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Agenda

- What is it?

- Probability refresher

- Probability distributions and stochastic processes
- Queueing theory

- Basic model

- Little’'s Law

- M/M/1 queueing system
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§ Queueing Theory?
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Thinking about scheduling

- The design of a scheduler can be considered from different angles:
1. As a practical set of policies driven by heuristics and experimentation

- €.g., tuning the rules and “magic numbers” used by a MLFQ scheduler
based on perceived system responsiveness and empirical data

2. As a theoretical exercise in mathematical modeling and analysis

- Helps to ensure rigor in our calculations, and to provide a more solid
foundation for reasoning about policies and desired outcomes
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Queueing theory

- The mathematical study of wait queues

- e.g., using probability distributions to describe job behavior and
stochastic processes to model queueing systems

- Important: rigor does not guarantee correctness!
- Models are only as good as the assumptions they’re based on

- e.g., If we assume constant-length (deterministic) jobs, but jobs are
exponentially distributed, our results won’t reflect reality
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Applications of queueing theory

- Emergency services

- Project management

- Telecommunications and Networking
- Logistics and Transportation

- OS Scheduling

- Etc.
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Tip of the iceberg

- Queueing theory was “invented” by Agner Erlang in 1909
IN a paper featuring a proof concerning telephone traffic

- 100+ years of development, with extant open problems

- In depth coverage in CS 555: Analytic Models and
Simulation of Computer Systems
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S Probability refresher
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Probability theory

- Mathematical analysis of experiments with random outcomes

- Given the set of all possible outcomes (2 (the sample space), assign to
each outcome w € () a probability P(w) € |0, 1| reflecting its likelihood

- The probabilities of all outcomes sumto 1: ) P(w) =1
wel)

- An event Eis a subset of 2, with probability P(E) = ) P(w)
wekl
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Random variable

- A random variable is a function that maps the sample space onto
numeric values; e.g., X: { — N

- The event Ewhere X — n istheset {w e Q| X(w) =n}

- The probability of this eventis P(X =n) =p(n) = » P(w)
weklk

- Discrete r.v.s map events onto a countable set (e.g., N, Z)

- Continuous r.v.s map events onto an uncountable set (e.g., R)
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Discrete vs. Continuous

- The function P for a discrete r.v. X, called its probability mass function,
can be evaluated for distinct values n € range(X); e.g., P(X = n)

- The function P for a continuous r.v. X can not be evaluated for distinct
values, and so we define f, its probability density function (PDF), where:

P(angb):/bf(az)daz

- For both discrete and continuous R.V.s, we can define a cumulative
distribution function (CDF) F, where:

F(n)=P(X <n) Z P(X or /_n f(z)dx

r<n
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E.g., triple coin toss

Sample space (€2)

K \ . . .
X (w) = # of tails in w Il:III:I_III_ Xo(w) = {(1)» i)fﬂ(jivtv?;les in w) > 2,
- HTH ’
0 THH
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- | THT 0
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E.g., triple coin toss

Sample space (€2)

a N\ P(X;=0)=1
y o HHH X
X1(w) = # of tails in w LT P(X;=1)=2
~ HTH P(X, =)= 3
0 THH 1
1 HTT P(Xlzg)zg

sl F(2)=P(X1 <2)=

2<—//-|—|-H (2) =P(X1<2) =) p(a)
, r<2
’ B 1, 3,3 _ 7
N / " _/ —8TsT§T3
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Statistics of discrete R.V.s

- Expected value (mean): E(X) = » - p(x) (discrete X)
rER(X)

— /OO r - f(x)dr (continuous X)

- Variance: ¢° =E((X — E(X))?) = E(X?) — BE(X)?
- Standard deviation: ¢ = Vo2 = /E(X — E(X))?)
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Multiplication & Addition rules

- For any two independent events
- Multiplication rule: P(A and B) = P(A) - P(B)

- e.g., probability of rolling “snake-eyes” with two 6-sided dice:
1 1 1

PIX=1)-P(X=1)=- --=—
( ) - P( =2 ¢~ 3
- Addition rule: P(A or B) = P(A) + P(B)

- e.g., probability of rolling two or four with a 6-sided dice:
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S Two discrete distributions
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Geometric distribution

- Models the number of Bernoulli trials (independent experiments that can
either fail or succeed) needed to get one success

- Each trial has success rate p

- PMF: P(X=n)=(1—-p)"p, n=0,1,2,...
l—p o 1—p
X) = , 07 =
(X) ; 7

- E.g., average number of six-sided dice rolls until we get a specific face:

1
1—6:5

- E(X;p=§) =
6
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Geometric distribution
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Poisson distribution

- Models the number of events occurring in a fixed time interval given the
average arrival rate A is known, and if each event occurs independently
)\n
- PMF: P(X =n)="—e*, n=0,1,2,...

n!

