
x86 & xv6 overview
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- Motivation

- x86 ISA

- PC architecture

- UNIX

- xv6

Motivation
- OS relies on many low-level hardware mechanisms to do its job

- To work on an OS kernel, we must be intimately familiar with the
underlying ISA and PC hardware

- Hardware may dictate what is or isn’t possible, and influence how we
represent and manage system-level structures

- We focus on x86, but all modern ISAs support the mechanisms we need

- e.g., xv6 has been ported to ARM already

§ x86

Documentation
- Intel IA-32 Software Developer’s Manuals

are complete references

- Volume 1: Architectural Overview

- Volume 2: Instruction Set Reference

- Volume 3: Systems Programming Guide

- Many diagrams in slides taken from them

x86 coverage
- Timeline

- Syntax

- Registers

- Instruction operands

- Instructions and sample usage

- Processor modes

- Interrupt & Exception handling

Timeline
- 1978: Intel released 8086, a 16-bit CPU

- 1982: 80186 and 80286 (still 16-bit)

- 1985: 80386 was the first 32-bit x86 CPU (aka i386/IA-32)

- 2000: AMD created x86-64: 64-bit ISA compatible with x86

- 2001: Intel released IA-64 “Itanium” ISA, incompatible with x86

- End-of-life announced in 2019 (i.e., official failure)

x86 ISA
- xv6 uses the IA-32 ISA

- But we can still build/run it on x86-64!

- x86 is a CISC ISA, so we have:

- Memory operands for non-load/store instructions

- Complex addressing modes

- Relatively large number of instructions

Syntax / Formatting
- Two common variants: Intel and AT&T syntax

- Intel syntax common in Windows world

- e.g., mov DWORD PTR [ebp-4], 10 ; format: OP DST, SRC

- AT&T syntax common in UNIX world (default GCC output)

- e.g., movl $10, -4(%ebp) # format: OP SRC, DST

- We will use this syntax

Registers

Vol. 1 3-11

BASIC EXECUTION ENVIRONMENT

• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program

being executed and allows limited (application-program level) control of the processor.
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be

executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a
pointer in the EBX register points to a memory location in the DS segment.

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

- 8 general-purpose registers

- 6 segment registers for addressing

- Status & Control register

- Program counter / Instruction pointer

- (Many others — including control
registers — coming up later)

Vol. 1 3-11

BASIC EXECUTION ENVIRONMENT

• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program

being executed and allows limited (application-program level) control of the processor.
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be

executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a
pointer in the EBX register points to a memory location in the DS segment.

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

Vol. 1 3-11

BASIC EXECUTION ENVIRONMENT

• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program

being executed and allows limited (application-program level) control of the processor.
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be

executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a
pointer in the EBX register points to a memory location in the DS segment.

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

Vol. 1 3-11

BASIC EXECUTION ENVIRONMENT

• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program

being executed and allows limited (application-program level) control of the processor.
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be

executed.

3.4.1 General-Purpose Registers
The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a
pointer in the EBX register points to a memory location in the DS segment.

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

General purpose registers
- Can be directly manipulated, but some have special applications

- Most can be accessed as full 32-bit values, or as 16/8-bit subvalues

- Each register is, by convention, volatile or non-volatile

- A volatile register may be clobbered by a function call; i.e., its value
should be saved — maybe on the stack — if it must be preserved

- A non-volatile register is preserved (by callees) across function calls

3-12 Vol. 1

BASIC EXECUTION ENVIRONMENT

The special uses of general-purpose registers by instructions are described in Chapter 5, “Instruction Set
Summary,” in this volume. See also: Chapter 3, Chapter 4 and Chapter 5 of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 2A, 2B & 2C. The following is a summary of special uses:
• EAX — Accumulator for operands and results data
• EBX — Pointer to data in the DS segment
• ECX — Counter for string and loop operations
• EDX — I/O pointer
• ESI — Pointer to data in the segment pointed to by the DS register; source pointer for string operations
• EDI — Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for

string operations
• ESP — Stack pointer (in the SS segment)
• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map directly to the register set found in
the 8086 and Intel 286 processors and can be referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each
of the lower two bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and
DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1 General-Purpose Registers in 64-Bit Mode

In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 bits. However, general-
purpose registers are able to work with either 32-bit or 64-bit operands. If a 32-bit operand size is specified: EAX,
EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX,
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent eight new general-purpose registers.
All of these registers can be accessed at the byte, word, dword, and qword level. REX prefixes are used to generate
64-bit operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through
compatibility mode to 64-bit mode.

