X380 & XVO Overview

m CS 450: Operating Systems
| Michael Lee <lee@iit.edu>

ILLINOIS TECH | College of Computing

mailto:lee@iit.edu

Agenda

- Motivation
- X806 ISA
- PC architecture

- UNIX

- XVO

ILLINOIS TECH

College of Computing

Motivation

- OS relies on many low-level hardware mechanisms to do its job

- To work on an OS kernel, we must be intimately familiar with the
underlying ISA and PC hardware

- Hardware may dictate what is or isn’t possible, and influence how we
represent and manage system-level structures

- We focus on x86, but all modern ISAs support the mechanisms we need

- e.g., Xvb has been ported to ARM already

ILLINOIS TECH | College of Computing

Q X86

ILLINOIS TECH | College of Computing

Documentation (inteD

Intel® 64 and IA-32 Architectures

- Intel IA-32 Software Developer’s Manuals Software Developer’s Manust
are CO m p I ete refe re n CeS 1,2A, 2B, 2C, 2D, 3%?ggfn3eg gglgg\c? 31

| | []
— VO I u I I I e 1 . ArC h IteCt u ral Ove rVI eW NOTE: This document contains all four volumes of the Intel 64 and IA-32 Architectures Software
u Developer's Manual: Basic Architecture, Order Number 253665; Instruction Set Reference A-Z, Order
Number 325383; System Programming Guide, Order Number 325384; Model-Specific Registers, Order
Number 335592. Refer to all four volumes when evaluating your design needs.

- Volume 2: Instruction Set Reference
- Volume 3: Systems Programming Guide

- Many diagrams in slides taken from them

Order Number: 325462-073US
November 2020

ILLINOIS TECH | College of Computing

X86 coverage

- Timeline

- Syntax

- Registers

- Instruction operands

- Instructions and sample usage
- Processor modes

- Interrupt & Exception handling

ILLINOIS TECH | College of Computing

Timeline

- 1978: Intel released 8086, a 16-bit CPU

- 1982: 80186 and 80286 (still 16-bit)

- 1985: 80386 was the first 32-bit x86 CPU (aka i386/1A-32)

- 2000: AMD created x86-64: 64-bit ISA compatible with x86

- 2001: Intel released |1A-64 “Itanium” ISA, incompatible with x86

- End-of-life announced in 2019 (i.e., official failure)

ILLINOIS TECH | College of Computing

x86 ISA

- XV6 uses the |A-32 ISA
- But we can still build/run it on x86-64!

- x86 is a CISC ISA, so we have:
- Memory operands for non-load/store instructions
- Complex addressing modes

- Relatively large number of instructions

ILLINOIS TECH | College of Computing

Syntax / Formatting

- Two common variants: Intel and AT&T syntax
- Intel syntax common in Windows world

- €.g., mov DWORD PTR [ebp-4], 10 ; format: OP DST, SRC
- AT&T syntax common in UNIX world (default GCC output)

- e.g.,movl $10, -4(%ebp) # format: OP SRC, DST

- We will use this syntax

ILLINOIS TECH | College of Computing

General-Purpose Registers

31 0
EAX
o EBX
Registers
EDX
ES
: ED
- 8 general-purpose registers cBp
ESP
- 6 segment registers for addressing Seqment Registers
15 0
- Status & Control register CS
DS
- Program counter / Instruction pointer o
_ _ FS
- (Many others — including control GS
reQiSterS T COming Up Iater) 31Program Status and Control Register 0
EFLAGS
31 Instruction Pointer 0
EIP

ILLINOIS TECH | College of Computing

General purpose registers

- Can be directly manipulated, but some have special applications
- Most can be accessed as full 32-bit values, or as 16/8-bit subvalues
- Each reqgister Is, by convention, volatile or non-volatile

- A volatile register may be clobbered by a function call; i.e., its value
should be saved — maybe on the stack — if it must be preserved

