
The Process
CS 450: Operating Systems
Michael Lee <lee@iit.edu>

mailto:lee@iit.edu

Agenda
- The Process: what is it and what’s in it?

- Forms of Multitasking

- Tracking processes in the OS

- Context switches and Scheduling

- Process API

a process is a program in execution

- its behavior is largely defined by the program being executed

- but a process is much more than just a program!

Multitasking
- Modern general-purpose OSes typically run dozens to hundreds of

processes simultaneously

- May collectively exceed capacity of hardware

- Recall: virtualization allows each process to ignore physical hardware
limitations and let OS take care of details

CPU/Memory Virtualization
- Time-slicing of CPU(s) is performed to simulate concurrency

- Memory is partitioned and shared amongst processes

- But per-process view is of a uniform address space

- Lazy/On-demand loading of processes lowers total burden

vs. “Batch” processing
- Without multitasking, each program is run from start to finish without

interruption from other processes

- Including any I/O operations (which may be lengthy!)

- Ensures minimal overhead (but at what cost?)

- Is virtualization still necessary?

Pros/Cons of Multitasking
- Pro: may improve resource utilization if we can run some processes while

others are blocking

- Pro: makes process interaction possible

- Con: virtualization introduces overhead (examples?)

- Con: possibly reduced overall throughput

Forms of Multitasking
- Cooperative multitasking: processes voluntarily cede control

- Preemptive multitasking: OS polices transitions (how?)

- Real-time systems: hard, fixed time constraints (late is wrong!)

What’s in a process?
- Program (“text”) and data

- Static/Stack/Heap memory contents

- Registers (e.g., PC, SP, FP)

- Open files and devices (e.g., network)

- What else?

Data vs. Metadata
- User-maintained data vs. Kernel-maintained data

- Metadata examples:

- PID, GID, UID

- Allotted CPU time

- Virtual → Physical memory mapping

- Pending I/O operations

OS Data Structures
- Critical function of OS is to maintain data structures for keeping track of

and managing all current processes

- Layout of many structures are dictated by hardware

- e.g., VM structures, interrupt stack frame

PCB
- Aggregate per-process data entry is referred to as the Process Control

Block (PCB)

- Implementation likely consists of many disparate structures

// xv6 PCB components (not comprehensive!)

struct context {
 uint edi;
 uint esi;
 uint ebx;
 uint ebp;
 uint eip;
};

enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };

struct proc {
 uint sz; // Size of process memory (bytes)
 pde_t* pgdir; // Page table
 char *kstack; // Bottom of kernel stack for this process
 enum procstate state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 struct trapframe *tf; // Trap frame for current syscall
 struct context *context; // swtch() here to run process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 char name[16]; // Process name (debugging)
};

Context Switches
- Multitasking via virtualization relies on seamlessly switching contexts

between processes on hardware

- Requires frequently saving/loading state to/from PCB

- At any point may have multiple processes ready to run

- How to pick the incoming process?

Scheduler
- Combination of policies & mechanisms used to select which process is

allocated resources

- Can express operations in a state transition diagram

Policy vs. Mechanism
- Recurring theme in OS (and general software) implementation

- Ideally: keep policy separate from mechanism (why?)

- Cross-cutting issues may be difficult to isolate, resulting in a high
degree of coupling between modules

- API vs. Implementation is an example of policy vs. mechanism

Unix Process API
- Set of flexible, orthogonal process APIs that enable:

- Creation & Program execution

- Management (e.g., suspension, destruction, synchronization)

- Metadata access (e.g., status, termination conditions)

- Interoperation

Unix Process API (partial)
- Creation: fork

- Program execution: exec

- Synchronization: wait

- Termination: exit

/* Simple forking example */

if (fork() == 0) {
 /* in child */
 printf("Hello from child!\n");
} else {
 /* in parent */
 printf("Hello from parent!\n");
}

/* Primitive Unix shell: OS “interface" */

/* Read-Eval Loop */
while (1) {
 printf("$ "); /* print prompt */

 /* read command and build argv */
 fgets(buf, MAXLINE, stdin);

 /* fork child process */
 if (fork() == 0) {
 /* parse command line into arguments */
 parsecmd(buf, argv);

 /* execute argument program in child */
 if (execvp(argv[0], argv) < 0) {
 printf("Command not found\n");
 exit(0); // terminate
 }
 }

 /* wait for child completion in parent */
 wait(&status);
}

API vs. Kernel Implementation
- Unix API has stood the test of time — large parts unchanged from

earliest versions

- “Those who don't understand Unix are condemned to reinvent it,
poorly.” (Henry Spencer)

- But this doesn’t mean we can’t re-engineer things under the hood!

