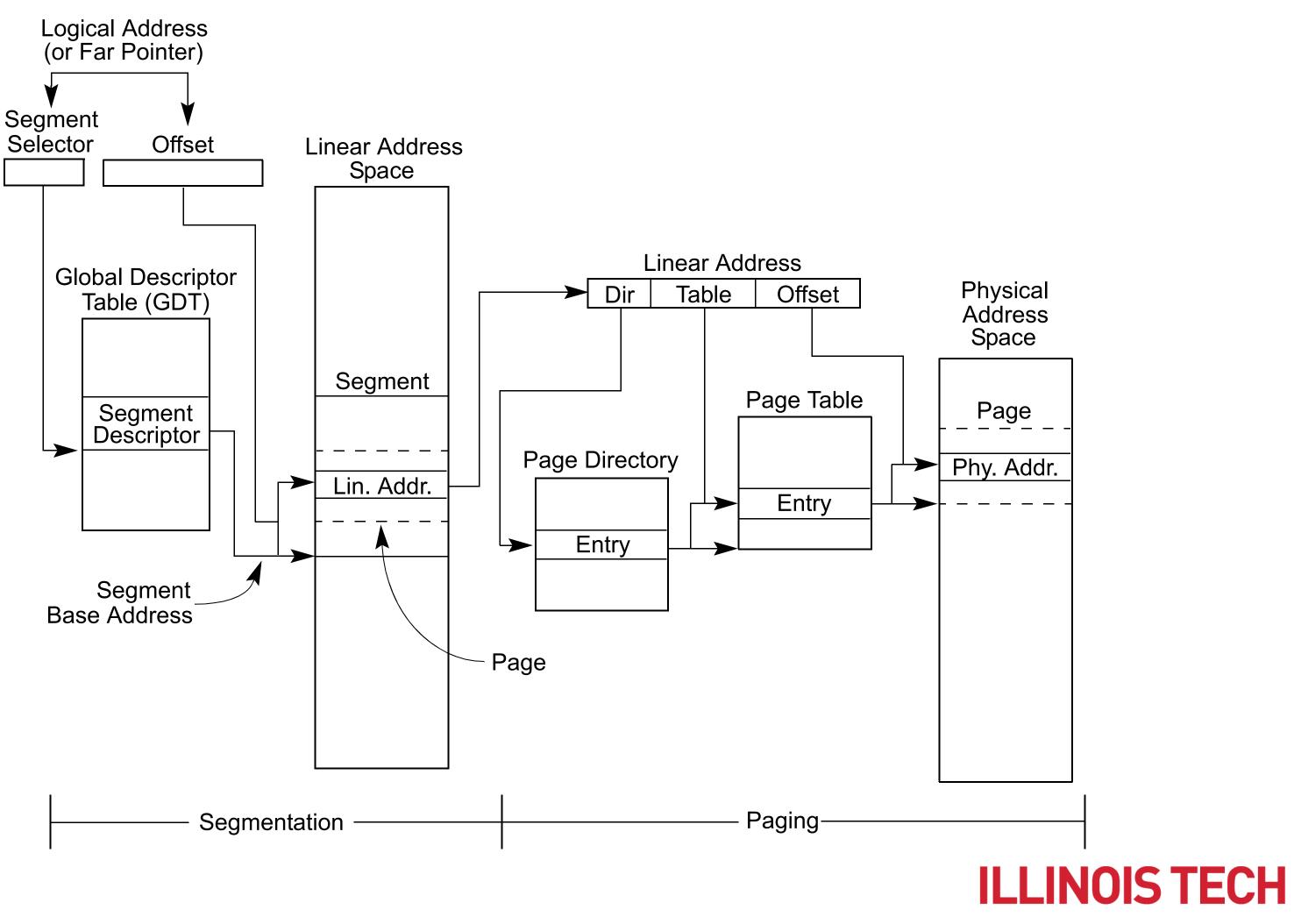
S Case studies: x86, xv6, Linux

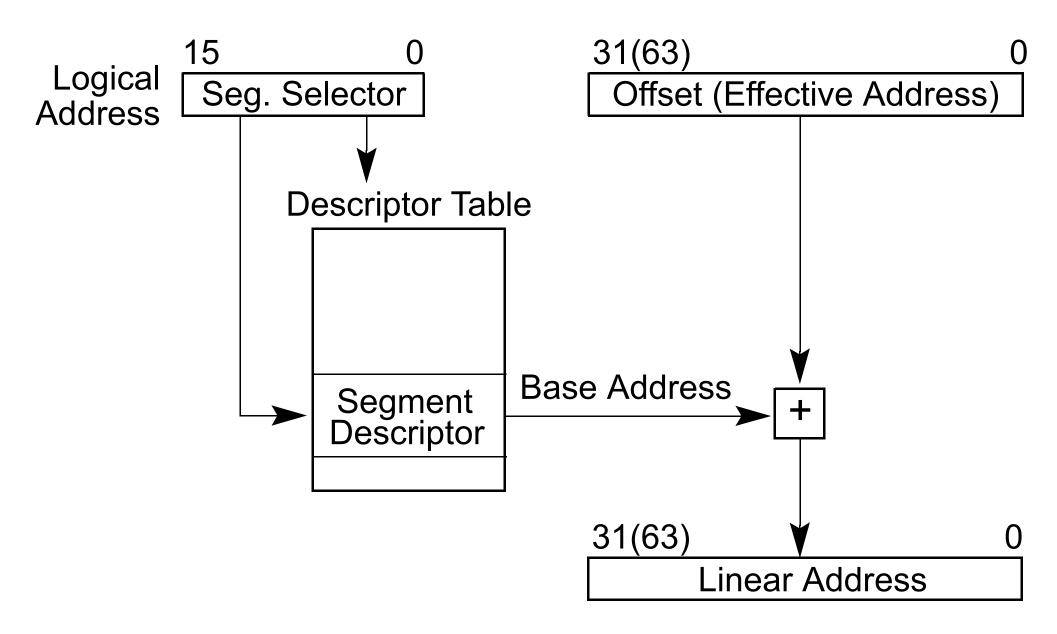
Diagrams from:

- Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3: System Programming Guide
- AMD64 Architecture Programmer's Manual, Volume 2: System Programming
- xv6 Commentary



x86 VM support

- x86 (aka IA-32) supports segmentation & paging in 32-bit protected mode
- x86-64 (aka IA-32e) introduces 64-bit (nominal) mode
 - Segmentation is mostly deprecated in favor of paging
- Support for coexisting normal and "huge" pages


32-bit segmentation + paging

College of Computing

32-bit segmentation

Segmentation registers

Visible Part	Hidden Part	_
Segment Selector	Base Address, Limit, Access Information	CS
		SS
		DS
		ES
		FS
		GS

Segment descriptor format

31		24 23	22	21	20	19 16	15	14 13	12	11 8	7	0
	Base 31:24	G	D / B	L	A V L	Seg. Limit 19:16	Ρ	D P L	S	Туре	Base 23:16	
31	1 16											0
Base Address 15:00										Segment I	Limit 15:00	

- 64-bit code segment (IA-32e mode only)
- AVL Available for use by system software
- BASE Segment base address
- Default operation size (0 = 16-bit segment; 1 = 32-bit segment) D/B
- Descriptor privilege level DPL
- Granularity G
- LIMIT Segment Limit
- Segment present
- Descriptor type (0 = system; 1 = code or data) S
- TYPE Segment type