- BE(X)=)\, o°=)\

- E.g., If we know that an average of 10 buses per hour arrive at a stop,
what is the likelihood that only 5 buses arrives in an hour?

10° 15
- P(X =5 A=10) = e 0.0378
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Poisson distribution
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S Two continuous distributions
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Gaussian (Normal) distribution

- Models a “bell curve” with specified mean ( 4 ) and variance ( 02 )

1 —(z—p)?
- PDF: f(z) = e 252
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Exponential distribution

- Models the amount of time elapsing between success independent
events, given the average arrival rate /

- PDF: f(t) =Xe ™, t>0 CDF: F(t)=1—¢e "

1 5 1
- E(X) — X, 0O = p
- E.qg., if we know that an average of 10 buses per hour arrive at a stop,
what is the likelihood that we will wait < 5 minutes for the next bus?

10

- F(55;A=10) =1 — e~ 12 = 0.5654
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Key property: memoryless

- |.e., the amount of time we have to wait until the next event does not
depend on how much time has already elapsed!

- e, P(X>t+ At | X >t) = P(X > At)

- E.g., Given exponential bus inter-arrival times, with P(X > 20 min) = 0.3

- |If you’ve already waited 15 minutes for a bus, how likely is it that the
bus won'’t arrive for another 20 minutes?

- P(X>35|X >15)=P(X >20) =0.3
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E.g., Gaussian vs. Exponential

Exponential (u=0.1)

Gaussian (u=10, 02=2.5)

I
100

A

0 5 10 15 20 25

150
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S Stochastic processes
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Stochastic process

- A stochastic process is a collection of random variables {F;, t € T'}
defined over the same sample space

- tis typically a time parameter

- SO0 Iy may describe how some system behaves over time period ¢
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Poisson process

- Series of r.v.s { N, t = 0} where:
- N models the number of arrivals in time interval [0, ¢|
- N Is described by a Poisson distribution with param At
- Time between arrivals Is exponentially distributed with rate A

- Connects the Poisson & Exponential distributions
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Markov Chain

- Sequence of r.v.s, X1, X2, X3, such that:

P(Xt—l—l :CC\Xt:iE‘t,Xt—l = Xt_1, ..., Xg = Ta, X1 :371)
:P(XH_l:Q?‘Xt:ZCt)

- l.e., next state depends only on the current state

- Future is independent of the past
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E.g., predicting the weather

“transition matrix”

Poo DPo1 DPo2 0.0 0.3 0.1
P=|pwo p11 p2] =102 05 0.3
P20 P21 P22 0.3 04 0.3

pii = P(Xi41 =7 Xy = 1)

P(Xir1=sunny | Xi=rainy) = p20 = 0.3

P(Xi+2=sunny | Xi=rainy)?
— P20Poo 1+ P21P10 + P22P20 = 0.35
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E.g., predicting the weather

(2) 0.45 0.37 0.18 0.398 0.392 0.210
Dog = P20P00 T P21P10 T P22P20 P2=[0.31 043 0.26 P3=10.350 0.412 0.238
0.35 0.41 0.24 0.364 0.406 0.230

Pg) szk:pkj = (P x P)li|J]
kES

0.380 0.399 0.220 0.374 0.402 0.224
0.45 0.37 0.18 P4(0.364 0.406 0.230) P5(O.369 0.404 0.227
PwpP=—r2— 031 043 0.96 0.369 0.404 0.227 0.370 0.404 0.226
0.35 0.41 0.24

(n) N 0.372 0.403 0.225 0.371 0.403 0.226
pi; = P [z] [j] PS—(0.370 0.404 0.226 P =(0.371 0.403 0.226

