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Abstract—Cosmological simulations are highly complicated,
and it is time-consuming to redesign and reimplement the code
for improvement. Moreover, it is a risk to implement any idea
directly in the code without knowing its effects on performance.
In this paper, we design an emulator for cell-based AMR (adap-
tive mesh refinement) cosmology simulations, in particular, the
Adaptive Refinement Tree (ART) application. ART is an ad-
vanced “hydro+N-body” simulation tool integrating extensive
physics processes for cosmological research. The emulator is
designed based on the behaviors of cell-based AMR cosmology
simulations, and quantitative performance models are built
toward the design of the emulator. Our experiments with
realistic cosmology simulations on production supercomputers
indicate that the emulator is accurate. Moreover, we evaluate
and compare three different load balancing schemes for cell-
based cosmology simulations via the emulator. The comparison
results provide us useful insight into the performance and
scalability of different load balance schemes.

Keywords-performance emulator; cosmology simulation;
adaptive mesh refinement; load balancing

I. INTRODUCTION

Numerical simulations are vital for many scientific in-
quiries, especially in those fields where researchers cannot
build and test models of complex phenomena in the labo-
ratory. Cosmology is such a field where scientists cannot
perform direct experiments with the objects of their study.
Instead, they have to build up numerical simulations to
model the universe. As a result, cosmology simulations
are critical to making quantum leaps in understanding the
formation and evolution of galaxies in the universe. To
effectively model various regions with different densities
in the universe, adaptive mesh refinement (AMR) [1] is
widely adopted in cosmology simulations, which enables
high resolution in localized regions (e.g., the regions around
the galaxies of interest). There are mainly two different
numerical approaches towards the implementation of AMR-
based cosmology simulations, namely block-structured [2]
and cell-based [3], each having their advantages and draw-
backs.

As cosmologists are always making efforts to enhance
cosmological codes, such as fully utilizing the ever-growing

supercomputers for high-fidelity simulations and including
new physical processes especially those that are ignored
before, cosmology simulations become increasingly com-
plex. Improving cosmology codes is time-consuming and
complicated. Without rigorous performance analysis before
making major code modification, it is very likely that the
expected performance improvement is not achieved or even
worse. Thus, it is critical to provide a new approach to
examine potential performance impacts with different code
changes in a time-efficient way.

We target cell-based AMR cosmology applications, in
particular, the adaptive refinement tree (ART) code [3]. As
an advanced cosmology simulation tool, ART is currently
an “N-body+hydro” simulation code integrating both dark
matter and gas dynamics, as well as radiative transfer. Many
physical calculations have been implemented for the first
time in the ART code, making it unique in its capabilities.
In a typical cosmology simulation, the highest resolution
regions can reach 7 to 10 refinement levels, resulting in
a large range of dynamic multidimensional regions. For
simulations with highly non-uniform grids, how to achieve
good performance at scale is very challenging.

In this paper, we present our design of a performance
emulator for cell-based AMR cosmology simulations. The
emulator follows the flow of the original application, while
the major physical computation and interprocess commu-
nication are replaced by runtime performance estimates
provided by the emulator. We demonstrate the effectiveness
of the emulator by means of realistic cosmology simulation
data on production systems. Our experiments indicate that
the emulator achieves good accuracy. Given the dynamic
feature of AMR and the wide range of workload per cell,
load balancing is an extremely challenging problem for
cell-based cosmology simulations. In this paper, we further
evaluate three load balancing schemes for cell-based AMR
cosmology simulations via the performance emulator. The
use of the emulator enables us to quickly identify the issues
associated with different load balancing schemes.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background information of AMR and
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the ART code. Section III presents the design of ART perfor-
mance emulator. Section IV describes three load balancing
schemes that are evaluated in this study. Section V presents
our experiments on realistic cosmology data including the
assessment of the emulator and the comparison of different
load balancing schemes via the emulator. Finally, Section VI
concludes this paper.

II. BACKGROUND

In this section, we introduce AMR and cell-based AMR,
and present an overview of the ART code.

A. AMR Algorithm
The adaptive mesh refinement (AMR) algorithm was pro-

posed by Berger et al. in 1989 [4]. It is a type of multiscale
algorithm that achieves high spatial resolution in local-
ized regions for dynamic and multidimensional numerical
simulations. Its basic principle is straightforward. Initially,
a uniform mesh is adopted for the entire computational
domain. In the regions which require higher resolution,
finer subgrids are added. If some regions still need more
resolution, even finer subgrids are added. The mesh is refined
recursively in this way, and turns into a tree of grids. This
uniform mesh, as the tree’s root, is at the top level. Each
finer level decreases the mesh size by a factor r, which
is defined as the refinement factor. This approach enables
user to solve problems which are completely intractable on
a uniform mesh, and it is efficient when only a small part of
the computational domain needs to be refined to the highest
resolution.