ILLINOIS TECH College of Computing

0

4

32-bit xv6 segment initialization

4

0

Segment descriptor format

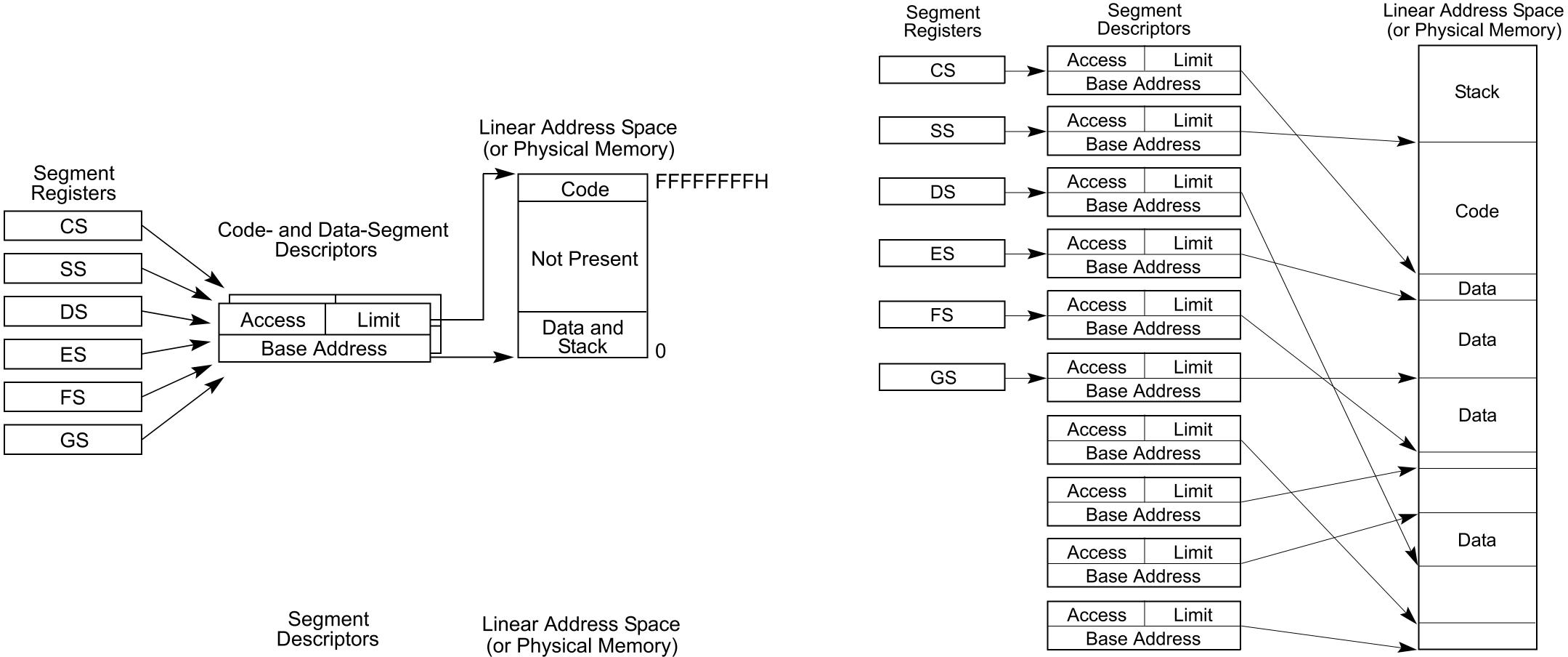
31		24 23	22	21	20	19 16	15	14 13	12	11 8	7
	Base 31:24	G	D / B	L	A V L	Seg. Limit 19:16	Ρ	D P L	S	Туре	Base 23:16
31					16	15					
Base Address 15:00										Segment I	_imit 15:00

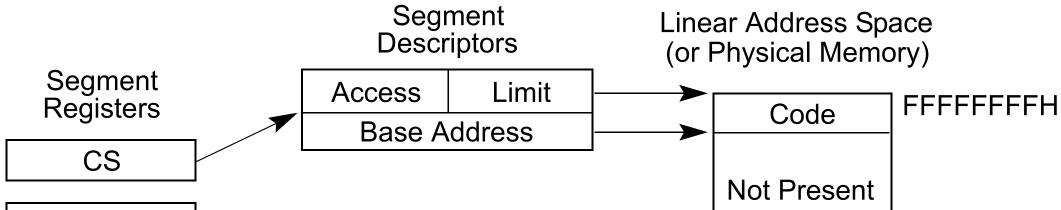
- 64-bit code segment (IA-32e mode only) L
- AVL Available for use by system software
- BASE Segment base address
- D/B Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
- DPL Descriptor privilege level
- Granularity G
- LIMIT Segment Limit
- Segment present
- Descriptor type (0 = system; 1 = code or data) S

TYPE — Segment type

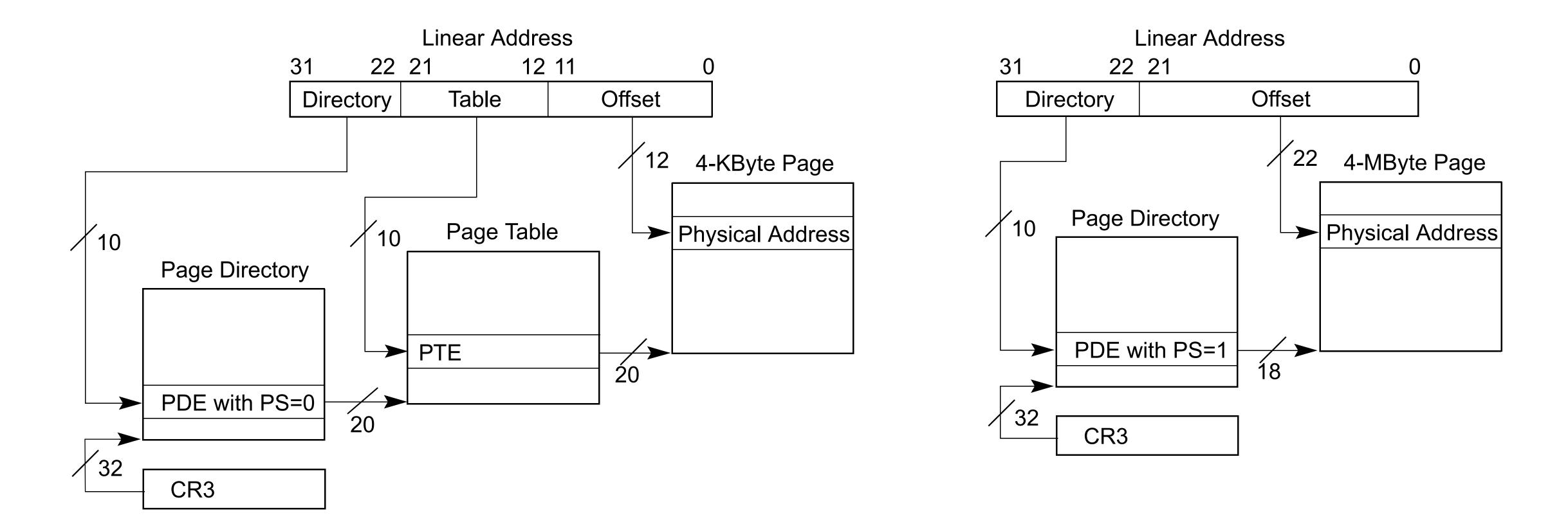
```
struct segdesc {
 uint lim_15_0 : 16; // Low bits of segment limit
 uint base_15_0 : 16; // Low bits of segment base address
 uint base_23_16 : 8; // Middle bits of segment base address
 uint type : 4; // Segment type (see STS_ constants)
 uint s : 1; // 0 = system, 1 = application
 uint dpl : 2; // Descriptor Privilege Level
 uint p : 1; // Present
 uint lim_19_16 : 4; // High bits of segment limit
 uint avl : 1;
                    // Unused (available for software use)
 uint rsv1 : 1; // Reserved
 uint db : 1;  // 0 = 16-bit segment, 1 = 32-bit segment
 uint g : 1; 	// Granularity: limit scaled by 4K when set
 uint base_31_24 : 8; // High bits of segment base address
};
```