- A non-volatile register is preserved (by callees) across function calls

ILLINOIS TECH | College of Computing

Register Purpose
General-Purpose Registers %eax Return value
3 1615 8 7 0 16-bit 32-bit
AH AL AX EAX sebx —
BH BL BX EBX secx Counter
CH CL CX ECX
DH DL DX EDX sedx B
BP EBP 2ebp Frame/Base pointer
S ES
D D sesi Source index (for arrays)
SP ESP sedi Destination index (for arrays)
3esp Stack pointer

%eax, $ecx, $edx are volatile registers

ILLINOIS TECH | College of Computing

Instruction operands

Mode Example(s) Meaning
Immediate $0x42, $0xd00d | Literal value
Register 3eax, ¥esp Value found in register
Direct 0x4001000 Value found in address
Indirect (%esp) Value found at address in register

Base-Displacement

8(%esp),
-24 (3ebp)

Given D (B), value found at address D+B
(i.e., address in base register B + numeric offset D)

Scaled Index

8 (%esp,%esi,d)

Given D(B, I,S), value found at address D+B+IxS
Se{l,2,4,8}; Dand I defaultto 0 if left out, S defaults to 1

Memory references

ILLINOIS TECH ‘ College of Computing

Instructions

- Instructions have 0-3 operands
- For many 2 operand instructions, one operand Is both read and written
- €.0.,addl S$1, %eax # %eax = %eax + 1
- Instruction suffix indicates width of operands (1/w/b = 32/16/8 bits)

- Arithmetic operations populate EFLAGS register bits, including ZF (zero
result), SF (signed/neg result), CF (carry-out of MSB occurred), OF
(overflow occurred)

- Used by subsequent conditional instructions (e.g., jump if result = zero)

ILLINOIS TECH

College of Computing

XOOW 0VOONVONONXXONXXXXXXXX

313029 28 27 26 25 24 23 22 212019181716151413121110 9 8 7 6 5 4 3 2 1 0

YY) A
olojofofofofojofololl|1]I]A

N
D| 5| e T

M| F F

— 0VO—

D
F

S
F

A
F

P C
F

ID Flag (ID) ‘ |
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)

Alignment Check / Access Control (AC) —
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
/O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)

Interrupt Enable Flag (IF)
Trap Flag (TF)

Sign Flag (SF)

Zero Flag (ZF)

Auxiliary Carry Flag (AF)
Parity Flag (PF)

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-8. EFLAGS Register

ILLINOIS TECH

College of Computing

Arithmetic

Instruction(s) Description
{add,sub,imul} src, dst dst = dst {+,—,x} src
neg dst dst = —dst
{inc,dec} dst dst = dst {+,-} 1
{sal,sar,shr} src, dst dst = dst {<<,>>,>>>} src (arithmetic & logical shifts)
{and,or,xor} src, dst dst = dst {&,|,”} src (bitwise)
not dst dst = ~dst (bitwise)

src can be an immediate, register, or memory operand; dst can be a register or memory operand.
But at most one memory operand!

ILLINOIS TECH | College of Computing

Conditions and Branches

Instruction(s) Description
cmp src, dst dst — src (discard result but set flags) conditional jump often
test src, dst dst & src (discard result but set flags) follows cmp (or test)
jmp target Unconditionally jump to target (change %eip)
{je,jne} target Jump to target if dst equal/not equal src (ZF=1 / ZF=0)
{jl,jle} target Jump to target if dst </< src (SF£0OF / ZF=1 or SF2OF)
{jg,jge} target Jump to target if dst >/> src (ZF=0 and SF=0F / SF=0F)
{ja,jb} target Jump to target if dst above/below src (CF=0 and ZF=0 / CF=1)

target is usually an address encoded as an immediate operand (e.g., jmp $0x4001000), but addresses may
be stored in a register or memory, in which case indirect addressing is required, which uses the * symbol.
E.g., Jmp *%eax (jump to address in $eax), jmp *0x4001000 (jump to address found at address 0x4001000)

ILLINOIS TECH | College of Computing

E.g., basic control structures

testl %eax, %eax # %eax = cond

1f (cond) { je ELSE
// if-clause # if-clause
} else { jmp ENDIF
// else-clause ELSE:
} # else-clause
ENDIF:
...