There are mainly two different approaches for implement-
ing cosmology AMR applications: block-structured AMR
[2] and cell-based AMR [3]. The former achieves high
spatial resolution by inserting smaller grids (“blocks”) at
places where high resolution is needed. The latter instead
refines the computational domain on a cell-by-cell basis.
AMR techinique enables cosmologists to track the phys-
ical processes at very small scale. In practice, these two
methods use different data structures and very different
methods for distributing the computational load across a
large number of processes. The cosmology applications
based on block-structured AMR, e.g., Enzo [5], have been
extensively studied in [6], [7] and [8]. However, there is little
work on performance study of cell-based AMR cosmology
applications. The ART code, as our main simulation tool, is
a representative of such cell-based AMR applications.

B. Cell-based AMR
The cell-based AMR implements the AMR algorithm by

performing grid refinement based on each cell. If higher
spatial resolution is required for a cell, then it is refined into
smaller cells, which are at the finer level of the overall grid
hierarchy. With each level up, the cell size is decreased by
the refinement factor r. Figure 1 shows a cell-based AMR
example on the 2D mesh, including the grid hierarchy and
the overall grid structure. For simplicity, there are only 3
levels of cells from level 0 to level 2. Initially, a uniform
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Level 2

Overall Structure

Level 0

�

Figure 1. A 2D cell-based adaptive mesh refinement example: a quad tree
with refinement factor = 2.

grid on level 0 covers the overall computational domain.
The dotted cells need higher resolution, so they are further
refined. Throughout the execution of the AMR application,
the grid hierarchy changes adaptively, and the cells are
organized in refinement trees [9]. In the refinement tree, the
cell with children is a non-leaf cell. Otherwise, it is a leaf
cell.

C. Cosmology Simulation Code ART

ART is a hybrid “MPI+OpenMP” C code, with Fortran
functions for computationally-intensive routines. The MPI
parallelization is used between separate computation nodes
and the OpenMP parallelization is used inside a multi-
core node. This mixed mode parallelization enables us to
take full advantage of modern multi-core architectures. The
ART code employs the cell-based AMR algorithm, performs
refinement locally on individual cells and organizes cells
in refinement trees. In order to model the universe, it
adopts a cubic computational volume with a refinement
factor of 2. For each cubic cell, the refinement operation
evenly subdivides the cell into 8 cells, namely an oct. The
refinement tree is also called oct-tree. With cell-based AMR,
the ART code is able to control the computational mesh
on the level of individual cells, such that the refinement
mesh can easily be built and modified, and therefore, can
effectively match the complex geometry of cosmologically
interesting regions.

Figure 2 shows the basic flow of the ART code. First, it
reads input files, including parameter files and cosmology
data. Second, it initializes oct-tree and cell buffer. Then
it checks whether the simulation time reaches the user
specified time limit. If yes, the simulation stops, otherwise
the ART code performs load balance and simulates another
iteration by evolving time steps for the overall computational
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Figure 2. Flow control of the ART code.The four steps in the dotted
region are the major steps for evolving a time step at a given level.

domain, including the cells at all the levels. For each level,
the evolution of a time step mainly consists of four steps:
collect boundary information, perform physics computation,
project physics data to the coarser level, and adaptively
refine/derefine the cells. At the end of each iteration, the
ART code generates output files, including log files and
cosmology data files if any.
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�

Figure 3. The order for evolving time steps on different levels (refinement
factor = 2).

Specifically, in each iteration of the simulation, ART
evolves a time step dt for the overall computational domain,
which is adaptively refined into multiple levels of cells
during simulation. This refinement in the spatial domain is
accompanied by a refinement in the time domain, where
finer level grids or cells evolve with a smaller time step
according to the refinement factor. Since the ART code uses
a refinement factor of 2, the time step size at level � is
2−�dt. As a result, ART evolves 2� time steps at level �
in each iteration. Figure 3 shows the recursive execution
order for evolving these time steps on three levels. Basically,
finer levels evolve first, then coarser levels follow. Except the
finest level, each level � evolves a new time step when and
only when level �+ 1 has evolved two time steps ahead.

At the beginning of each time step, each process collects
boundary information by exchanging boundary data with
other processes through MPI communication. In practice,
each process first posts non-blocking receives (MPI Irecv)
to the process that it receives data from, and then sends
data to other processes by non-blocking sends (MPI Isend),
and finalizes the communication by an MPI Waitall for all
processes. Such MPI communications are performed per
time step at each level, and cannot be overlapped with

computations because of data dependency.

III. PERFORMANCE EMULATION

The execution time of a cosmology simulation can be
divided into three parts: physics computation, MPI com-
munication, and others. Here, physics computation time
includes the runtime spent on solving physics equations and
managing the cells; the MPI communication time is the
time spent on MPI function calls; and the other runtime
mainly includes I/O and load balance time. As the sum of
physics computation and MPI communication time accounts
for more than 95% of the overall runtime, we focus on these
two parts during the design of the emulator. In the following,
we first present our performance models to estimate physics
computation time and MPI communication time, and then
describe the performance emulator.