Figure 3-5. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

Register Purpose

%eax Return value

%ebx —

%ecx Counter

%edx —

%ebp Frame/Base pointer

%esi Source index (for arrays)

%edi Destination index (for arrays)

%esp Stack pointer

%eax, %ecx, %edx are volatile registers

Instruction operands
Mode Example(s) Meaning

Immediate $0x42, $0xd00d Literal value

Register %eax, %esp Value found in register

Memory references

Direct 0x4001000 Value found in address

Indirect (%esp) Value found at address in register

Base-Displacement 8(%esp),
-24(%ebp)

Given D(B), value found at address D+B  
(i.e., address in base register B + numeric offset D)

Scaled Index 8(%esp,%esi,4)
Given D(B,I,S), value found at address D+B+I×S  
S ∈ {1,2,4,8}; D and I default to 0 if left out, S defaults to 1

Instructions
- Instructions have 0-3 operands

- For many 2 operand instructions, one operand is both read and written

- e.g., addl $1, %eax # %eax = %eax + 1

- Instruction suffix indicates width of operands (l/w/b → 32/16/8 bits)

- Arithmetic operations populate EFLAGS register bits, including ZF (zero
result), SF (signed/neg result), CF (carry-out of MSB occurred), OF
(overflow occurred)

- Used by subsequent conditional instructions (e.g., jump if result = zero)

3-16 Vol. 1

BASIC EXECUTION ENVIRONMENT

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result,
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions,
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-

significant bit of the result; cleared otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits;
cleared otherwise.

AF (bit 4) Auxiliary Carry flag — Set if an arithmetic operation generates a carry or a borrow out of bit
3 of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a signed

integer. (0 indicates a positive value and 1 indicates a negative value.)
OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a negative

number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This flag
indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

Figure 3-8. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check / Access Control (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Arithmetic
Instruction(s) Description

{add,sub,imul} src, dst dst = dst {+,–,×} src

neg dst dst = –dst

{inc,dec} dst dst = dst {+,–} 1

{sal,sar,shr} src, dst dst = dst {<<,>>,>>>} src (arithmetic & logical shifts)

{and,or,xor} src, dst dst = dst {&,|,^} src (bitwise)

not dst dst = ~dst (bitwise)

src can be an immediate, register, or memory operand; dst can be a register or memory operand.

But at most one memory operand!

Conditions and Branches
Instruction(s) Description

cmp src, dst dst – src (discard result but set flags)

test src, dst dst & src (discard result but set flags)

jmp target Unconditionally jump to target (change %eip)

{je,jne} target Jump to target if dst equal/not equal src (ZF=1 / ZF=0)

{jl,jle} target Jump to target if dst </≤ src (SF≠OF / ZF=1 or SF≠OF)

{jg,jge} target Jump to target if dst >/≥ src (ZF=0 and SF=OF / SF=OF)

{ja,jb} target Jump to target if dst above/below src (CF=0 and ZF=0 / CF=1)

target is usually an address encoded as an immediate operand (e.g., jmp $0x4001000), but addresses may  
be stored in a register or memory, in which case indirect addressing is required, which uses the * symbol.

E.g., jmp *%eax (jump to address in %eax), jmp *0x4001000 (jump to address found at address 0x4001000)

conditional jump often

 follows cmp (or test)

E.g., basic control structures
if (cond) {
 // if-clause
} else {
 // else-clause
}
...

while (cond) {
 // loop-body
}
...

 testl %eax, %eax # %eax = cond
 je ELSE
 # if-clause
 jmp ENDIF
ELSE:
 # else-clause
ENDIF:
 # ...

 testl %eax, %eax # %eax = cond
 je ENDLOOP
LOOP:
 # loop-body
 testl %eax, %eax
 jne LOOP
ENDLOOP:
 # ...

Data movement
Instruction(s) Description

mov src, dst Copy data from src to dst (memory→memory moves not possible)

movzbl src, dst Copy 8-bit value to 32-bit target (& other variants), using zero-fill

movsbl src, dst Copy 8-bit value to 32-bit target (& other variants), using sign-extension

{cmove/ne} src, dst Move data from src to dst if ZF=1 / ZF=0

{cmovg/ge/l/le/a/b/…} Conditionally move data from src to dst (per jump naming conventions)

lea address, dst dst = address (no memory access! just computes value of address)

Address computation

Functions and Call stack
Instruction(s) Description

push src Push src onto stack

pop dst Pop top of stack into dst

call target Push current %eip (address of instruction after call) onto stack, jump to target

leave Restore frame pointer (%ebp) and clears stack frame

ret Pop top of stack into %eip

target may use indirect addressing as well, e.g., call *%eax (call function whose address is in %eax)
All instructions above implicitly adjust %esp and access the stack.

