Queueing Theory

CS 450: Operating Systems Michael Lee <le@iit.edu>

Agenda

- What is it?
- Probability refresher
 - Probability distributions and stochastic processes
- Queueing theory
 - Basic model
 - Little's Law
 - M/M/1 queueing system

S Queueing Theory?

Thinking about scheduling

- The design of a scheduler can be considered from different angles:
 - 1. As a practical set of policies driven by heuristics and experimentation
 - e.g., tuning the rules and "magic numbers" used by a MLFQ scheduler based on perceived system responsiveness and empirical data
 - 2. As a theoretical exercise in mathematical modeling and analysis
 - Helps to ensure rigor in our calculations, and to provide a more solid foundation for reasoning about policies and desired outcomes

Queueing theory

- The mathematical study of wait queues
 - e.g., using probability distributions to describe job behavior and stochastic processes to model queueing systems
- Important: rigor does not guarantee correctness!
 - Models are only as good as the assumptions they're based on
 - e.g., if we assume constant-length (deterministic) jobs, but jobs are exponentially distributed, our results won't reflect reality

Applications of queueing theory

- Emergency services
- Project management
- Telecommunications and Networking
- Logistics and Transportation
- OS Scheduling
- Etc.

Tip of the iceberg

- Queueing theory was "invented" by Agner Erlang in 1909 in a paper featuring a proof concerning telephone traffic
- 100+ years of development, with extant open problems
- In depth coverage in CS 555: Analytic Models and Simulation of Computer Systems

§ Probability refresher

Probability theory

- Mathematical analysis of experiments with random outcomes
 - Given the set of all possible outcomes Ω (the sample space), assign to each outcome $\omega \in \Omega$ a probability $P(\omega) \in [0, 1]$ reflecting its likelihood
 - The probabilities of all outcomes sum to 1: $\sum_{\omega \in \Omega} P(\omega) = 1$
 - An event E is a subset of Ω , with probability $P(E) = \sum_{\omega \in E} P(\omega)$

Random variable

- A random variable is a *function* that maps the sample space onto numeric values; e.g., $X: \Omega \to \mathbb{N}$
 - The event E where X=n is the set $\{\omega\in\Omega\mid X(\omega)=n\}$
 - The probability of this event is $P(X=n)=p(n)=\sum_{\omega\in E}P(\omega)$
- *Discrete* r.v.s map events onto a countable set (e.g., \mathbb{N} , \mathbb{Z})
- Continuous r.v.s map events onto an uncountable set (e.g., R)

Discrete vs. Continuous

- The function P for a discrete r.v. X, called its $probability mass function, can be evaluated for distinct values <math>n \in \text{range}(X)$; e.g., P(X = n)
- The function P for a continuous r.v. X can not be evaluated for distinct values, and so we define f, its probability density function (PDF), where:

$$P(a \le X \le b) = \int_a^b f(x)dx$$

- For both discrete and continuous R.V.s, we can define a *cumulative* distribution function (CDF) F, where:

$$F(n) = P(X \le n) = \sum_{x \le n} P(X = x)$$
 or $\int_{-\infty}^{n} f(x)dx$

E.g., triple coin toss

E.g., triple coin toss

$$P(X_1 = 0) = \frac{1}{8}$$

$$P(X_1 = 1) = \frac{3}{8}$$

$$P(X_1 = 2) = \frac{3}{8}$$

$$P(X_1 = 3) = \frac{1}{8}$$

$$F(2) = P(X_1 \le 2) = \sum_{x \le 2} p(x)$$

$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$

Statistics of discrete R.V.s

- Expected value (mean):
$$E(X) = \sum_{x \in \mathcal{R}(X)} x \cdot p(x)$$
 (discrete X)
$$= \int_{-\infty}^{\infty} x \cdot f(x) dx$$
 (continuous X)

- Variance: $\sigma^2 = E((X E(X))^2) = E(X^2) E(X)^2$
- Standard deviation: $\sigma = \sqrt{\sigma^2} = \sqrt{E((X E(X))^2)}$