testl %eax, %$eax # %eax = cond

je ENDLOOP
while (cond) { LOOP:
// loop-body # loop-body
} testl %eax, %eax
jne LOOP
ENDLOOP:
o oeeo

ILLINOIS TECH | College of Computing

Data movement

Instruction(s) Description
mov src, dst Copy data from src to dst (memory—memory moves not possible)
movzbl src, dst Copy 8-bit value to 32-bit target (& other variants), using zero-fill
movsbl src, dst Copy 8-bit value to 32-bit target (& other variants), using sign-extension
{cmove/ne} src, dst Move data from src to dst if ZF=1/ ZF=0
{cmovg/ge/1l/le/a/b/..} Conditionally move data from src to dst (per jump naming conventions)

Address computation

lea address, dst dst = address (ho memory access! just computes value of address)

ILLINOIS TECH | College of Computing

Functions and Call stack

Instruction(s) Description
push src Push src onto stack
pop dst Pop top of stack into dst
call target Push current $eip (address of instruction after call) onto stack, jump to target
leave Restore frame pointer (3ebp) and clears stack frame
ret Pop top of stack into geip

All instructions above implicitly adjust $esp and access the stack.
target may use indirect addressing as well, e.g., call *%eax (call function whose address is in $eax)

ILLINOIS TECH | College of Computing

Function calls

- Functions make extensive use of the call stack — leads to convention-
driven prologue and epilogue blocks in assembly code

- Typical function prologue:
- Save old frame pointer and establish new frame pointer
- Save non-volatile register values we might clobber (“callee-saved”)
- Load needed parameters from prior stack frame

- Allocate stack space for any local data

ILLINOIS TECH | College of Computing

Function calls

- Typical function epilogue:
- Place return value in $eax
- Deallocate any space used for local data
- Restore/Pop any clobbered non-volatile register values
- Restore/Pop old frame pointer

- Return

ILLINOIS TECH | College of Computing

Function calls (Optimization)

- Many of these steps may be optimized (simplified or neglected
altogether) by the compiler!

- Prefer reqgisters to stack-based args or local vars (regs vs. memory)

- %esp doesn’t always reflect the top of the stack (only need to do this if
calling another function)

- lea often used in surprising ways (addressing modes as arithmetic)

ILLINOIS TECH | College of Computing

)
= Stack
(0 N meenemnem e
— ret addr
Call Stack "
)
% O
- Maintains dynamic state and context of Ie =
executing program = Cth
la Q)
- Saved frame pointers (previous values of O ch
3ebp) create a chain of stack frames
- Useful to navigate for debugging and 3ebp — A
tracing! (e.g., gdb “backtrace”) =
B
S
=
(D

zesp

top” of stack
ILLINOIS TECH | College of Computing

E.g., function calls

int main() {

return O0;

)
int sum(int @, int B) {

int ret = a + b;
return ret;

main:
pushl
movl

movl
addl

popl
ret

3ebp
zesp

SO,
S16,
3ebp

3ebp

4

Zeax
zesp

sum: # unoptimized

pushl 3ebp
movl Tesp, %ebp

suin.

mov.l -4 (%ebp), %eax
addl -8 (%ebp), %eax
movl Teax, -12(%ebp)
movl -12(%ebp), %eax
popl %ebp

ret

optimized
leal (%edi, %esl), %eax
ret

ILLINOIS TECH | College of Computing

Processor modes

- When an x86 system first boots up, it runs in 16-bit real mode (8086
compatible) — all addresses reference “real” memory locations

- 16/32-bit protected modes add privilege levels, virtual memory, and
other mechanisms useful to the OS (e.g., for multitasking)

- 64-bit long mode removes some instructions and adds 64-bit registers
and addressing

ILLINOIS TECH | College of Computing

Real mode addressing

- Only 16-Dbit registers, but support for 20-bit addresses (1MB address
space) through the use of segment registers: CS, DS, ES, SS

- Left-shift segment number by 4 (i.e., x16) to obtain base address, and
add to offset to compute 20-bit physical address

- Code (via IP) and Stack (via SP and BP) accesses automatically use
CS (code segment) and SS (stack segment) to compute addresses