Function calls
- Functions make extensive use of the call stack — leads to convention-

driven prologue and epilogue blocks in assembly code

- Typical function prologue:

- Save old frame pointer and establish new frame pointer

- Save non-volatile register values we might clobber (“callee-saved”)

- Load needed parameters from prior stack frame

- Allocate stack space for any local data

Function calls
- Typical function epilogue:

- Place return value in %eax

- Deallocate any space used for local data

- Restore/Pop any clobbered non-volatile register values

- Restore/Pop old frame pointer

- Return

Function calls (Optimization)
- Many of these steps may be optimized (simplified or neglected

altogether) by the compiler!

- Prefer registers to stack-based args or local vars (regs vs. memory)

- %esp doesn’t always reflect the top of the stack (only need to do this if
calling another function)

- lea often used in surprising ways (addressing modes as arithmetic)

Call Stack
- Maintains dynamic state and context of

executing program

- Saved frame pointers (previous values of
%ebp) create a chain of stack frames

- Useful to navigate for debugging and
tracing! (e.g., gdb “backtrace”)

Stack
ret addr
old %ebp

local vars

caller saved regs  
/ temp space

…
arg #2
arg #1

ret addr
%ebp → old %ebp

local var #1
local var #2

…
callee saved regs  

/ temp space%esp →

caller fram
e

callee fram
e

ch
ain

 o
f s

ta
ck

 fr
am

es

“top” of stack

E.g., function calls
int main() {
 int x=10, y=20;
 sum(x, y);
 return 0;
}

int sum(int a, int b) {
 int ret = a + b;
 return ret;
}

sum: # optimized
 leal (%edi,%esi), %eax
 ret

main:
 pushl %ebp
 movl %esp, %ebp
 subl $16, %esp
 movl $10, -4(%ebp)
 movl $20, -8(%ebp)
 movl -4(%ebp), %edi
 movl -8(%ebp), %esi
 call sum
 movl $0, %eax
 addl $16, %esp
 popl %ebp
 ret

sum: # unoptimized
 pushl %ebp
 movl %esp, %ebp
 movl %edi, -4(%ebp)
 movl %esi, -8(%ebp)
 movl -4(%ebp), %eax
 addl -8(%ebp), %eax
 movl %eax, -12(%ebp)
 movl -12(%ebp), %eax
 popl %ebp
 ret

Processor modes
- When an x86 system first boots up, it runs in 16-bit real mode (8086

compatible) — all addresses reference “real” memory locations

- 16/32-bit protected modes add privilege levels, virtual memory, and
other mechanisms useful to the OS (e.g., for multitasking)

- 64-bit long mode removes some instructions and adds 64-bit registers
and addressing

Real mode addressing
- Only 16-bit registers, but support for 20-bit addresses (1MB address

space) through the use of segment registers: CS, DS, ES, SS

- Left-shift segment number by 4 (i.e., ×16) to obtain base address, and
add to offset to compute 20-bit physical address

- Code (via IP) and Stack (via SP and BP) accesses automatically use  
CS (code segment) and SS (stack segment) to compute addresses

- e.g., if IP=0x4000 and CS=0x1100, CS:IP refers to physical address
0x1100×16 + 0x4000 = 0x15000

Protected mode
- Segment registers (expanded to CS, DS, SS, ES, FS, GS) no longer hold

base addresses, but selectors

- Selectors are used to load segment descriptors from a descriptor table
which describe location/size/status/etc. of segments

- CS selector contains a 2-bit CPL in addition to selector value

- Recall: privileged instructions are only available when CPL=0

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

Figure 3-5. Logical Address to Linear Address Translation

Figure 3-6. Segment Selector

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)

15 3 2 1 0
T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL

- Segments allow complex memory mapping and access control (e.g.,
restricted access), among other things

Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

Access checks can be used to protect not only against referencing an address outside the limit of a segment, but
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to
protect operating-system procedures from unauthorized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as additional base registers in linear address calculations. They facilitate addressing local data
and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS LimitAccess
Base Address

DS LimitAccess
Base Address

ES LimitAccess
Base Address

FS LimitAccess
Base Address

GS LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data

Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

programs to multi-segmented models that employ segmentation to create a robust operating environment in
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve
memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the operating system and application
programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat
model hides the segmentation mechanism of the architecture from both the system designer and the application
programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical
address space, because the processor begins execution at FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits are set to include only the
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess
Base Address