Multiplication & Addition rules

- For any two independent events
 - Multiplication rule: $P(A \text{ and } B) = P(A) \cdot P(B)$
 - e.g., probability of rolling "snake-eyes" with two 6-sided dice:

$$P(X = 1) \cdot P(X = 1) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

- Addition rule: P(A or B) = P(A) + P(B)
 - e.g., probability of rolling two or four with a 6-sided dice:

$$P(X=2) + P(X=4) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{3}$$

§ Two discrete distributions

Geometric distribution

- Models the number of Bernoulli trials (independent experiments that can either fail or succeed) needed to get one success
 - Each trial has success rate p
- PMF: $P(X = n) = (1 p)^n p$, n = 0, 1, 2, ...
 - $-E(X) = \frac{1-p}{p}, \quad \sigma^2 = \frac{1-p}{p^2}$
- E.g., average number of six-sided dice rolls until we get a specific face:
- $-E(X; p = \frac{1}{6}) = \frac{1 \frac{1}{6}}{\frac{1}{6}} = 5$

Geometric distribution

Poisson distribution

- Models the number of events occurring in a fixed time interval given the average arrival rate λ is known, and if each event occurs independently

- PMF:
$$P(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}, \quad n = 0, 1, 2, ...$$

-
$$E(X) = \lambda$$
, $\sigma^2 = \lambda$

- E.g., if we know that an average of 10 buses per hour arrive at a stop, what is the likelihood that only 5 buses arrives in an hour?

-
$$P(X = 5; \lambda = 10) = \frac{10^5}{5!}e^{-10} \approx 0.0378$$

Poisson distribution

 $\lambda=5$, $\lambda=10$, $\lambda=15$

§ Two continuous distributions

Gaussian (Normal) distribution

- Models a "bell curve" with specified mean (μ) and variance (σ^2)

- PDF:
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Exponential distribution

- Models the amount of time elapsing between success independent events, given the average arrival rate λ

- PDF:
$$f(t) = \lambda e^{-\lambda t}$$
, $t \ge 0$ CDF: $F(t) = 1 - e^{-\lambda t}$

$$\mathbf{E}(X) = \frac{1}{\lambda}, \quad \sigma^2 = \frac{1}{\lambda^2}$$

- E.g., if we know that an average of 10 buses per hour arrive at a stop, what is the likelihood that we will wait ≤ 5 minutes for the next bus?

-
$$F(\frac{1}{12}; \lambda = 10) = 1 - e^{-\frac{10}{12}} \approx 0.5654$$

Key property: memoryless

- I.e., the amount of time we have to wait until the next event does not depend on how much time has already elapsed!

- i.e.,
$$P(X > t + \Delta t \mid X > t) = P(X > \Delta t)$$

- E.g., Given exponential bus inter-arrival times, with $P(X>20~{
 m min})=0.3$
 - If you've already waited 15 minutes for a bus, how likely is it that the bus won't arrive for another 20 minutes?

-
$$P(X > 35 \mid X > 15) = P(X > 20) = 0.3$$

E.g., Gaussian vs. Exponential

§ Stochastic processes

Stochastic process

- A stochastic process is a collection of random variables $\{F_t, t \in T\}$ defined over the same sample space
- t is typically a time parameter
 - so F_t may describe how some system behaves over time period t

Poisson process

- Series of r.v.s $\{N_t, t \ge 0\}$ where:
 - N_t models the number of arrivals in time interval [0, t]
 - N_t is described by a Poisson distribution with param λt
 - Time between arrivals is exponentially distributed with rate λ
- Connects the Poisson & Exponential distributions

Markov Chain

- Sequence of r.v.s, X_1 , X_2 , X_3 , such that:

$$P(X_{t+1} = x \mid X_t = x_t, X_{t-1} = x_{t-1}, \dots, X_2 = x_2, X_1 = x_1)$$

$$= P(X_{t+1} = x \mid X_t = x_t)$$

- I.e., next state depends only on the current state
 - Future is independent of the past

"transition matrix"

$$P = \begin{pmatrix} p_{00} & p_{01} & p_{02} \\ p_{10} & p_{11} & p_{12} \\ p_{20} & p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.2 & 0.5 & 0.3 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$$

$$p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

$$P(X_{t+1}=\text{sunny} \mid X_{t}=\text{rainy}) = p_{20} = 0.3$$

$$P(X_{t+2}=\text{sunny} \mid X_t=\text{rainy})$$
?