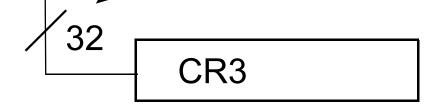
```
#define SEG(type, base, lim, dpl) (struct segdesc)
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff,
  ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1,
  (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }
```

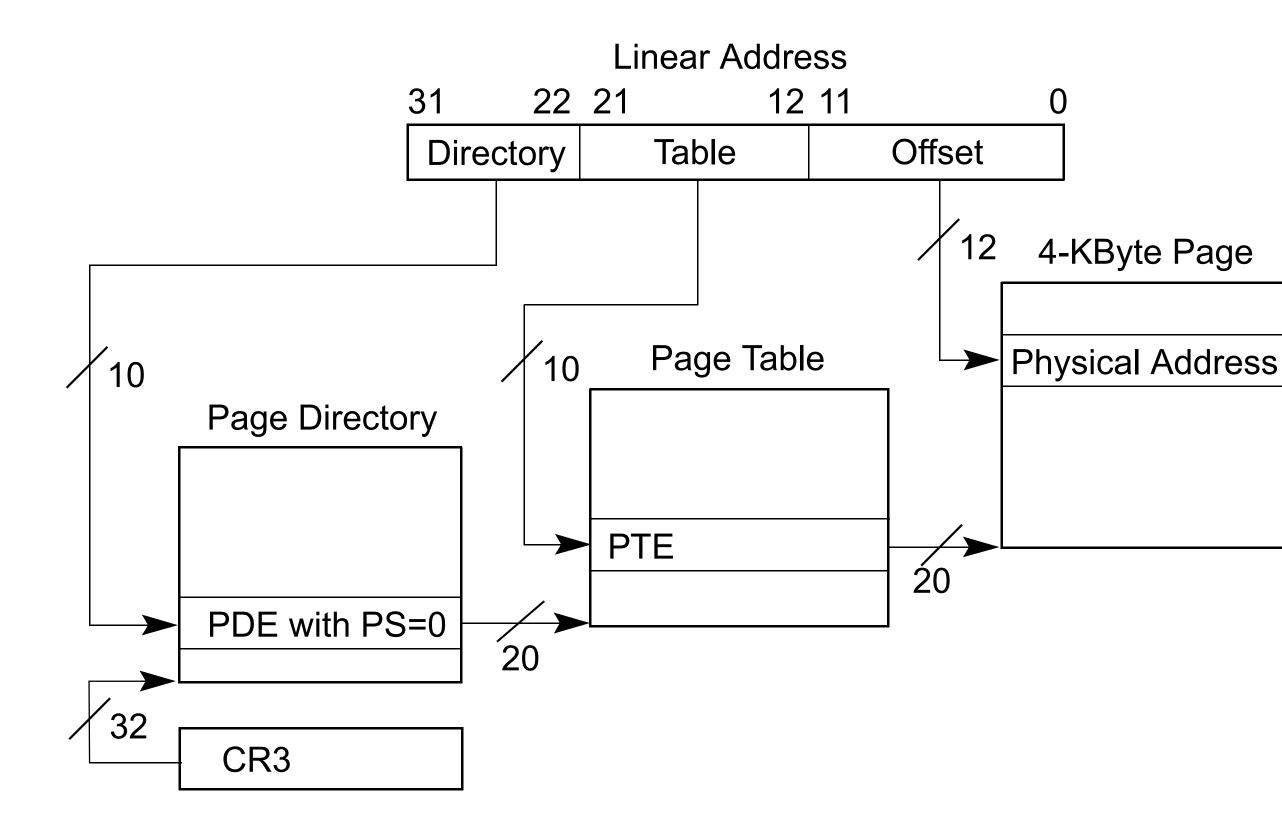


32-bit xv6 segment initialization


```
struct segdesc {
                                                                   void
 uint lim_15_0 : 16; // Low bits of segment limit
                                                                   seginit(void)
 uint base_15_0 : 16; // Low bits of segment base address
 uint base_23_16 : 8; // Middle bits of segment base address
                                                                    struct cpu *c;
 uint type : 4; // Segment type (see STS_ constants)
 uint s : 1; // 0 = system, 1 = application
                                                                    c = &cpus[cpuid()];
 uint dpl : 2; // Descriptor Privilege Level
                                                                    c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
 uint p : 1; // Present
                                                                     c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
 uint lim_19_16 : 4; // High bits of segment limit
                                                                     c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
 uint avl : 1; // Unused (available for software use)
                                                                     c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
 uint rsv1 : 1; // Reserved
                                                                    lgdt(c->gdt, sizeof(c->gdt));
 uint db : 1;  // 0 = 16-bit segment, 1 = 32-bit segment
                                                                   }
 uint g : 1; 	// Granularity: limit scaled by 4K when set
 uint base_31_24 : 8; // High bits of segment base address
};
```

```
#define SEG(type, base, lim, dpl) (struct segdesc)
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff,
 ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1,
  (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }
```

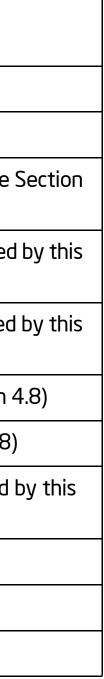


Flat vs. Multi-segment models




32-bit 4KB vs. 4MB pages

32-bit 4KB xv6 page table walk/alloc


```
static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int alloc)
٤
  pde_t *pde;
  pte_t *pgtab;
  pde = &pgdir[PDX(va)];
  if(*pde & PTE_P){
    pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
  } else {
    if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
     return 0;
    memset(pgtab, 0, PGSIZE);
    *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
  return &pgtab[PTX(va)];
```



32-bit PDE/PTE

CR3 and paging structure entries

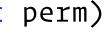
302928272625242322212019181716151413		6 5 1 2				
		0 5 4 5 P F			Bit Position(s)	Contents
Address of page directory ¹	Ignored	C V D T	V Ignored	d CR3	0 (P)	Present; must be 1 to map a 4-KByte page
Bits 39:32	D			PDE:	1 (R/W)	Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)
Bits 31:22 of address of 2MB page frameReserved (must be 0)Bits 39.52 of address2	A Ignored G <u>1</u> [T	Ignored G 1 D A C W / / <u>1</u> D X S W			2 (U/S)	User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see S 4.6)
Address of page table	Ignored <u>0</u>	I P F g A C V	PUR V///1	PDE: page	3 (PWT)	Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced l entry (see Section 4.9)
		n D 1		table PDE:	4 (PCD)	Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced tentry (see Section 4.9)
Ignored) not	5 (A)	Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4
				present	6 (D)	Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)
Address of 4KB page frame					7 (PAT)	If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced b entry (see Section 4.9.2); otherwise, reserved (must be 0) ¹
				page	8 (G)	Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise
Ignored				PTE:	11:9	Ignored
				present	31:12	Physical address of the 4-KByte page referenced by this entry

NOTES:

4KB PTE breakdown

#define EXTMEM 0x100000

// Start of extended memory


#define KERNBASE 0x8000000

4096 *// bytes mapped by a page*

```
static int
                                    // Top physical memory
#define PHYSTOP 0xE000000
                                                                              mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
                                    // Other devices are at high addresses
#define DEVSPACE 0xFE000000
                                                                              Ę
                                                                                char *a, *last;
                                 // First kernel virtual address
                                                                                pte_t *pte;
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked
                                                                                a = (char*)PGROUNDDOWN((uint)va);
#define PGSIZE
                                                                                last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
                                                                                for(;;){
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
                                                                                  if((pte = walkpgdir(pgdir, a, 1)) == 0)
                                                                                   return -1;
#define V2P(a) (((uint) (a)) - KERNBASE)
                                                                                  if(*pte & PTE_P)
                                                                                   panic("remap");
#define P2V(a) ((void *)((char *) (a)) + KERNBASE))
                                                                                  *pte = pa | perm | PTE_P;
// This table defines the kernel's mappings, present in every process
                                                                                  if(a == last)
static struct kmap {
                                                                                   break;
  void *virt;
                                                                                  a += PGSIZE;
  uint phys_start;
                                                                                  pa += PGSIZE;
                                                                                3
  uint phys_end;
                                                                                return 0;
  int perm;
} kmap[] = {
                                                                              }
 { (void*)KERNBASE, 0,
                                   EXTMEM,
                                              PTE_W}, // I/O space
                                                     // kern text+rodata
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},
                                              PTE_W}, // kern data+memory
 { (void*)data,
                    V2P(data),
                                   PHYSTOP,
                                              PTE_W}, // more devices
 { (void*)DEVSPACE, DEVSPACE,
                                   0,
};
```

ILLINOIS TECH

College of Computing

#define EXTMEM 0x100000 #define PHYSTOP 0xE000000 #define DEVSPACE 0xFE000000

// Start of extended memory // Top physical memory // Other devices are at high addresses

#define KERNBASE 0x8000000 // First kernel virtual address #define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define PGSIZE 4096 // bytes mapped by a page #define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1)) #define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

```
#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)((char *) (a)) + KERNBASE))
```

```
// This table defines the kernel's mappings, present in every process
static struct kmap {
  void *virt;
  uint phys_start;
  uint phys_end;
  int perm;
} kmap[] = {
 { (void*)KERNBASE, 0,
                                   EXTMEM,
                                              PTE_W}, // I/O space
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},
                                              PTE_W}, // kern data+memory
 { (void*)data,
                    V2P(data),
                                   PHYSTOP,
                                              PTE_W}, // more devices
 { (void*)DEVSPACE, DEVSPACE,
                                   0,
};
```

```
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
٤
  pde_t *pgdir;
  struct kmap *k;
  pgdir = (pde_t*)kalloc());
  memset(pgdir, 0, PGSIZE);
  if (P2V(PHYSTOP) > (void*)DEVSPACE)
    panic("PHYSTOP too high");
  for(k = kmap; k < &kmap[NELEM(kmap)]; k++)</pre>
    mappages(pgdir, k->virt, k->phys_end - k->phys_start,
              (uint)k->phys_start, k->perm);
  return pgdir;
```

// kern text+rodata

ILLINOIS TECH

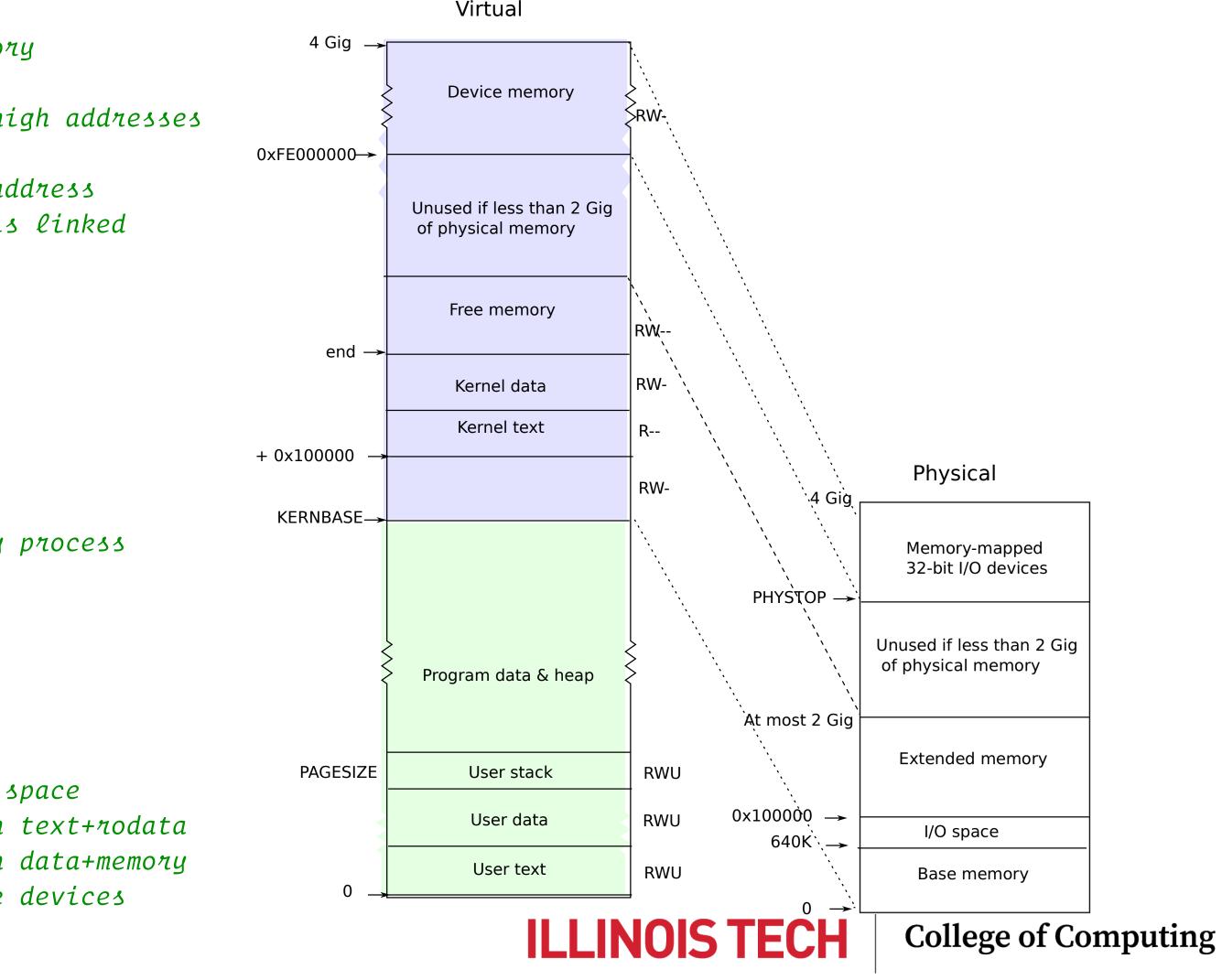
#define EXTMEM 0x100000

#define KERNBASE 0x8000000

// bytes mapped by a page 4096

```
// Allocate page tables and physical memory to grow process
                                    // Start of extended memory
                                    // Top physical memory
#define PHYSTOP 0xE000000
                                                                              int
                                    // Other devices are at high addresses
#define DEVSPACE 0xFE000000
                                                                              allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
                                                                              Ł
                                 // First kernel virtual address
                                                                                char *mem;
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked
                                                                                uint a;
#define PGSIZE
                                                                                if(newsz >= KERNBASE)
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
                                                                                 return 0;
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
                                                                                if(newsz < oldsz)</pre>
#define V2P(a) (((uint) (a)) - KERNBASE)
                                                                                  return oldsz;
#define P2V(a) ((void *)((char *) (a)) + KERNBASE))
                                                                                a = PGROUNDUP(oldsz);
// This table defines the kernel's mappings, present in every process
                                                                                for(; a < newsz; a += PGSIZE){</pre>
static struct kmap {
                                                                                  mem = kalloc();
  void *virt;
                                                                                  memset(mem, 0, PGSIZE);
                                                                                  mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U);
  uint phys_start;
  uint phys_end;
  int perm;
                                                                                return newsz;
} kmap[] = {
 { (void*)KERNBASE, 0,
                                   EXTMEM,
                                              PTE_W}, // I/O space
                                                      // kern text+rodata
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0},
                                              PTE_W}, // kern data+memory
 { (void*)data,
                    V2P(data),
                                   PHYSTOP,
                                              PTE_W}, // more devices
 { (void*)DEVSPACE, DEVSPACE,
                                   0,
                                                                                                ILLINOIS TECH
};
                                                                                                                         College of Computing
```