Registers
CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

- In practice, a flat model is used by most OSes, and more granular memory
mapping & protection is carried out via paging (coming up)

- But segment descriptors are still used for privilege level based restrictions

// Segment Descriptor
struct segdesc {
 uint lim_15_0 : 16; // Low bits of segment limit
 uint base_15_0 : 16; // Low bits of segment base address
 uint base_23_16 : 8; // Middle bits of segment base address
 uint type : 4; // Segment type (see STS_ constants)
 uint s : 1; // 0 = system, 1 = application
 uint dpl : 2; // Descriptor Privilege Level
 uint p : 1; // Present
 uint lim_19_16 : 4; // High bits of segment limit
 uint avl : 1; // Unused (available for software use)
 uint rsv1 : 1; // Reserved
 uint db : 1; // 0 = 16-bit segment, 1 = 32-bit segment
 uint g : 1; // Granularity: limit scaled by 4K when set
 uint base_31_24 : 8; // High bits of segment base address
};

// Normal segment
#define SEG(type, base, lim, dpl) (struct segdesc) \
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff, \
 ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
 (uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }

#define SEG16(type, base, lim, dpl) (struct segdesc) \
{ (lim) & 0xffff, (uint)(base) & 0xffff, \
 ((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
 (uint)(lim) >> 16, 0, 0, 1, 0, (uint)(base) >> 24 }
#endif

3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)

DPL is loaded as CPL (in CS register)  
if (successful) jump occurs to this segment

Privilege check
- When loading segments, hardware ensures that CPL ≤ DPL (actually a bit

more complicated, but this is very close to the truth!)

- I.e., privilege level can only stay the same or be lowered

- Prevents user code from transitioning directly to kernel code

- To elevate privilege, must do so by way of interrupts/traps!

Segment descriptor tables
- Kernel is responsible for

maintaining descriptor tables

- System wide (Global)

- Task-specific (Local)

- Must be set up before transitioning
to protected mode

Vol. 3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, “Memory-Management Registers”). The
base address of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. The
limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to get
the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors
are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, for information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, “Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-
descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the

Figure 3-10. Global and Local Descriptor Tables

Segment
Selector

Global
Descriptor

T

First Descriptor in
GDT is Not Used

TI = 0I

56

40

48

32

24

16

8

0

TI = 1

56

40

48

32

24

16

8

0

Table (GDT)

Local
Descriptor

Table (LDT)

Base Address
Limit

GDTR Register LDTR Register

Base Address
Seg. Sel.

Limit

Control & System registers
- Transitioning between real & protected mode, and activating/controlling

other hardware features are governed by control & system register flags

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

CR0.PG

Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CR0.CD

Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

CR0.NW
Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

22 21

P
K
E

U
M
I
P

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

CR0.PG

Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CR0.CD

Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

CR0.NW
Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

22 21

P
K
E

U
M
I
P

2-8 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit

mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CR0 then
controls whether the processor is operating in real-address or protected mode. See also: Section 9.9, “Mode
Switching.” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

Figure 2-3. Transitions Among the Processor’s Operating Modes

Real-Address

Protected Mode

Virtual-8086
Mode

System
Management

Mode

PE=1Reset or

VM=1VM=0

PE=0

Reset
or

RSM

SMI#

RSM

SMI#

RSM

SMI#
Reset

 Mode

IA-32e
Mode RSM

SMI#LME=1, CR0.PG=1*

See**

* See Section 9.8.5
** See Section 9.8.5.4

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

CR0.PG

Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CR0.CD

Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

CR0.NW
Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

Figure 2-7. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE PCIDE

17

S
M
E
P

20

FSGSBASE

16 15

S
M
A
P

22 21

P
K
E

U
M
I
P

xv6
bootstrap

code

.code16 # Assemble for 16-bit mode

.globl start
start:
 cli # BIOS enabled interrupts; disable

 # Zero data segment registers DS, ES, and SS.
 xorw %ax,%ax # Set %ax to zero
 movw %ax,%ds # -> Data Segment
 ...

 # Switch from real to protected mode. Use a bootstrap GDT that makes
 # virtual addresses map directly to physical addresses so that the
 # effective memory map doesn't change during the transition.
 lgdt gdtdesc
 movl %cr0, %eax
 orl $CR0_PE, %eax
 movl %eax, %cr0

 ljmp $(SEG_KCODE<<3), $start32

.code32 # Tell assembler to generate 32-bit code now.
start32:
 # Set up the protected-mode data segment registers
 movw $(SEG_KDATA<<3), %ax # Our data segment selector
 movw %ax, %ds # -> DS: Data Segment
 ...