$$= p_{20}p_{00} + p_{21}p_{10} + p_{22}p_{20} = 0.35$$

$$p_{20}^{(2)} = p_{20}p_{00} + p_{21}p_{10} + p_{22}p_{20}$$

$$P^2 = \begin{pmatrix} 0.45 & 0.37 & 0.18 \\ 0.31 & 0.43 & 0.26 \\ 0.35 & 0.41 & 0.24 \end{pmatrix}$$

$$P^{2} = \begin{pmatrix} 0.45 & 0.37 & 0.18 \\ 0.31 & 0.43 & 0.26 \\ 0.35 & 0.41 & 0.24 \end{pmatrix} \qquad P^{3} = \begin{pmatrix} 0.398 & 0.392 & 0.210 \\ 0.350 & 0.412 & 0.238 \\ 0.364 & 0.406 & 0.230 \end{pmatrix}$$

$$p_{ij}^{(2)} = \sum_{k \in S} p_{ik} p_{kj} = (P \times P)[i][j]$$

$$P \times P = P^2 = \begin{pmatrix} 0.45 & 0.37 & 0.18 \\ 0.31 & 0.43 & 0.26 \\ 0.35 & 0.41 & 0.24 \end{pmatrix} \qquad P^4 = \begin{pmatrix} 0.380 & 0.399 & 0.220 \\ 0.364 & 0.406 & 0.230 \\ 0.369 & 0.404 & 0.227 \end{pmatrix} \qquad P^5 = \begin{pmatrix} 0.374 & 0.402 & 0.224 \\ 0.369 & 0.404 & 0.227 \\ 0.370 & 0.404 & 0.226 \end{pmatrix}$$

$$P^4 = \begin{pmatrix} 0.380 & 0.399 & 0.220 \\ 0.364 & 0.406 & 0.230 \\ 0.369 & 0.404 & 0.227 \end{pmatrix}$$

$$P^5 = \begin{pmatrix} 0.374 & 0.402 & 0.224 \\ 0.369 & 0.404 & 0.227 \\ 0.370 & 0.404 & 0.226 \end{pmatrix}$$

$$p_{ij}^{(n)} = P^n[i][j]$$

$$P^{6} = \begin{pmatrix} 0.372 & 0.403 & 0.225 \\ 0.370 & 0.404 & 0.226 \\ 0.371 & 0.403 & 0.226 \end{pmatrix} \qquad P^{7} = \begin{pmatrix} 0.371 & 0.403 & 0.226 \\ 0.371 & 0.403 & 0.226 \\ 0.371 & 0.403 & 0.226 \end{pmatrix}$$

$$P^7 = \begin{pmatrix} 0.371 & 0.403 & 0.226 \\ 0.371 & 0.403 & 0.226 \\ 0.371 & 0.403 & 0.226 \end{pmatrix}$$

$$P^7 = \begin{pmatrix} 0.371 & 0.403 & 0.226 \\ 0.371 & 0.403 & 0.226 \\ 0.371 & 0.403 & 0.226 \end{pmatrix}$$

 $\lim_{k\to\infty} P^k$ converges to a steady-state distribution

all rows are equal to the same vector π , where

$$\pi = \pi \times P \text{ and } \sum_{i \in S} \pi_i = 1$$

sunny cloudy rainy
$$\pi = \begin{bmatrix} 0.371 & 0.403 & 0.226 \end{bmatrix}$$

Independent of starting state:

$$P(X_t = \text{sunny}) = 0.371$$

i.e., fraction of sunny days ≈ 37%

$$\pi = \begin{bmatrix} 0.371 & 0.403 & 0.226 \end{bmatrix}$$

For every state, rate of flow out = rate of flow in

e.g., for
$$S_0$$
:
rate out = $(0.371)(0.1 + 0.3)$
= 0.148
rate in = $(0.403)(0.2) + (0.226)(0.3)$
= 0.148

i.e., the system is in equilibrium

S Queueing theory

Basic model

Queueing parameters

Not (typically) constants!