#define EXTMEM 0x100000
#define PHYSTOP 0xE000000
#define DEVSPACE 0xFE000000


// Start of extended memory
// Top physical memory
// Other devices are at high addresses

#define KERNBASE 0x8000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked

#define PGSIZE 4096 // bytes mapped by a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))

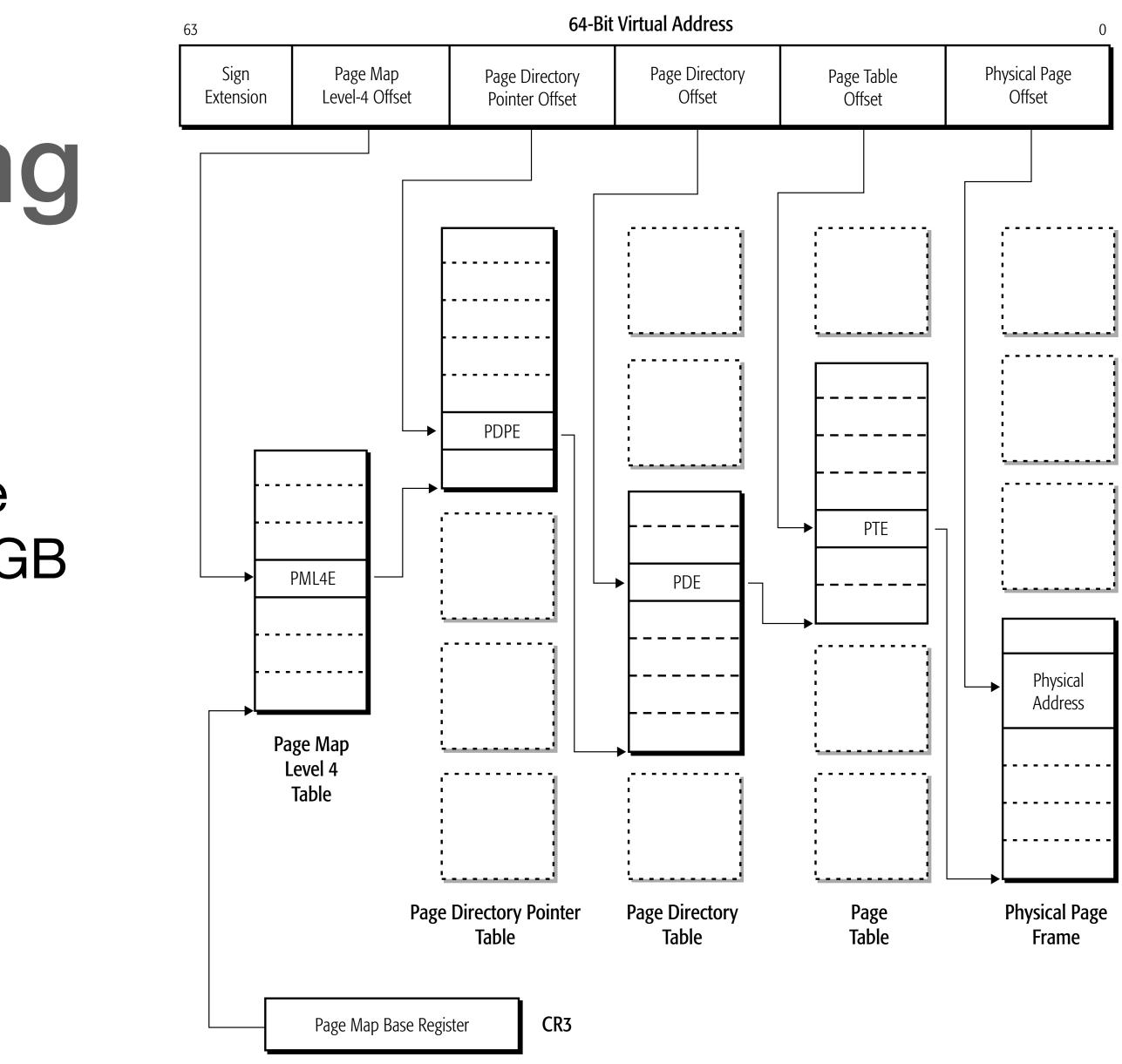
```
#define V2P(a) (((uint) (a)) - KERNBASE)
#define P2V(a) ((void *)((char *) (a)) + KERNBASE))
```

```
// This table defines the kernel's mappings, present in every process
static struct kmap {
  void *virt;
  uint phys_start;
  uint phys_end;
  int perm;
} kmap[] = {
 { (void*)KERNBASE, 0,
                                   EXTMEM,
                                             PTE_W}, // I/O space
 { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
 { (void*)data,
                                             PTE_W}, // kern data+memory
                V2P(data),
                                  PHYSTOP,
 { (void*)DEVSPACE, DEVSPACE,
                                             PTE_W}, // more devices
                                  0,
};
```