- e.g., If IP=0x4000 and ¢s=0x1100, Cs: IP refers to physical address
Ox1100x16 + 0x4000 = Ox15000

ILLINOIS TECH | College of Computing

Protected mode

- Segment registers (expanded to CS, DS, SS, ES, FS, GS) no longer hold
base addresses, but selectors

- Selectors are used to load segment descriptors from a descriptor table
which describe location/size/status/etc. of segments

- CS selector contains a 2-bit CPL In addition to selector value

- Recall: privileged instructions are only available when CPL=0

ILLINOIS TECH | College of Computing

15 0 31(63) 0

Logical .
Address L9 Seb(ior Offset (Effective Address)

Descriptor Table

Base Address

+ | <K

» | Segment
Descriptor

31(63) Y 0
Linear Address

- Segments allow complex memory mapping and access control (e.g.,
restricted access), among other things

ILLINOIS TECH | College of Computing

Segment
Registers

CS

Segment
Descriptors

Access

Limit

Linear Address Space
(or Physical Memory)

SS

Base Address

Access

Limit

Stack

DS

Base Address

Access

Limit

ES

Base Address

Access

Limit

Code

FS

Base Address

Access

Limit

Data

GS

Base Address

Access

Limit

Data

Y

Base Address

Access

Limit

Data

Base Address

Access

Limit

Base Address

Access

Limit

Data

Base Address

Access

Limit

Base Address

\

Figure 3-4. Multi-Segment Model

ILLINOIS TECH

College of Computing

Linear Address Space
(or Physical Memory)

>

Segment
Registers
CS Code- and Data-Segment
Descriptors
SS \
DS = | Access Limit
ES — Base Address
FS ::::::;'
GS

Code

Not Present

Data and
Stack

FFFFFFFFH

- In practice, a flat model is used by most OSes, and more granular memory
mapping & protection is carried out via paging (coming up)

- But segment descriptors are still used for privilege level based restrictions

ILLINOIS TECH | College of Computing

DPL is loaded as CPL (in CS register)
iIf (successful) jump occurs to this segment

31 2423 22212019 16 15 14 W12 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limit [P} P S| Type Base 23:16
B Ll 19:16 L
31 16 15 0

Base Address 15:00 Segment Limit 15:00

L — 64-bit code segment (IA-32e mode only)

AVL — Available for use by system software

BASE — Segment base address

D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

// Segment Descniptorn

struct segdesc §
uint 1im_15_0 : 16; // Low bits of segment Pimit
uint base_15_0 : 16; // Low bits of segment base addness
uint base_23_16 : 8; // Middfle bits of segment base addness
uint type : 4; // Segment type (4ee STS_ constants)

uint s : 1; // 6 = system, 1 = application
uint dpl : 2; // Descrnipton Praivilege Level
uint p : 1; // Prnesent

uint lim_19_16 : 4; // High bits of segment Plimit

uint avl : 1; // Unused (avaiflable §on softwaze uire)

uint rsvli : 1; // Resenved

uint db : 1; // 6 = 16-bit segment, 1 = 32-bit segment
uint g : 1; // Gnanulanity: €imit Acaled by 4K when et
uint base_31_24 : 8; // High bits of segment base addness

};

// Nonmal segment

#define SEG(type, base, 1lim, dpl) (struct segdesc) \

§ ((Lim) >> 12) & oxffff, (uint)(base) & oOxffff, \
((uint)(base) >> 16) & oxff, type, 1, dpl, 1, \
(uint)(lim) >> 28, @, 06, 1, 1, (uint)(base) >> 24 }

#define SEG16(type, base, lim, dpl) (struct segdesc) \
§ (1lim) & oexffff, (uint)(base) & oOxffff, \
((uint)(base) >> 16) & oxff, type, 1, dpl, 1, \
(uint)(lim) >> 16, 0, 0, 1, 0, (uint)(base) >> 24 3%
#endif

ILLINOIS TECH | College of Computing

Privilege check

- When loading segments, hardware ensures that CPL < DPL (actually a bit
more complicated, but this is very close to the truth!)