0.371 0.403 0.226 0.371 0.403 0.226
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E.g., predicting the weather

0.371 0.403 0.226
P'=10.371 0.403 0.226

0.371 0.403 0.226

klim P converges to a steady-state distribution
— 00

all rows are equal to the same vector 7, where

T =m X P and Zmzl
1ES
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E.g., predicting the weather

sunny cloudy rainy

7 =1[0.371 0.403 0.226

Independent of starting state:

P(X;=sunny) = 0.371

.e., fraction of sunny days = 37%
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E.g., predicting the weather

7 =1[0.371 0.403 0.226

For every state, rate of flow out = rate of flow in

e.g., for So:
rate out = (0.371)(0.1 + 0.3)
= (0.148
ratein = (0.403)(0.2) + (0.226)(0.3)
= (0.148

l.e., the system Is in equilibrium
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§ Queueing theory
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Basic model

wait queue Server
v
arriving S S leaving
customers customers
—~

queueing system
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Queueing parameters

# = L, (waiting customers)

T, (wait time)

PR N /(service rate)
u

—=AO
(arrival rate)

=T =1/p
(service time)

# = L (total customers)
= T (turnaround time) = T, + T

ILLINOIS TECH

College of Computing



Not (typically) constants!

- Queues we are interested in typically have parameters that vary over time
- Mathematically, we would describe them using probability distributions

- We use A, u to refer to the expected values (aka averages) of their
respective distributions

- A typical queueing theory application: given expected values and/or
distributions of A and u, derive other parameters
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Stable system

In a stable system, queue cannot grow unboundedly!

A
define ratio p = — as server utilization, and require p <1

v
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Steady state / Equilibrium

- Given a stable system, queueing theory models are often only interested
In describing long-term, “steady state” behavior

- l.e., after running the queueing system for some time, over a period we
should find # of customers arriving = # of customers departing

=IO

In a steady state, A = system throughput

steady state
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Little’'s Law

- In a stable queueing system,

- |.e., the average number of customers in the system is equal to the
product of the average arrival rate and the average turnaround time

- A useful result that is true regardless of the distributions of parameters!

- Can be applied to just the waiting queue: L, = AT,

- Or just the server: p = AT,
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Intuition for Little’s Law (L = \T)

- Suppose the price for a customer to use the system is $1 per time unit

- Option 1 (LHS): Each customer can pay an ongoing cost per time unit
while In the system.

- Total income per time unit = $L

- Option 2 (RHS): Each customer can pay a lump sum when leaving for
the total time spent in the system (7).

- A =throughput in steady state, so total income per time unit = SAT
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) JIMMY JOHN'S

e.d., 35th St. Jimmy John’s:

12 customers arrive per hour,
Average time spent in store = 15 minutes.

Average # customers in store?

12 1 hour
L= hour 8 60 min < 1o min = 3
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W) JIMMY JOHN'S

e.d., Customer appreciation day!

100 customers arrive per hour,
Average line length = 15

Average wait time?

L 1 h
T=3=15x 1(;)(;1r:().4hour:9min
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e.g., Packet switching system with 2 inputs:

M=200 packets/s, 12=150 packets/s,
On average 2,500 packets in system.

Mean packet delay?

L 2. 500

T — — A
A+ A2 200 4 150

7.1s
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Kendall’s notation: A/S/c/k/n/d

- Shorthand for describing important aspects of a queuing model:
- A: inter-arrival time distribution
- S: service time distribution
- C: number of servers available
- k: waiting line capacity (default = )
- n. customer population size (default = o)

- d: scheduling discipline (default = FCFS)
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Kendall’s notation: distributions

- Options for inter-arrival and service distributions:
- D: Deterministic (fixed)
- M: Markovian/Memoryless (exponential distribution)
- G: General/arbitrary distribution (possibly known mean & variance)

- E.g., M/M/1 = exponential inter-arrival & service distributions, 1 server,
infinite capacity and population, FCFS scheduling discipline
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S M/M/1 queueing system
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M/M/1 system

- We can use L (# of customers) to describe the state of the M/M/1
queueing system

- We can model transitions between these states using a “birth-death”
process (a special type of Markov chain), where 4 and u are the

infinitesimal rates of flow between states
A\ A A\ A
x .
L T T L
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Birth-Death process (1) () (3 () -

- P(L;= n) is the probability of L=n at time ¢

- We are interested in the steady-state distribution:

P(L:n):pn:tlggoP(Lt:n\LO:i), 1 =0,1,2,...