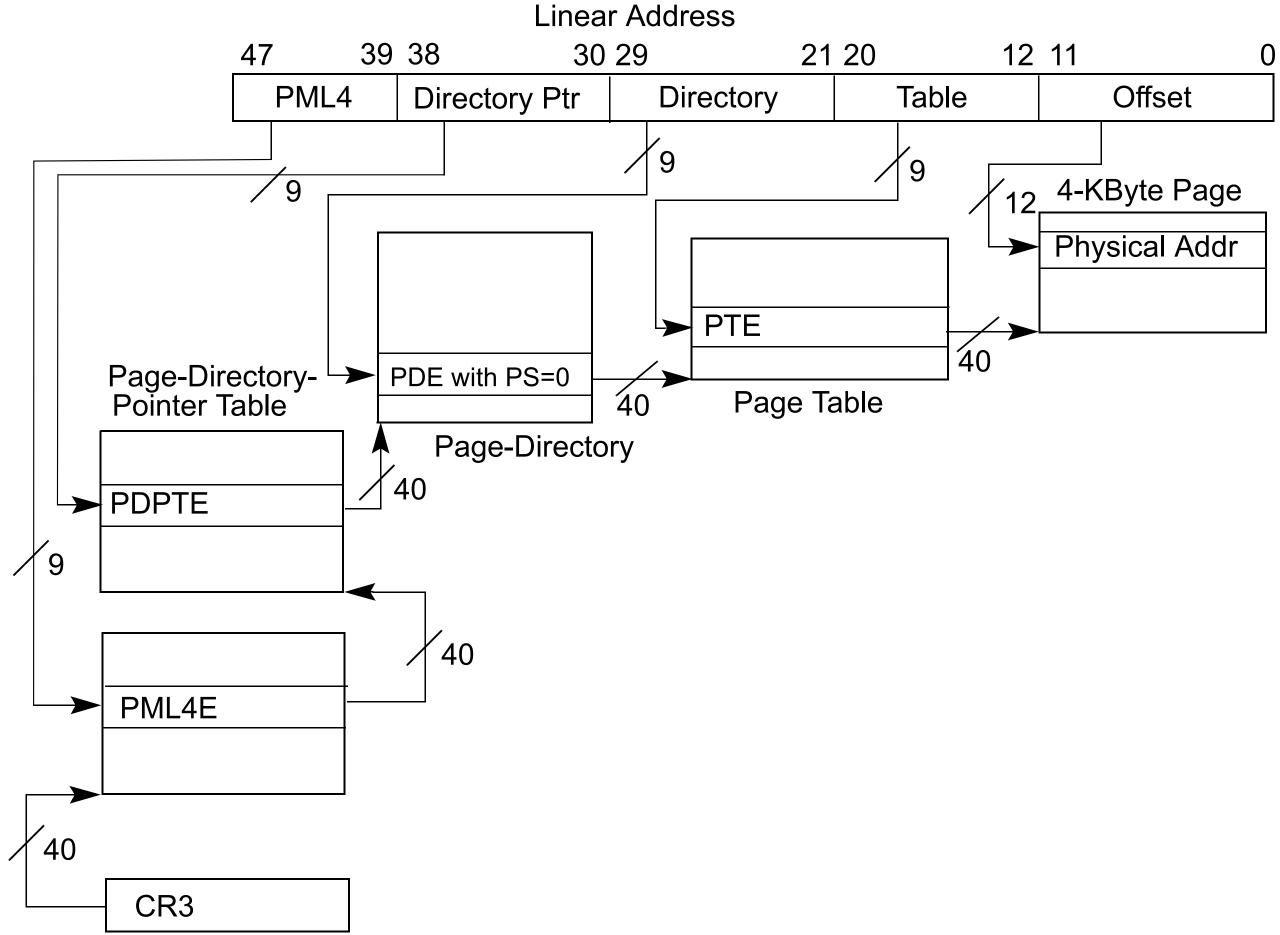

Beyond 32-bit address spaces

Paging Mode	PG in CRO	PAE in CR4	LME in IA32_EFER	Lin Addr. Width	Phys Addr. Width ¹	Page Sizes	Supports Execute- Disable?	Supports PCIDs and protection keys?
None	0	N/A	N/A	32	32	N/A	No	No
32-bit	1	0	0 ²	32	Up to 40 ³	4 KB 4 MB ⁴	No	No
PAE	1	1	0	32	Up to 52	4 KB 2 MB	Yes ⁵	No
4-level	1	1	1	48	Up to 52	4 KB 2 MB 1 GB ⁶	Yes ⁵	Yes ⁷

aka x86-64, per original AMD specification

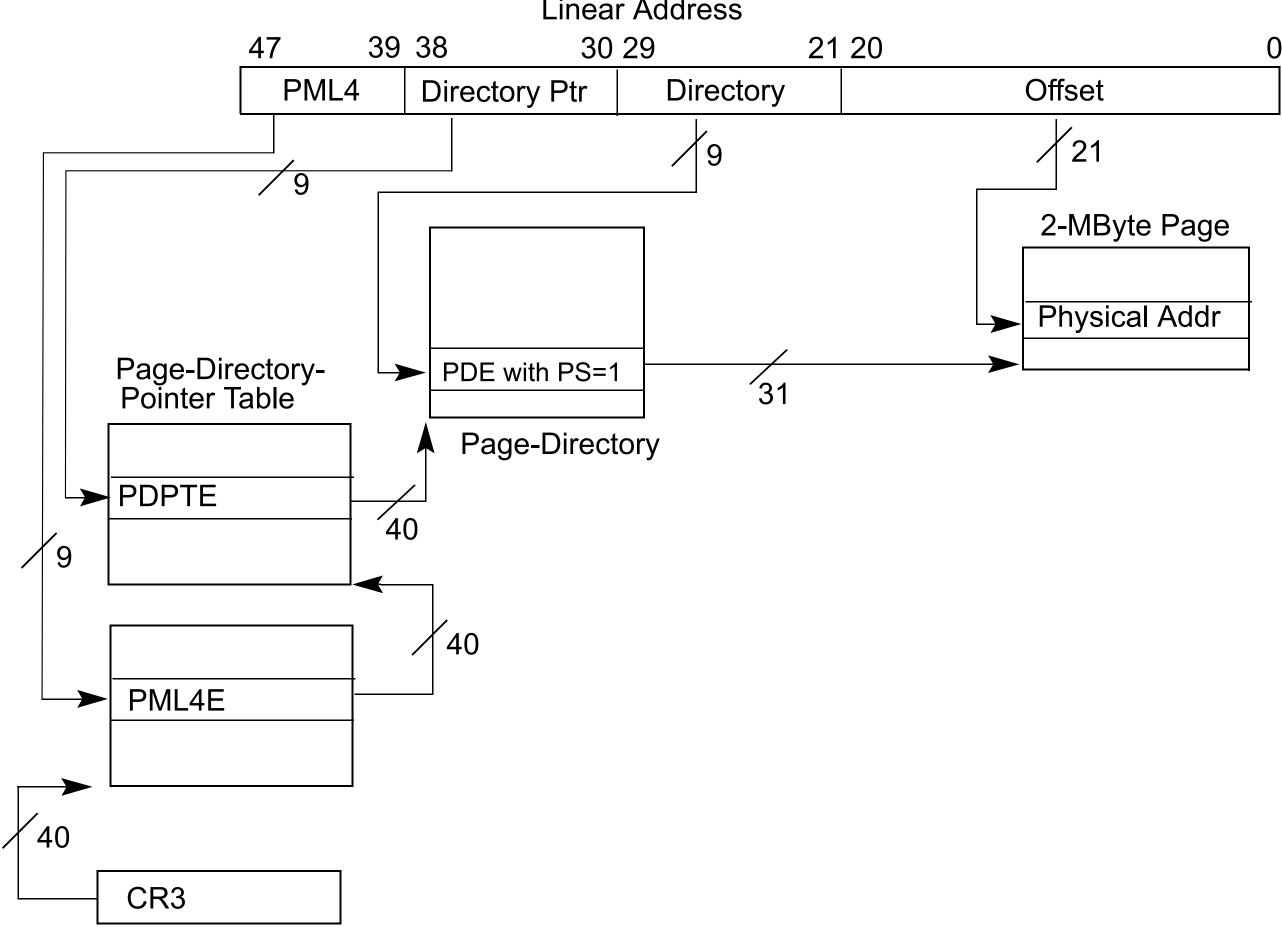

x86-64 (aka IA-32e) modes

- Long mode: 48-bit virtual addresses (256TB virtual address spaces)
 - 4-levels of paging structures
 - All but two segment registers are forced to a flat model, and no segment limit checking is performed
 - FS & GS segments can contain non-zero bases (useful for OS)
- Compatibility mode allows for 32-bit code to run unaltered
- Intel has started implementing 5-level paging to support 57-bit virtual addresses (as of Ice Lake)

