
Large address spaces = Large tables
- On 64-bit systems, virtual address spaces are up to 248 bytes in size

- Given 4KB page size and 8 byte page table entries

- Page table size 	= (248 ÷ 212 pages) × 23 bytes/page  
	 = 239 bytes = 512GB

- Most of the address space will be unmapped — i.e., the page table is a
very sparse data structure

- How to reduce the size of page tables (without increasing page size)?

Reducing page table size
- Option 1: constrain the scope of page tables with segments

- Each segment describes a relatively small linear address space

- Each linear address space is mapped using a separate page table

- Option 2: multi-level page tables

- Break up a monolithic page table into a tree structure

- Page table walk searches for leaf node containing PPN

Segmentation + Paging

- Each segment is associated with a page table (located via base address)

- Kernel maintains PTs and updates base/limit registers on context switches

stack:offset

heap:offset

code:offset

Stack PT

Heap PT

Code PT

Physical

stack

heap

code

Virtual

MMU registers:

PPN

Multi-level page tables
- Split virtual page number into multiple fragments — each acting as an

index into a separate level of paging structures

- Unused tables (i.e., without any valid entries) don’t need to be allocated

offsetVA:
VPN

base address base address

PA

E.g., single level (linear) page table
- 8-bit addresses

- 32-byte pages

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
offsetVPN

—
PPN
—

PPN
—
—
—
—

Page Table
7
6
5
4
3
2
1
0

1
0

E.g., multi-level page table
- 8-bit addresses

- 32-byte pages

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
offset

—
PPN
—

PPN

3
2
1
0

—
—
—
—

3
2
1
0

page “directory”

all unmapped;
don’t need in memory!

E.g., multi-level page table
- 8-bit addresses

- 32-byte pages

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
offset

1
0

—
PPN
—

PPN

3
2
1
0

∅

Multiple (fixed) page sizes
- Multi-level paging makes it possible to accommodate multiple page sizes

- Each level of paging partitions physical memory into smaller pieces
(intuitively, fewer bits lefts over for offset field)

- “Skipping” one or more levels results in mapping larger pages from

virtual to physical space

- Mapping large pages may greatly improve TLB effectiveness

E.g., 4KB and 4MB pages

offsetVA1:

VPN
01112212231

4KB

page

VPN

offsetVA2:
0212231

4MB

page0

1

large page?

Multi-level page table pros/cons
- Pros:

- May reduce page table footprint

- Allocate levels as needed

- Multiple page sizes may coexist

- Large pages help TLB while

reducing PT size

- Cons:

- Page table walk is expensive!

- Requires multiple memory
accesses for translation

- More complex to access/manage

- Kernel must maintain PT data

structures for each process

Physical memory limits
- Even with all VM memory techniques covered so far, aggregate process

memory requirements may exceed available physical memory

- What to do?

- Offload memory burden to disk

- “Swap space” set aside to hold non-resident pages

§ Swapping

Memory hierarchy
- Goal: prioritize using the fast but scarce types  

of memory

- Fall back on the slower but more plentiful  

types as needed

- Compiler maps variables to registers

- Hardware maps memory accesses to 

cache lines

- Who should map memory to disk?

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

Manual vs. Automatic swapping
- Option 1: user decides what to keep in memory and what resides on disk

- Swapping is a manual task

- Most control, but painful for any non-trivial application!

- Option 2: kernel automatically swaps data into and out of memory as
needed by processes

- Users can ignore physical memory constraints (to an extent)

- Common approach: use pages as the unit of swapping

Page status
- Need to distinguish between the questions of whether access to a virtual

page is legal and whether the page currently resides in physical memory

- Expand page table entry metadata to include both:

- Valid flag: is the request for a legal page?

- Present flag: is the corresponding data loaded in physical memory?

- If not, data is in swap space; PTE contains disk address

1 1

1 0

va
lid

PPN / Disk addresspr
es

en
t

VA1: offsetVPN

VA2: offsetVPN

 offsetPPNPA1:

Valid & Present flags

Disk
(Swap space)

page fault (no PA)

Page fault
- A page fault can be generated by the MMU when:

- An invalid page is accessed

- Access control assertions fail (e.g., insufficient privilege)

- A page is not currently present in physical memory

- Kernel is responsible for swapping data in from disk and updating the
page table(s)

Address translation: page present

➊ VA: N

CPU

➌ PA: N'

Physical

Page
Table

➋	page table

	 walk

➍ data

Address
Translator

(part of MMU)

Address translation: page fault

➐ VA: N
(retry)

Physical

Swap space

➎	data transfer➊ VA: N

CPU

➒ PA: N'

Page
Table

Address
Translator

(part of MMU)

➋	page table

	 walk

➓ data

➌ page fault kernel

➍	 transfer control to kernel

➑

➏	PTE  
	 update

Medium term scheduler

Ready

Running

Blocked

Ready Blocked

swap in/out swap in/out

Medium term scheduler
- Kernel module responsible for swapping processes & pages

- If memory is low, may need to evict in-memory pages to make room

- Common page-replacement policy: least-recently used (LRU)

- Swap-outs are driven by memory usage threshold — kernel will evict

pages proactively to ensure minimum memory availability

- Pages may be swapped in on demand or by prefetching (e.g., based on

spatial locality)

If all else fails …
- Worst case scenario: total activate process memory footprints is too

large for physical memory — constantly swapping pages in/out

- Situation known as thrashing

- What to do?

- Suspend execution of some subset of processes

- Terminate memory-intensive processes (ideally, restartable ones)