- Queues we are interested in typically have parameters that vary over time
 - Mathematically, we would describe them using probability distributions
 - We use λ , μ to refer to the *expected values* (aka averages) of their respective distributions
 - A typical queueing theory application: given expected values and/or distributions of λ and μ , derive other parameters

Stable system

in a stable system, queue cannot grow unboundedly!

define ratio $\, \rho = \frac{\lambda}{\mu} \,$ as server $\it utilization$, and require $\, \rho < 1 \,$

Steady state / Equilibrium

- Given a stable system, queueing theory models are often only interested in describing long-term, "steady state" behavior
 - i.e., after running the queueing system for some time, over a period we should find # of customers arriving = # of customers departing

in a steady state, λ = system throughput

Little's Law

- In a stable queueing system, $L=\lambda T$
 - I.e., the average number of customers in the system is equal to the product of the average arrival rate and the average turnaround time
 - A useful result that is true regardless of the distributions of parameters!
- Can be applied to just the waiting queue: $L_q = \lambda T_q$
 - Or just the server: $\rho=\lambda T_s$

Intuition for Little's Law $(L = \lambda T)$

- Suppose the price for a customer to use the system is \$1 per time unit
 - Option 1 (LHS): Each customer can pay an ongoing cost per time unit while in the system.
 - Total income per time unit = \$L
 - Option 2 (RHS): Each customer can pay a lump sum when leaving for the total time spent in the system (T).
 - λ = throughput in steady state, so total income per time unit = $\$\lambda T$

e.g., 35th St. Jimmy John's:

12 customers arrive per hour, Average time spent in store = 15 minutes.

Average # customers in store?

$$L = \lambda T = \frac{12}{\text{hour}} \times \frac{1 \text{ hour}}{60 \text{ min}} \times 15 \text{ min} = 3$$

e.g., Customer appreciation day!

100 customers arrive per hour, Average line length = 15

Average wait time?

$$T = \frac{L}{\lambda} = 15 \times \frac{1 \text{ hour}}{100} = 0.4 \text{ hour} = 9 \text{ min}$$

e.g., Packet switching system with 2 inputs:

 λ_1 =200 packets/s, λ_2 =150 packets/s, On average 2,500 packets in system.

Mean packet delay?

$$T = \frac{L}{\lambda_1 + \lambda_2} = \frac{2,500}{200 + 150} \approx 7.1$$
s

Kendall's notation: A/S/c/k/n/d

- Shorthand for describing important aspects of a queuing model:
 - A: inter-arrival time distribution
 - S: service time distribution
 - c: number of servers available
 - **k**: waiting line capacity (default = ∞)
 - \mathbf{n} : customer population size (default = ∞)
 - d: scheduling discipline (default = FCFS)

Kendall's notation: distributions

- Options for inter-arrival and service distributions:
 - **D**: Deterministic (fixed)
 - M: Markovian/Memoryless (exponential distribution)
 - G: General/arbitrary distribution (possibly known mean & variance)
- E.g., M/M/1 = exponential inter-arrival & service distributions, 1 server, infinite capacity and population, FCFS scheduling discipline

§M/M/1 queueing system

M/M/1 system

- We can use L (# of customers) to describe the state of the M/M/1 queueing system
- We can model transitions between these states using a "birth-death" process (a special type of Markov chain), where λ and μ are the infinitesimal rates of flow between states

Birth-Death process

- $P(L_t = n)$ is the probability of L = n at time t
- We are interested in the steady-state distribution:

$$P(L=n) = p_n = \lim_{t \to \infty} P(L_t = n | L_0 = i), \quad i = 0, 1, 2, \dots$$

- I.e., p_n is the probability of L=n after a long period of time (and irrespective of starting state)

Deriving p_n

- At equilibrium, the rate of flow out of = the rate of flow in to each state
- Giving us the balance equations:

$$\lambda p_0 = \mu p_1$$
 $(\lambda + \mu)p_n = \lambda p_{n-1} + \mu p_{n+1}, \quad n = 1, 2, \dots$

- Latter is a second order recurrence relation with solution of form:

$$p_n = c_1 x_1^n + c_2 x_2^n, \quad n = 0, 1, 2, \dots$$

- Where x_1 and x_2 are roots of the equation $\mu x^2 - (\lambda + \mu)x + \lambda = 0$