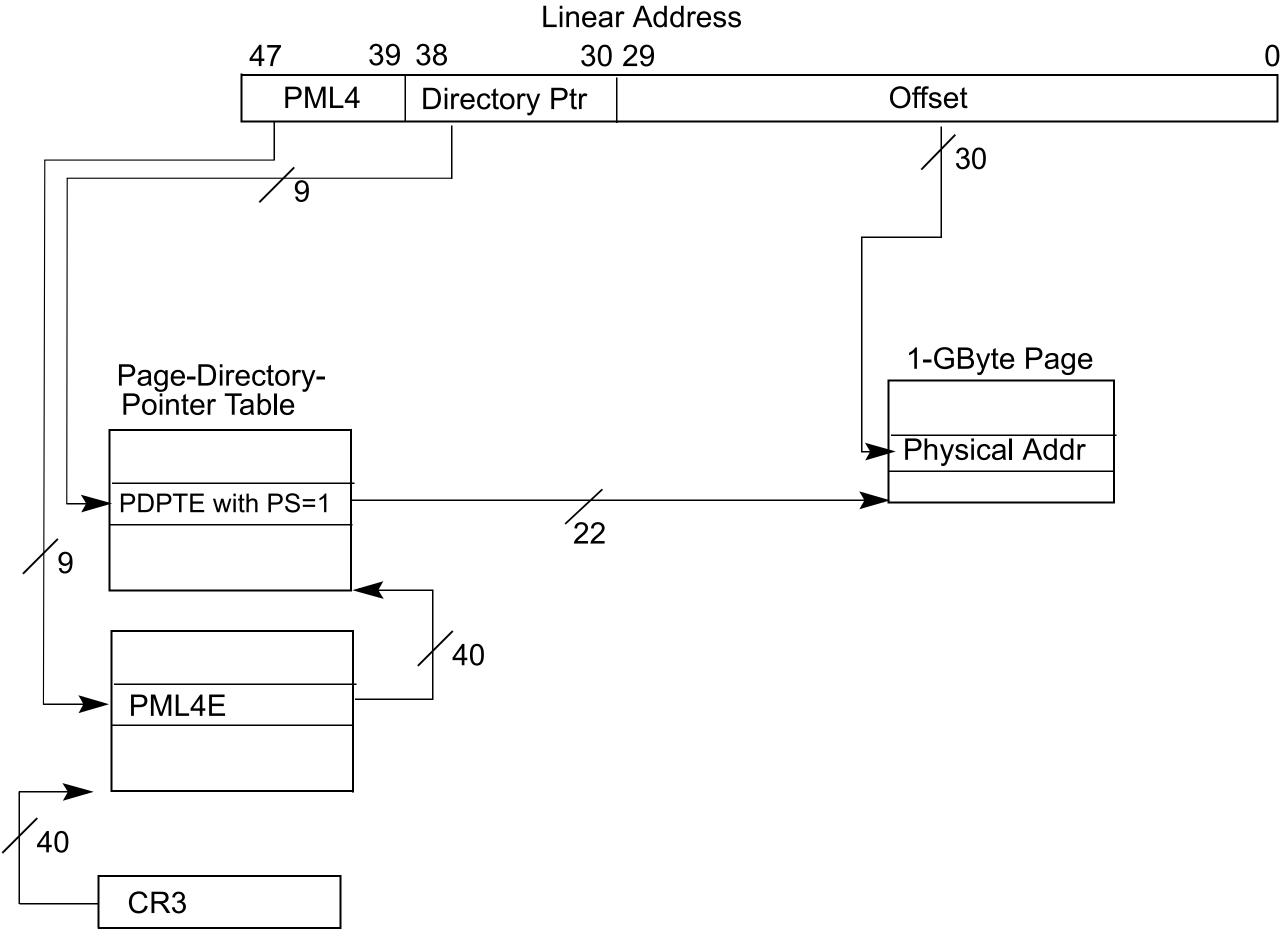


Long mode paging

- 48-bit virtual addresses with 4 levels of paging
 - Depending on paging structure entries, supports 4KB, 2MB, 1GB page sizes



Long mode 4KB paging


Long mode 2MB paging

Linear Address

Long mode 1GB paging

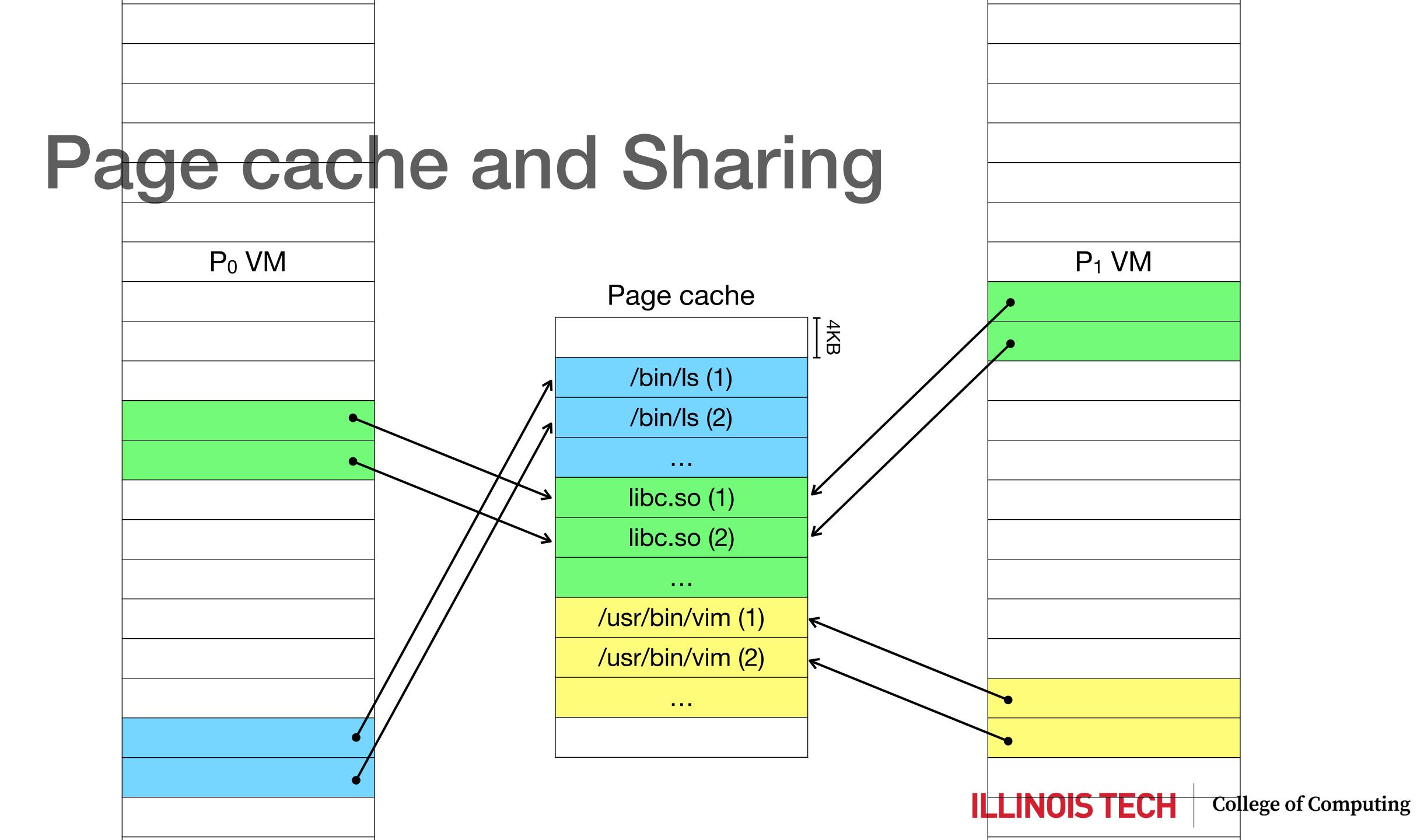
Access control and metadata

- User/Supervisor and Read/Write flags in paging structure entries can be used to guard access
 - If U/S flag = 0 (supervisor), can only access page if CPL = 0
- Accessed and Dirty flags are also useful for kernel swapping policies