- l.e., privilege level can only stay the same or be lowered
- Prevents user code from transitioning directly to kernel code

- To elevate privilege, must do so by way of interrupts/traps!

ILLINOIS TECH | College of Computing

Segment descriptor tables

Global Local
Descriptor Descriptor
- Kernel is responsible for Tab.efm) Tablefm)
maintaining descriptor tables i m=o =1
egmen
Selector
- System wide (Global) > >
48 48
- Task-specific (Local) 40 40
32 32
- Must be set up before transitioning 24 24
to protected mode 16 16
First Descriptor in 8 8
GDT is Not Used 0 0

GDTR Register \ LDTR Register
Limit Limit
Base Address

Base Address
Seg. Sel.

ILLINOIS TECH | College of Computing

Control & System registers

- Transitioning between real & protected mode, and activating/controlling
other hardware features are governed by control & system register flags

31(63) 222120 181716151413 121110 9 8 7 6 5 4 3 2 1 0
PIS|S S|V U Plp(MIP|P|.|T|P|V
Reserved K X‘ 'E" M g\(" M C|G|C|A[S|2|S|V M| CR4 31(63) 0
E X | E|E|E|E|E|F|D|I|E
PP E|E P
——FSGSBASE OSFXSR CR1
OSXSAVE PCIDE — OSXMMEXCPT
31(63) 12 11 5 4 3 2 31 30 29 28 1918 17 16 15 654 3210
P Directorv B EVF\), CR3 P[C|[N Al W NIE|T|E|MIP| ~Rpg
age-lirectory base DIT (PDBR) G|D|W M P EITISIM|P|E
31(63) 0
Reserved
Page-Fault Linear Address CR2

ILLINOIS TECH | College of Computing

31(63) 22 21 20 181716151413 121110 9 8 7 6 5 4 3 2 1 0 SMI#

plS|s s|v| |u Real-A

Reserved K "X' 'I\E/l)l\él)l\él :\/I E g '\é' K g [E) g \F; |\\5| CRA4 3 e?vIOddedreSS -
EIAIE e 5 E|lE|E|E|E|F|D|I|E Reset
. ' or
__FSGSBASE L OSFXSR

OSXSAVE PCIDE OSXMMEXCPT Reset or T i PE=1 RSM

31(63) 12 11 5 4 3 2 PE=0 | |
plp 4) SMi#
Page-Directory Base g VTV ?PITD:aBR) Reset
ese
Protected Mode
31(63) 0 RSM System
Management
Page-Fault Linear Address CR2 N \ <\ LME=1, CR0.PG=1* SMI# Mode
See** — >
31(63) 0 |A-32e <55
RSM
Mode S
CR1
VM=0 VM=1
3130 29 28 1918 17 16 15 6543210 Y * See Section 9.8.5
L o :
plclin Al lw ne| TIE(MP) cro Virtual-8086 SMI# See Section 9.8.5.4
G|D|w M| |P E|T|S|MPLE Mode -
- RSM
Reserved
Figure 2-7. Control Registers Figure 2-3. Transitions Among the Processor’s Operating Modes

ILLINOIS TECH | College of Computing

.codelé6 # Assemble §on 16-bit mode
.globl start
start:
cli # BIOS enabled intennupts; disable

Zeno data segment negistens DS, ES, and SS.
XOIW %nax, Kax # Set JZax to zeno
MOVW %ax,%ds # -> Data Segment

Switch §nom neal to prnotected mode. Use a bootstrnap GDT that makes
vintual addnesses map dinectly to physical addnesses 20 that the
effective memony map doesn't change duning the trnansition.

