
CPU Virtualization
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- Central question: how to implement time-sharing?

- While maintaining OS control & maximizing performance

- “Limited direct execution”

- Mechanics of context switches

Direct Execution
- OS loads process program/data/args into predefined location(s), then

points PC at entry point (e.g., main)

- When program terminates (e.g., return from main), OS cleans up process
footprint (data/metadata)

Direct Execution
- Problems:

- No concurrency

- Process is unchecked; can wreak havoc on system!

Limited Direct Execution
- Must prevent user from:

- accessing arbitrary memory addresses

- executing “dangerous” instructions

- e.g., access to I/O and system registers

province of  
VM (later)

focus on 
this first

Recall: kernel vs. user mode
- Privileged instructions can only be executed in kernel mode

- (what happens when user attempts to run?)

- On x86: CPL flag in CS register — 0 = kernel, 3 = user

- After system boot, OS switches to user mode before ceding control to
process

System Calls
- When user needs to perform I/O, invoke kernel-mode OS functions via

system calls

- e.g., printf(…) → write(…)

- Looks like a regular function call, but isn’t!

char *str = "hello world";
int len = strlen(str);
write(1, str, len);
...

movl len, %edx
movl str, %ecx
movl $1, %ebx
movl $4, %eax
int $0x80
...

trap instr
syscall num

Trap Mechanism

Memory

movl $4, %eax
int $0x80

ProcessOS
interrupt vector

…

[128]

s
y
s
c
a
l
l

…

[4]

s
y
s
_
w
r
i
t
e

syscall table

(mode switch)

i.e., [0x80]

movq $4, %rax
syscall

ProcessOS

s
y
s
c
a
l
l

…

- x86-64 adds syscall instruction — avoids trap mechanism

- much faster! (software interrupts are expensive)

- but traps still used for other things

[4]

s
y
s
_
w
r
i
t
e

(mode switch;

PC saved in %rcx)

IA32_LSTAR

model-specific register (MSR)

General Interrupt Mechanism

…

0-31

reserved for

CPU-generated

32-255

software configurable

(for sw/hw interrupts)

(not all can be triggered from user mode!)

IDTR (base address register) — populated by privileged lidtr instruction

interrupt/trap “gates”

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

from Intel 64 and IA-32 Software Developer’s Manual, Volume 3

- Problem: when transitioning to OS code, process state may be lost (e.g.,
PC, SP, etc.)

- Should save in case we return to process after servicing trap

ProcessOS…

Saving Process State
- Hardware automatically saves current context during trap

- Where?

- On kernel stack — automatically activated on mode switch

- Every process has its own separate kernel stack — used to keep track of
kernel state (e.g., while handling I/O)

error code

(empty)

ss

esp

eflags

cs

eip

esp

only present on
privilege change

sp from task segment

Figure 3-1. Kernel stack after an int instruction.

• Push %esp.

• Push %eflags.

• Push %cs.

• Push %eip.

• Clear the IF bit in %eflags, but only on an interrupt.

• Set %cs and %eip to the values in the descriptor.
The int instruction is a complex instruction, and one might wonder whether all

these actions are necessary. For example, the check CPL <= DPL allows the kernel to
forbid int calls to inappropriate IDT entries such as device interrupt routines. For a
user program to execute int, the IDT entry’s DPL must be 3. If the user program
doesn’t have the appropriate privilege, then int will result in int 13, which is a gener-
al protection fault. As another example, the int instruction cannot use the user stack
to save values, because the process may not have a valid stack pointer; instead, the
hardware uses the stack specified in the task segment, which is set by the kernel.

Figure 3-1 shows the stack after an int instruction completes and there was a
privilege-level change (the privilege level in the descriptor is lower than CPL). If the
int instruction didn’t require a privilege-level change, the x86 won’t save %ss and
%esp. After both cases, %eip is pointing to the address specified in the descriptor ta-
ble, and the instruction at that address is the next instruction to be executed and the
first instruction of the handler for int n. It is job of the operating system to imple-
ment these handlers, and below we will see what xv6 does.

An operating system can use the iret instruction to return from an int instruc-
tion. It pops the saved values during the int instruction from the stack, and resumes
execution at the saved %eip.

Code: The first system call

Chapter 1 ended with initcode.S invoking a system call. Let’s look at that again

DRAFT as of August 29, 2017 41 https://pdos.csail.mit.edu/6.828/xv6

int+code
iret+code
int+code
initcode.S+code

from xv6 commentary

Restoring Process State
- “return from trap” instruction: iret — pops and restores trap frame and

returns to process in user mode

ProcessOS…

s
y
s
c
a
l
l

s
y
s
_
f
n

iret

(On x86-64, sysret instead; loads PC from %rcx)

ProcessOS…

s
y
s
c
a
l
l

s
y
s
_
f
n

iret

- Do we always immediately return to trapping process?

- No! (Why not?)

- Process may be blocked (due to I/O request)

- Scheduling decision

Context Switch
1. Trap to kernel; save trap frame on kernel stack

2. Save outgoing process context on kernel stack

3. Switch to different kernel stack

4. Restore incoming process context from kernel stack

5. iret (restore trap frame from kernel stack)

swtch:
 movl 4(%esp), %eax
 movl 8(%esp), %edx

 # Save old callee-saved registers
 pushl %ebp
 pushl %ebx
 pushl %esi
 pushl %edi

 # Switch stacks
 movl %esp, (%eax)
 movl %edx, %esp

 # Load new callee-saved registers
 popl %edi
 popl %esi
 popl %ebx
 popl %ebp
 ret

trapret:
 popal
 popl %gs
 popl %fs
 popl %es
 popl %ds
 addl $0x8, %esp
 iret

user space

user
stack

user
stack

user
stack

user
stack user

stack

kernel space

kernel
stack

kernel
stack

kernel
stack

kernel
stack

active

process

kernel
stack

user space

kernel space

user
stack

user
stack

user
stack

user
stack user

stack

kernel
stack

kernel
stack

kernel
stack

kernel
stack

(context save)

kernel
stack

user space

kernel space

user
stack

user
stack

user
stack

user
stack user

stack

kernel
stack

kernel
stack

kernel
stack

kernel
stack

(context switch)

kernel
stack

user space

kernel space

user
stack

user
stack

user
stack

user
stack user

stack

kernel
stack

kernel
stack

kernel
stack

kernel
stack

kernel
stack

user space

kernel space

user
stack

user
stack

user
stack

user
stack user

stack

kernel
stack

kernel
stack

kernel
stack

active

process

Cooperative Multitasking, done!
- aka non-preemptive multitasking

- Only context switch on trap to OS that results in:

- process termination

- process blocking

- Can also add “yield” system call to voluntarily cede control

Preemptive Multitasking
- Must guarantee that OS regains control periodically

- Hardware assistance: schedule periodic clock interrupt at fixed time
intervals (e.g., 1ms)

- Decide whether to perform context switch after some number of
intervals (typically ~100ms)

Decision = Policy
- Context switch is merely a mechanism

- Carried out by low level dispatcher

- When to carry out context switch is decided by the scheduler

- Scheduling policies/algorithms, coming up!