- l.e., p, Is the probability of L—=n after a long period of time
(and irrespective of starting state)
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A A A A
Deriving p» @t@ (2 \\/
L L L M

- At equilibrium, the rate of flow out of = the rate of flow in to each state

- @Giving us the balance equations:
APo = [P1
()\—I—,u)pn — Apn—l T UPn+1, T = 1727”'

- Latter is a second order recurrence relation with solution of form:

(4 (4’
Pn =C1Z7 + x5, n=20,1,2,...

- Where z; and 1, are roots of the equation pz® — (A + p)x + X = 0
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A A A A
Deriving p., @xg (2 \\/
u u w u

- pr® — (A +p)r+A=0hastworoots:z — landz — A/u = p

- Solutions to recurrence relation are of form p, =c1 +c2p”, n=0,1,2,...

- We know that: an =1, i.e., Z(Cl + cop™) =1
n=0 n=0

- ¢ must be 0, and we have Z cop’ =1

N

only converges if p < 1;1.e., A < u

ILLINOIS TECH | College of Computing



A A A A
Deriving p.. axa ojol
z T z z

- Assuming p < 1, Z Cop'’ = =1

n=0

- |.e.,62:1—p

- Givingus|P(L=n)=p, =(1—p)p"

- Probability of system being in any state is dependent on p alone!
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) JIMMY JOHN'S

e.d., M/M/1 queue over at JJ’s

Average of 15 customers arriving per hour
Average service time of 2.5 minutes per customer

How likely is it for there to be 5 customers in the store?

A 15
=~ = — =0.625
P uo 24
P(L =5) =ps = (1 — 0.625)0.625" ~ 0.0358
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W) JIMMY JOHN’S

e.d., M/M/1 queue over at JJ’s

Average of 15 customers arriving per hour
Average service time of 2.5 minutes per customer

How likely is it for there to be < 5 customers in the store?

D
P(L<5)=) (1-0.625)0.625" ~ 0.9404

n=0

ILLINOIS TECH

College of Computing



Expected value of L?

- Can derive directly from distribution of L
- (1 — p)p" is just the geometric distribution with parameter 1 — p

- Expectationis E(L) = " f ;

- Or can derive it directly using a useful property of M/M/* queues: PASTA
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PASTA

- PASTA property: Poisson Arrivals See Time Averages

- l.e., customers arriving will on average encounter the same number of
customers in the system as predicted by the steady state average

- also: customers arriving will be faced with the same average service
times as predicted by the steady state average

- Seems intuitive but not always true of other distributions!
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1) JIMMY JOHN'S

Assume E(L) = 5 people in store

- I.e., to the outside observer, there are an average of
5 people In the store

- given Poisson arrivals, new customers on average
also see 5 people In the store
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) JIMMY JOHN'S

Not true in general!

- consider deterministic system:
- arrival times =1, 3, 5, 7, ...
- service time = 1 (constant)
- E(L) =1/2
- but arriving customers always see 0 in store!
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Mean value approach

- We can compute E(L) directly (without deriving the distribution), using
Little’s law and PASTA

- Start by considering E(T) (average time spent in system)

- E(T) = avg # customers x avg service time + avg remaining service time

- by PASTA: kE(L) k% k%
1 1
- l.e., E(T) :E(L)M | .
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Mean value formulae

TR

Agrees with distribution-based analysis
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Powerful (and surprising?) results

- Expected values of all M/M/1 system parameters are entirely dependent
on the relationship of arrival and service times

- Applicable to a vast number of different domains!
- But: important to understand M/M/1 assumptions

- And remember: Little’s law applies to all queues, regardless of arrival/
service distributions
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) JIMMY JOHN'S

e.d., M/M/1 queue over at JJ’s

Average of 15 customers arriving per hour
Average service time of 2.5 minutes per customer

What is the average number of customers in the store?

A 15 0 0.625

= T L) =1 = T 062

~ 1.6067
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