XV6 lgdt gdtdesc

movl %Cro, %eax
orl $CRO_PE, %eax
bOOtSt rap movl “eax, %cCro
COde 1mp $(SEG_KCODE<<3), $start32

.code32 # Tell assemblen to genenate 32-bit code now.
starts2:
Set up the prnotected-mode data Asegment negistens
movw $ (SEG_KDATAKK3), %ax # Oun data Asegment selector
movw %“ax, %ds # -> DS: Data Segment

Bootatnap GDT

gdt:
SEG_NULLASM # nubll seqg
SEG_ASM(STA_X|STA_R, oxe, oxffffffff) # code seg
SEG_ASM(STA_W, 0x0, oxffffffff) # data seg

ILLINOIS TECH | College of Computing

Paging

- Protected mode also enables virtual memory via paging
- A much more granular (but potentially expensive) form of virtual memory
- WIll discuss this in detail later!

- Kernel must set up and maintain per-process structures for paging, too

ILLINOIS TECH | College of Computing

Interrupts & Exceptions

- Events that require special CPU attention, typically by transferring control
from the active task (kernel/user) to a kernel handler

- Interrupts are hardware-sourced events requesting CPU attention
- Typically unrelated to executing instruction

- Can also be generated by software with int N instruction

ILLINOIS TECH | College of Computing

Exceptions

- Errors/Events arising due to the currently executing instruction
- Subclasses:

- Faults: can be corrected — after handler, return to state prior to faulting
instruction (e.q., page fault)

- Traps: reported immediately after execution of instruction (e.g.,
debugging breakpoint, system call), regular return

- Abort: severe errors; cannot return to task

ILLINOIS TECH | College of Computing

Handling Interrupts/Exceptions

- Interrupt Descriptor Table (IDT) contains descriptors (aka “gates’)
associating service routines with interrupt/exception numbers

- 255 total indices (aka vector numbers):
- 0-31: architecture-defined

- 32-255: user-defined; can be assigned to I/0O devices

ILLINOIS TECH

College of Computing

47

IDTR Register
16 15

IDT Base Address

IDT

_imit

y

Interrupt

C Descriptor Table (IDT)

Gate for
Interrupt #n

(n—1)+8

g

S

Gate for
Interrupt #3 16
Gate for
Interrupt #2 8
Gate for
- Interrupt #1 0
31 0

Figure 6-1. Relationship of the IDTR and IDT

ILLINOIS TECH

College of Computing

Interrupt
Vector

Destination

IDT Code Segment
Interrupt
Offset Procedure
Interrupt or —>(+) >
Trap Gate
Segment Selector

GDT or LDT
Base
Address
Segment
Descriptor

Figure 6-3. Interrupt Procedure Call

ILLINOIS TECH

College of Computing

Interrupt/Exception Vectors

Table 6-1. Protected-Mode Exceptions and Interrupts

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

Vector Mne- Description Type Error Source
monic Code

0 #DE Divide Error Fault No DIV and IDIV instructions.

1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/0 breakpoints;
single-step; and others.

2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

3 #BP Breakpoint Trap No INT3 instruction.

4 HOF Overflow Trap No INTO instruction.

5 #BR BOUND Range Exceeded Fault No BOUND instruction.

6 #UD Invalid Opcode (Undefined Opcode) | Fault No UD instruction or reserved opcode.

7/ #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.

Coprocessor)
8 HDF Double Fault Abort Yes Any instruction that can generate an
(zero) exception, an NMI, or an INTR.
9 Coprocessor Segment Overrun Fault No Floating-point instruction.!
(reserved)

10 HTS Invalid TSS Fault Yes Task switch or TSS access.

11 H#NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 H#SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 H#GP General Protection Fault Yes Any memory reference and other
protection checks.

14 HPF Page Fault Fault Yes Any memory reference.

15
16

17

18

19

20
21-31
32-255

#MF

#AC

#MC

#XM

#VE

(Intel reserved. Do not use.)

x87 FPU Floating-Point Error (Math
Fault)

Alignment Check

Machine Check

SIMD Floating-Point Exception

Virtualization Exception
Intel reserved. Do not use.

User Defined (Non-reserved)
Interrupts

Fault

Fault

Abort

Fault

Fault

Interrupt

No
No

Yes
(Zero)
No

No

No

x87 FPU floating-point or WAIT/FWAIT
instruction.

Any data reference in memory.2

Error codes (if any) and source are model
dependent.?

SSE/SSEZ/SSE3 floating-point
instructions®

EPT violations>

External interrupt or INT ninstruction.