Deriving p_n

- $\mu x^2 (\lambda + \mu)x + \lambda = 0$ has two roots: x = 1 and $x = \lambda/\mu = \rho$
- Solutions to recurrence relation are of form $p_n = c_1 + c_2 \rho^n$, n = 0, 1, 2, ...
- We know that: $\sum_{n=0}^{\infty}p_n=1$, i.e., $\sum_{n=0}^{\infty}(c_1+c_2\rho^n)=1$
 - c_1 must be 0, and we have $\sum_{n=0}^{\infty} c_2 \rho^n = 1$

only converges if $\rho < 1$; i.e., $\lambda < \mu$

Deriving p_n

- Assuming ho < 1, $\sum_{n=0}^{\infty} c_2
 ho^n = \frac{c_2}{1ho} = 1$
- I.e., $c_2 = 1 \rho$
- Giving us $P(L=n)=p_n=(1-\rho)\rho^n$
 - Probability of system being in any state is dependent on ρ alone!

e.g., M/M/1 queue over at JJ's

Average of 15 customers arriving per hour Average service time of 2.5 minutes per customer

How likely is it for there to be 5 customers in the store?

$$\rho = \frac{\lambda}{\mu} = \frac{15}{24} = 0.625$$

$$P(L=5) = p_5 = (1 - 0.625)0.625^5 \approx 0.0358$$

e.g., M/M/1 queue over at JJ's

Average of 15 customers arriving per hour

Average service time of 2.5 minutes per customer

How likely is it for there to be ≤ 5 customers in the store?

$$P(L \le 5) = \sum_{n=0}^{5} (1 - 0.625)0.625^n \approx 0.9404$$

Expected value of L?

- Can derive directly from distribution of ${\cal L}$
 - $(1-\rho)\rho^n$ is just the geometric distribution with parameter $1-\rho$
 - Expectation is $E(L) = \frac{\rho}{1-\rho}$
- Or can derive it directly using a useful property of M/M/* queues: PASTA

PASTA

- PASTA property: Poisson Arrivals See Time Averages
 - i.e., customers arriving will on average encounter the same number of customers in the system as predicted by the steady state average
 - also: customers arriving will be faced with the same average service times as predicted by the steady state average
- Seems intuitive but not always true of other distributions!

Assume E(L) = 5 people in store

- i.e., to the outside observer, there are an average of 5 people in the store
- given Poisson arrivals, new customers on average also see 5 people in the store

Not true in general!

- consider deterministic system:
 - arrival times = 1, 3, 5, 7, ...
- service time = 1 (constant)
 - -E(L) = 1/2
- but arriving customers always see 0 in store!

Mean value approach

- We can compute E(L) directly (without deriving the distribution), using Little's law and PASTA
- Start by considering E(T) (average time spent in system)
 - E(T) = avg # customers × avg service time + avg remaining service time

- by PASTA:
$${}^{\bullet}E(L)$$

$$\frac{1}{\mu}$$

$$\frac{1}{\mu}$$

- I.e.,
$$E(T)=E(L)\frac{1}{\mu}+\frac{1}{\mu}$$

Mean value formulae

$$E(T) = E(L)\frac{1}{\mu} + \frac{1}{\mu}$$

- By Little's law, $E(L) = \lambda E(T)$

$$E(T) = \frac{1}{\mu(1 - \frac{\lambda}{\mu})} = \frac{1}{\mu(1 - \rho)}$$

$$E(L) = \frac{\lambda}{\mu(1-\rho)} = \frac{\rho}{(1-\rho)}$$

$$E(T_s) = \frac{1}{\mu}$$

$$E(T_q) = E(T) - E(T_s)$$
$$= \frac{\rho}{\mu(1-\rho)}$$

Agrees with distribution-based analysis

Powerful (and surprising?) results

- Expected values of all M/M/1 system parameters are entirely dependent on the relationship of arrival and service times
- Applicable to a vast number of different domains!
 - But: important to understand M/M/1 assumptions
 - And remember: Little's law applies to all queues, regardless of arrival/ service distributions

e.g., M/M/1 queue over at JJ's

Average of 15 customers arriving per hour Average service time of 2.5 minutes per customer

What is the average number of customers in the store?

$$\rho = \frac{\lambda}{\mu} = \frac{15}{24} = 0.625$$
 $E(L) = \frac{\rho}{1-\rho} = \frac{0.625}{1-0.625} \approx 1.667$