Bootstrap GDT
gdt:
 SEG_NULLASM # null seg
 SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
 SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg

Paging
- Protected mode also enables virtual memory via paging

- A much more granular (but potentially expensive) form of virtual memory

- Will discuss this in detail later!

- Kernel must set up and maintain per-process structures for paging, too

Interrupts & Exceptions
- Events that require special CPU attention, typically by transferring control

from the active task (kernel/user) to a kernel handler

- Interrupts are hardware-sourced events requesting CPU attention

- Typically unrelated to executing instruction

- Can also be generated by software with int N instruction

Exceptions
- Errors/Events arising due to the currently executing instruction

- Subclasses:

- Faults: can be corrected — after handler, return to state prior to faulting
instruction (e.g., page fault)

- Traps: reported immediately after execution of instruction (e.g.,
debugging breakpoint, system call), regular return

- Abort: severe errors; cannot return to task

Handling Interrupts/Exceptions
- Interrupt Descriptor Table (IDT) contains descriptors (aka “gates”)

associating service routines with interrupt/exception numbers

- 255 total indices (aka vector numbers):

- 0-31: architecture-defined

- 32-255: user-defined; can be assigned to I/O devices

6-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

NOTE
Because interrupts are delivered to the processor core only once, an incorrectly configured IDT
could result in incomplete interrupt handling and/or the blocking of interrupt delivery.
IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT and accessing the stack.

6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:

• Task-gate descriptor

• Interrupt-gate descriptor

• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call Gates”). They contain a far pointer
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the
EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

Figure 6-1. Relationship of the IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)
Gate for

0
IDTR Register

Interrupt #n

Gate for
Interrupt #3

Gate for
Interrupt #2

Gate for
Interrupt #1

151647

031
0

8

16

(n−1)∗8

6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.

When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and
stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see
Figures 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see
Figures 6-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

Figure 6-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset

Interrupt/Exception Vectors

6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is
assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/O breakpoints;
single-step; and others.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD instruction or reserved opcode.

 7 #NM Device Not Available (No Math
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can generate an
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun
(reserved)

Fault No Floating-point instruction.1

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core
2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O
APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system
contains multiple processors, processors can also send interrupts to one another by means of the system bus
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family
and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI#
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local
APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the
local APIC, the APIC indicates the receipt of an illegal vector.

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point Error (Math
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.2

18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent.3

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions4

20 #VE Virtualization Exception Fault No EPT violations5

21-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved)
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. Processors after the Intel386 processor do not generate this exception.
2. This exception was introduced in the Intel486 processor.
3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
4. This exception was introduced in the Pentium III processor.
5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

Gate Descriptors

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

// Gate descriptors for interrupts and traps
struct gatedesc {
 uint off_15_0 : 16; // low 16 bits of offset in segment
 uint cs : 16; // code segment selector
 uint args : 5; // # args, 0 for interrupt/trap gates
 uint rsv1 : 3; // reserved(should be zero I guess)
 uint type : 4; // type(STS_{IG32,TG32})
 uint s : 1; // must be 0 (system)
 uint dpl : 2; // descriptor(meaning new) privilege level
 uint p : 1; // Present
 uint off_31_16 : 16; // high bits of offset in segment
};

#define SETGATE(gate, istrap, sel, off, d) \
{ \
 (gate).off_15_0 = (uint)(off) & 0xffff; \
 (gate).cs = (sel); \
 (gate).args = 0; \
 (gate).rsv1 = 0; \
 (gate).type = (istrap) ? STS_TG32 : STS_IG32; \
 (gate).s = 0; \
 (gate).dpl = (d); \
 (gate).p = 1; \
 (gate).off_31_16 = (uint)(off) >> 16; \
}

for(i = 0; i < 256; i++)
 SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);

lidt(idt, sizeof(idt));

Privilege check
- Three variables: CPL, gate DPL, and destination segment DPL

- Destination segment DPL is always 0 (handler is in kernel)

- CPU guarantees that:

- for hardware interrupts, CPL ≥ destination segment DPL

- i.e., interrupt cannot lower privilege!