ILLINOIS TECH | College of Computing

// Gate descniptons §on intennupts and trnaps
struct gatedesc §

O uint off_15_6 : 16; // Pow 16 bits of ofEset in segment
ate Descriptors 1o " e
uint args : 5; // # angs, 6 fon intenxnupt/trnap gates
uint rsvl : 3; // nesenved(Ahould be zeno I guess)
Interrupt Gate uint type : U; // type(STS_{IG32,TG323)
31 16 15 14 13 12 8 7 5 4 0 uint s : 1; // must be 6 (system)
5 uint dpl : 2; // descnipton(meaning new) prnivilege Pevel
Offset 31..16 Pl P |0D110[|0 00 4 uint p : 1; // Present
L uint off_31_16 : 16: // high bits of offset in segment
31 16 15 0 3;
Segment Selector Offset 15..0 0 #define SETGATE(gate, istrap, sel, off, d) \
¢ \
(gate).off_15_06 = (uint)(off) & oxffff; \
Trap Gate (gate).cs = (sel); \
31 16 15 14 13 12 8 7 5 4 0 (gate).args = 0; \
5 (gate).rsvl = O; \
Offset 31..16 PlP|OD111[000 4 (gate).type = (istrap) ? STS_TG32 : STS_IG32; \
L (gate).s = O; \
31 16 15 0 (gate).dpl = (d); \
(gate).p = 1; \
Segment Selector Offset 15..0 0 (gate).off 31 16 = (uint)(off) >> 16; \
3
DPL Descriptor Privilege Level for(i = 0; 1 < 256; 1++)
Offset Offset to procedure entry point SETGATE(idt[i], ©, SEG_KCODE<<3, vectors[i], ©);
P Segment Present flag SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER):
Selector Segment Selector for destination code segment
D Size of gate: 1 = 32 bits; 0 = 16 bits lidt(idt, sizeof(idt));

ILLINOIS TECH ‘ College of Computing

Privilege check

- Three variables: CPL, gate DPL, and destination segment DPL
- Destination segment DPL is always O (handler is in kernel)
- CPU guarantees that:
- for hardware interrupts, CPL > destination segment DPL
- l.e., Interrupt cannot lower privilege!
- for software generated interrupts (via int), CPL < gate DPL
- l.e., can use this to allow user mode to invoke only certain interrupts

- If assertions fail, general protection fault (#13)
ILLINOIS TECH I College of Computing

Masking Interrupts

- Most external interrupts can be masked (i.e., ignored), by setting the IF
(interrupt flag) in EFLAGS

- cli/sti instructions: clear/set interrupt flag
- IF is automatically cleared when an interrupt (but not a trap) gate is taken

- How is this useful?

ILLINOIS TECH | College of Computing

Interrupt-handling context

- If interrupts occur in user mode, running handler with current stack is
unsafe (unpredictable state)

- TSS segment defines the currently executing task
- General purpose registers

- Control registers (including EFLAGS, EIP, LDTR, etc.)

- Stack pointers for different privilege levels

ILLINOIS TECH | College of Computing

Code
3| Segment

Task-State Data
Segment » Segment
(TSS) Stack
Segment
> (Current Priv.
Level)
Stack Segqg.
» Priv. Level 0
Stack Segq.
» Priv. Level 1
Task Register Stack
» Segment
CR3 (Priv. Level 2)

Figure 7-1. Structure of a Task

ILLINOIS TECH | College of Computing

31 15
I/O Map Base Address Reserved
Reserved LDT Segment Selector
Reserved GS
Reserved FS
Reserved DS
Reserved SS
Reserved CS
Reserved ES
EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
EFLAGS
EIP
CR3 (PDBR)
Reserved SS2
ESP2
Reserved SS1
ESP1
Reserved SSO
ESPO
Reserved Previous Task Link

Reserved bits. Set to 0.

100
96
92
88
84
80
76
72
68
64
60
56
52
48

44
40
36
32
28
24
20
16
12

Figure 7-2. 32-Bit Task-State Segment (TSS)

ILLINOIS TECH

College of Computing

Interrupt Procedure

When the processor performs a call to the exception- or interrupt-handler procedure:

If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.

