
Large address spaces = Large tables
- On 64-bit systems, virtual address spaces are up to 248 bytes in size


- Given 4KB page size and 8 byte page table entries

- Page table size 	= (248 ÷ 212 pages) × 23 bytes/page  
	 = 239 bytes = 512GB


- Most of the address space will be unmapped — i.e., the page table is a 
very sparse data structure

- How to reduce the size of page tables (without increasing page size)?



Reducing page table size
- Option 1: constrain the scope of page tables with segments


- Each segment describes a relatively small linear address space

- Each linear address space is mapped using a separate page table


- Option 2: multi-level page tables

- Break up a monolithic page table into a tree structure


- Page table walk searches for leaf node containing PPN



Segmentation + Paging

- Each segment is associated with a page table (located via base address)

- Kernel maintains PTs and updates base/limit registers on context switches
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Multi-level page tables
- Split virtual page number into multiple fragments — each acting as an 

index into a separate level of paging structures

- Unused tables (i.e., without any valid entries) don’t need to be allocated
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E.g., single level (linear) page table
- 8-bit addresses

- 32-byte pages
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E.g., multi-level page table
- 8-bit addresses

- 32-byte pages
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E.g., multi-level page table
- 8-bit addresses

- 32-byte pages
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Multiple (fixed) page sizes
- Multi-level paging makes it possible to accommodate multiple page sizes


- Each level of paging partitions physical memory into smaller pieces 
(intuitively, fewer bits lefts over for offset field)

- “Skipping” one or more levels results in mapping larger pages from 

virtual to physical space

- Mapping large pages may greatly improve TLB effectiveness



E.g., 4KB and 4MB pages
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Multi-level page table pros/cons
- Pros:


- May reduce page table footprint

- Allocate levels as needed


- Multiple page sizes may coexist

- Large pages help TLB while 

reducing PT size

- Cons:

- Page table walk is expensive!


- Requires multiple memory 
accesses for translation


- More complex to access/manage

- Kernel must maintain PT data 

structures for each process



Physical memory limits
- Even with all VM memory techniques covered so far, aggregate process 

memory requirements may exceed available physical memory

- What to do?


- Offload memory burden to disk

- “Swap space” set aside to hold non-resident pages



§ Swapping



Memory hierarchy
- Goal: prioritize using the fast but scarce types  

of memory

- Fall back on the slower but more plentiful  

types as needed

- Compiler maps variables to registers

- Hardware maps memory accesses to 

cache lines

- Who should map memory to disk?
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Manual vs. Automatic swapping
- Option 1: user decides what to keep in memory and what resides on disk


- Swapping is a manual task

- Most control, but painful for any non-trivial application!


- Option 2: kernel automatically swaps data into and out of memory as 
needed by processes

- Users can ignore physical memory constraints (to an extent)

- Common approach: use pages as the unit of swapping



Page status
- Need to distinguish between the questions of whether access to a virtual 

page is legal and whether the page currently resides in physical memory

- Expand page table entry metadata to include both:


- Valid flag: is the request for a legal page?

- Present flag: is the corresponding data loaded in physical memory?


- If not, data is in swap space; PTE contains disk address
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Page fault
- A page fault can be generated by the MMU when:


- An invalid page is accessed

- Access control assertions fail (e.g., insufficient privilege)

- A page is not currently present in physical memory


- Kernel is responsible for swapping data in from disk and updating the 
page table(s)
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Address translation: page fault
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Medium term scheduler
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Medium term scheduler
- Kernel module responsible for swapping processes & pages

- If memory is low, may need to evict in-memory pages to make room


- Common page-replacement policy: least-recently used (LRU)

- Swap-outs are driven by memory usage threshold — kernel will evict 

pages proactively to ensure minimum memory availability

- Pages may be swapped in on demand or by prefetching (e.g., based on 

spatial locality)



If all else fails …
- Worst case scenario: total activate process memory footprints is too 

large for physical memory — constantly swapping pages in/out

- Situation known as thrashing


- What to do?

- Suspend execution of some subset of processes

- Terminate memory-intensive processes (ideally, restartable ones)