- for software generated interrupts (via int), CPL ≤ gate DPL

- i.e., can use this to allow user mode to invoke only certain interrupts

- if assertions fail, general protection fault (#13)

Masking Interrupts
- Most external interrupts can be masked (i.e., ignored), by setting the IF

(interrupt flag) in EFLAGS

- cli/sti instructions: clear/set interrupt flag

- IF is automatically cleared when an interrupt (but not a trap) gate is taken

- How is this useful?

Interrupt-handling context
- If interrupts occur in user mode, running handler with current stack is

unsafe (unpredictable state)

- TSS segment defines the currently executing task

- General purpose registers

- Control registers (including EFLAGS, EIP, LDTR, etc.)

- Stack pointers for different privilege levels

7-2 Vol. 3A

TASK MANAGEMENT

7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES,

FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register.
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the
LDT.

7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task

Figure 7-1. Structure of a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)

7-4 Vol. 3A

TASK MANAGEMENT

The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic
fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior

to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the

task switch.
• EFLAGS register field — State of the EFAGS register prior to the task switch.
• EIP (instruction pointer) field — State of the EIP register prior to the task switch.
• Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task

switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is
created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's LDT.

Figure 7-2. 32-Bit Task-State Segment (TSS)

031

100
96

92
88

84

80

76

I/O Map Base Address

15

LDT Segment Selector

GS

FS

DS

SS

CS

72
68

64
60

56

52

48

44
40

36
32

28

24

20

SS2

16
12

8
4

0

SS1

SS0

ESP0

Previous Task Link

ESP1

ESP2

CR3 (PDBR)

T

ES
EDI

ESI
EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

Reserved bits. Set to 0.

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
Reserved
Reserved

Reserved
Reserved

Reserved

Interrupt Procedure

6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.

When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and
stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see
Figures 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see
Figures 6-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

Figure 6-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset

Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:

• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and
interrupt handlers.

• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an
INT n, INT3, or INTO instruction.4 Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

4. This check is not performed by execution of the INT1 instruction (opcode F1); it would be performed by execution of INT 1 (opcode
CD 01).

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

§ PC Architecture

What else?
- Memory + memory layout

- Persistent store (disk)

- Text/graphics display

- Keyboard/Mouse + other I/O devices and controllers

- BIOS, Clock

Protected mode memory-
mapped devices

Unused

Extended memory

BIOS ROM
Real-mode devices

VGA display

Low memory
0x00000000

0xFFFFFFFF (4GB)

0x000A0000 (640KB)

0x000C0000 (768KB)

0x000F0000 (960KB)

0x00100000 (1MB)

Physical RAM limit

Ph
ys

ic
al

 m
em

or
y

m
ap

Startup & BIOS
- On startup, transfer control to address FFFF:0000 (real mode)

- BIOS executes power on self test, initializes video card, disk controller,
and sets up basic interrupt routines for simple I/O

- If boot drive is found, load boot sector (512 bytes, tagged with ending
0x55AA marker) from drive at address 0000:7C00

Bootloader Responsibilities
- Set up minimal execution environment (stack, protected mode)

- Scans disk for kernel image (may load second-stage bootloader to
navigate partitions, file system, executable formats, etc.)

- Load kernel image at predetermined location in memory

- Transfer control to kernel

On Bootloaders
- Bootloaders can get very complicated!

- E.g., multistage boot loaders like Linux Loader (LILO) and Grand Unified
Bootloader (GRUB) understand file systems and executable file formats

- Also have scripting support and built-in shells

§ QEMU

Full System Emulator
- Emulates the behavior of a real x86 PC in software

- Simulates physical memory map and I/O devices

- Supports up to 255 CPUs (speed dependent on host machine)

- Simple to debug, and won’t break your actual OS!

- Can connect to GDB to “step” through instructions

The QEMU PC System emulator simulates the following peripherals:

- i440FX host PCI bridge and PIIX3 PCI to ISA bridge

- Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA extensions

(hardware level, including all non standard modes).

- PS/2 mouse and keyboard

- 2 PCI IDE interfaces with hard disk and CD-ROM support

- Floppy disk

- PCI and ISA network adapters

- Serial ports

- IPMI BMC, either and internal or external one

- Creative SoundBlaster 16 sound card

- ENSONIQ AudioPCI ES1370 sound card

- Intel 82801AA AC97 Audio compatible sound card

- Intel HD Audio Controller and HDA codec

- Adlib (OPL2) - Yamaha YM3812 compatible chip

- Gravis Ultrasound GF1 sound card

- CS4231A compatible sound card

- PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.

SMP is supported with up to 255 CPUs.

QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL VGA BIOS.

§ Demo