When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and

stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS
Figures 6-4).

c. If an exception causes an error code to be saved, it is pus
If the handler procedure is going to be executed at the same

a. The processor saves the current state of the EFLAGS, CS,
Figures 6-4).

, CS, and EIP registers on the new stack (see

ned on the new stack after the EIP value.

orivilege level as the interrupted procedure:

and EIP registers on the current stack (see

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

ILLINOIS TECH | College of Computing

Interrupted Procedure’s
and Handler’s Stack

EFLAGS
CS
EIP

Interrupted Procedure’s
Stack

Stack Usage with No
Privilege-Level Change

<— ESP Before

Transfer to Handler

Error Code |[«——ESP After

Transfer to Handler

Stack Usage with
Privilege-Level Change

<<—ESP Before

Transfer to Handler

ESP After—>
Transfer to Handler

Handler’s Stack

SS

ESP

EFLAGS

CS

EIP

Error Code

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

ILLINOIS TECH

College of Computing

S PC Architecture

ILLINOIS TECH | College of Computing

What else?

- Memory + memory layout

- Persistent store (disk)

- Text/graphics display

- Keyboard/Mouse + other I/O devices and controllers

- BIOS, Clock

ILLINOIS TECH | College of Computing

Physical memory map

Protected mode memory-
mapped devices

Unused

Extended memory

BIOS ROM

Real-mode devices

VGA display

Low memory

OXFFFFFFFF (4GB)

Physical RAM limit

0x00100000 (1MB)

OX000F0000 (960KB)

OXx000C0000 (768KB)

Ox000A000O (6LOKB)

OX0000B00O

ILLINOIS TECH

College of Computing

Startup & BIOS

- On startup, transfer control to address FFFF: 0000 (real mode)

- BIOS executes power on self test, initializes video card, disk controller,
and sets up basic interrupt routines for simple 1/0

- |f boot drive is found, load boot sector (512 bytes, tagged with ending
0x55AA marker) from drive at address 0000:7C00

ILLINOIS TECH | College of Computing

Bootloader Responsibilities

- Set up minimal execution environment (stack, protected mode)

- Scans disk for kernel image (may load second-stage bootloader to
navigate partitions, file system, executable formats, etc.)

- Load kernel image at predetermined location in memory

- Transfer control to kernel

ILLINOIS TECH | College of Computing

On Bootloaders

- Bootloaders can get very complicated!

- E.g., multistage boot loaders like Linux Loader (LILO) and Grand Unified
Bootloader (GRUB) understand file systems and executable file formats

- Also have scripting support and built-in shells

ILLINOIS TECH | College of Computing

§ QEMU

ILLINOIS TECH | College of Computing

Full System Emulator

- Emulates the behavior of a real x86 PC in software

- Simulates physical memory map and |I/O devices

- Supports up to 255 CPUs (speed dependent on host machine)
- Simple to debug, and won’t break your actual OS!

- Can connect to GDB to “step” through instructions

ILLINOIS TECH | College of Computing

The QEMU PC System emulator simulates the following peripherals:
- 1440FX host PCI bridge and PIIX3 PCI to ISA bridge
- Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA extensions
(hardware level, including all non standard modes).
- PS/2 mouse and keyboard
- 2 PCI IDE interfaces with hard disk and CD-ROM support
- Floppy disk
- PCIl and ISA network adapters
- Serial ports
- IPMI BMC, either and internal or external one
- Creative SoundBlaster 16 sound card
- ENSONIQ AudioPCI ES1370 sound card
- Intel 82801AA AC97 Audio compatible sound card
- Intel HD Audio Controller and HDA codec
- Adlib (OPL2) - Yamaha YM3812 compatible chip
- Gravis Ultrasound GF1 sound card
- CS4231A compatible sound card
- PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
SMP is supported with up to 255 CPUs.
QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL VGA BIOS.

ILLINOIS TECH | College of Computing

S Demo

ILLINOIS TECH | College of Computing