Reserved ² Address of PML4 tableIgnored $P P V V V V V V V V V V V V V V V V V V$	6 3	6 6 6 5 2 1 0 9	5 5 5 5 5 5 5 8 7 6 5 4 3 2	5 1	1 ¹	M-1	333 210	2 2 2 2 2 2 2 2 2 2 2 9 8 7 6 5 4 3 2 1	2 1 1 1 1 1 1 1 1 0 9 8 7 6 5 4 3	1 1 1 2 1 0 9	8	76	5 4	4 3	2 1	0
D Ignored Rsvd. Address of page-directory-pointer table Ign. Rsvd. b C D A C D A C D A C D A C D A C D A D D A C D A C D A C D A C D A C D A C D A C D A C D A C D A C D A C D A D D A D D A D D A D D A D D A D D A D D A D D A D D D A D D A D D A D D A D D A D D A D D D D D D D D A D D D D </td <td></td> <td></td> <td>Reserved²</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="5">P Ignored C</td> <td></td>			Reserved ²						P Ignored C							
X Prot. Key ⁴ Ignored Rsvd. Address of 1GB page frame Reserved P A Ign. G 1 D A D V R V V R V 1 X Ignored Rsvd. Address of page directory Ign. Ign. <td></td> <td>I</td> <td>gnored</td> <td>Rsvd.</td> <td></td> <td></td> <td>Address</td> <td>s of page-directory-p</td> <td colspan="7">of page-directory-pointer table</td> <td>1</td>		I	gnored	Rsvd.			Address	s of page-directory-p	of page-directory-pointer table							1
A Hote B Ignored Rsvd. Address of IGB page frame Reserved A T Ign. G T I D D A D C D I D I	Ignored													<u>0</u>		
n Ignored Rsvd. Address of page directory Ign. Q g A C W S / 1 Ignored Ignored Ignored Rsvd. Address of 2MB page frame Reserved P Ign. G 1 D A C W V N 1 X Prot. Ignored Rsvd. Address of 2MB page frame Reserved P Ign. G 1 D A C W V R 1 X Prot. Ignored Rsvd. Address of page table Ign. Q I D A C P V R 1 X Prot. Ignored Rsvd. Address of Address of A/R D D P V R 1 X Prot. Ignored D A C P V R 1 X Prot. Ignored D A C P V R 1 X Prot. Ignored D <td></td> <td></td> <td>Ignored</td> <td>Rsvd.</td> <td></td> <td></td> <td></td> <td>Reser</td> <td>ved</td> <td>> A Ign. T</td> <td>G <u>1</u></td> <td>L D</td> <td>A C C</td> <td>P C W D T</td> <td>U R ′S V</td> <td>1</td>			Ignored	Rsvd.				Reser	ved	> A Ign. T	G <u>1</u>	L D	A C C	P C W D T	U R ′S V	1
X Prot. Ignored Rsvd. Address of 2MB page frame Reserved P Ign. G 1 D A P P U R 1 X M Ignored Rsvd. Address of page table Ign. G 1 D A P P U R 1 X D Ignored Rsvd. Address of page table Ign. 0 Ign A C W V V 1 X D Ignored Rsvd. Address of page table Ign. 0 Ign A C W V V 1 Ignored Rsvd. Address of page table Ign. 0 Ign A C W V V V 1 X Prot. Ignored Rsvd. Address of 4KB page frame Ign. Ign. C P P V V V V V V V V V V V V V V V V V	X D	I	gnored	Rsvd.			ŀ	Address of page dire	ddress of page directory						U R ′S V	1
X Ignored Rsvd. Address of page table Ign. Ign <		Ignored													<u>0</u>	
A Ignored Rsvd. Address of page table Ign. O G A C W 1 Ignored Ignored Ignored Ignored Ignored Ignored O Ignored Ignore		-	Ignored	Rsvd.						> A Ign. T	G <u>1</u>	LD	A C	P P C W D T	U R ′S / W	
X Prot. Japarod Dovd Dovd Address of 4KB page frame	X D	X D Ignored Rsvd.						Address of page table						P C W D T	U R ′S V	1
A = A														<u>0</u>		
	X D		Ignored	Rsvd.			A	lgn.			A C	P C W D T	U R ′S V W	1		
								Ignored								<u>0</u>

Linux VM features

- Page cache and Sharing
- Swap cache
- Copy-on-write optimization
- Page allocation: buddy system
- Kernel internal memory management: slab allocator



Page cache and Sharing

- address space
 - Page faults cause data to be loaded, a page at a time
 - All file data loaded this way have entries in the page cache, which the kernel consults before going to disk
 - If multiple processes access the same files, the kernel can share cached pages between them (potentially at different virtual addresses)
 - **Dirty bit** needed to ensure that page isn't modified

- When executing a program (or loading shared libraries, etc.), the source file is not immediately loaded, but rather linked into the process's virtual

Swap cache

- Dirty pages are swapped out (to save their contents) when low on memory
 - Unmodified pages can just be loaded from the page cache!
- Swap cache keeps track of pages that have been written to swap
 - If a page was previously swapped out and wasn't modified after being swapped back in, can simply discard it
 - Helpful optimization for when system is heavily swapping (thrashing)

Copy-on-write (COW)

- "Clone" operation is quite common (e.g., used when fork-ing a process)
 - But if carried out literally duplicating entire memory image is incredibly expensive (and likely unnecessary)
- At clone time, no data is actually copied; simply replicate paging structures and mark pages as read-only
 - Page faults that occur on write accesses trigger copy operation

Page allocation

- fragmentation
 - space using paging structures
 - huge page (e.g., 4KB vs. 4MB)
 - Can greatly improve TLB effectiveness!

- Because pages are all the same size, theoretically we have no external

- Can allocate first free page we find and map it into any virtual address

- But recall: large blocks of contiguous pages can be mapped as a single

- Especially desirable given many levels of paging structures

- Also needed for I/O device direct memory access (more on this later)

Buddy system allocator

- - E.g., list #0 = 1 page blocks, list #1 = 2 page blocks, list #2 = 4 page blocks, list #3 = 8 page blocks, etc.
 - When allocating a block, keep splitting in half if possible
 - When freeing a block, keep merging (doubling) if possible

- Linux uses a "buddy system" allocator to search for blocks of free pages - Idea: maintain separate lists of free page blocks, with sizes = powers of 2

Buddy system pros/cons

- Pros:
 - Fast allocation search is easy
 - Able to find contiguous blocks
 - Good for huge pages
 - Can simplify page table updates

- Cons:
- Small vs. Large blocks creates external fragmentation
 - 2ⁿ block sizes can result in significant internal fragmentation
 - Compromise: speed vs. efficiency

Kernel internal allocation

- Kernel frequently needs to free/allocate internal data structures
 - e.g., PCB entries, VM structures, file/inode structures
 - Fixed size, similarly initialized
- Buddy allocator is not ideal too much internal fragmentation!
- Linux uses a **slab allocator** to allocate & free internal data structures

Slab allocator

- Built on top of the page buddy allocator
- Idea: allocate large blocks using buddy allocator, and carve them up into multiple data structure entries
 - Use the first one available, and leave partially initialized when freed
 - Effectively build dedicated caches for different data types
- Mitigates internal fragmentation due to buddy allocator