A. Performance Models
Runtime performance models are built to estimate physics

computation time and MPI communication time. Consider-
ing that different levels have different resolutions and time
step sizes, our focus is to build models to estimate these
runtimes of each time step per level. During simulation,
each application process stores two types of cells: the
cells within its computational domain, namely local cells;
and the external neighboring cells of its computational
domain, namely buffer cells. Each process conducts physical
calculation on local cells, and communicates with other
processes to get buffer cell data, which serves as important
boundary information for simulating its local computational
domain. These two types of cells are the main indicators
of physics computation time and MPI communication time,
respectively.

1) Physics Computation Time: In order to characterize
the physics computation time accurately, we use principle
component analysis (PCA) [10] to analyze the runtime, and
observe that the number of local cells and particles are
the dominant terms in determining the physics computation
time. It is expected because the ART code solves two kinds
of physics equations at each level: the physics equations
for hydro dynamics, and the physics equations for N-body
simulation. The former is only solved for leaf local cells,
and the solution is projected to obtain the solution of non-
leaf local cells at the coarser level, while the latter is solved
for particles. Thus, we use the following linear model for
the physics computation time TP of each level.

TP = Tnllc
P + T llc

P + T particle
P (1)

= w1 ×Nnllc + w2 ×Nllc + w3 ×Nparticle,

where wi (i = 1, 2, 3) are constant coefficients for the level

of interest. Tnllc
P , T llc

P and T particle
P denote the computation

time of non-leaf local cells, leaf local cells and particles,
respectively. Nnllc, Nllc, and Nparticle denote the num-
ber of non-leaf local cells, leaf local cells and particles,
respectively. Note that Eq.(1) is defined for each level of
each process, while all the processes share common constant
coefficients of each level.
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To extract these coefficients, we use the cell and particle
counts along with the physics computation time at each level
of each process to formulate Eq.(1), and then solve a linear
system in the form of Ax = b for each level. As the number
of equations is usually larger than the number of coefficients,
we apply linear regression to compute the least square fit
solution of these coefficients.

2) MPI Communication Time: The MPI communication
time can be further divided into two parts: data transmission
time and synchronization time.

Data transmission time is simply the runtime spent on
transmitting data between processes. As updating the bound-
ary information is a major communication routine and the
amount of boundary data for each process is proportional to
its buffer cell counts, the data transmission time is largely
dependent on the number of buffer cells. In our model, data
transmission time is modeled as follows.

Ttrans = ts + n× tc, (2)

where ts can be considered as the latency for message
passing, tc is the inverse of the bandwidth and n is the
data size for one time data transmission. The latency and
bandwidth can be obtained by using Intel MPI Benchmarks
(IMB) [11], and the number of transmitted bytes can be
calculated using the number of buffer cells.

Synchronization time is incurred when processes do not
start their communication routines simultaneously. For ex-
ample, consider two processes with a maximum refinement
level of 3 and 6, respectively, and assume that these two
processes need to exchange boundary information from level
0 to 3. The first process starts evolving time steps at level 3,
while the second process starts at level 6. Once the first
process finishes a time step at level 3, it sits idle until
the second process catches up to it, and then they can
communicate to exchange boundary information. Even if
two processes have the same refinement level, when there
exists load imbalance, a process may still have to sit idle
waiting for the boundary information from the other process.
Such extra waiting time is recorded as part of the MPI
communication time, because the process is stalled when
executing MPI function calls, and we refer to it as syn-
chronization time. The MPI communication time including
both data transmission time and synchronization time can
be characterized by emulating time steps as detailed in the
next subsection.

To build these models, we need performance data so as to
extract model coefficients. In practice, we can either use the
performance data from previous simulations, or conduct a
few iterations of the simulation to collect performance data
for model construction.

B. Emulator Design
Figure 4 presents the design of our emulator. Comparing

Figure 4 and Figure 2, we can see that the emulator uses
the performance models to estimate physics computation and
data transmission time for each time step, rather than con-
ducting the actual simulation. During each iteration, we use

Grid Structure and 
Model Coefficients

Analyze Communication 
Relationships

Iter < MaxIter

YES

NO

Exit

Load Balance

Emulate Time Steps

Estimate Physics Computation Time and Data
Transmission Time Using the Performance Models

Estimate Total Runtime

�

Figure 4. Flow of the performance emulator of ART.

�

Figure 5. Part of the time axes of two processes.

a load balancer to determine workload distribution among
processes, and then emulate time steps in exactly the same
order as the ART code. For each time step, the emulator first
analyzes the communication relationships among processes.
Specifically, for each process, the emulator derives the
amount of data that needs to be transmitted to and received
from all the other processes. Next, according to the cell
and particle counts of each process and the communication
relationships, the emulator estimates physics computation
time and data transmission time using the performance
models shown in equation (1) and (2), respectively. Finally,
the emulator estimates the total runtime. It is achieved by
maintaining a time axis for each process to record the
computation and communication intervals.

Figure 5 shows the time axes of two processes P0 and P1.
The length of computation time intervals are the estimated
physics computation times, while the arrows represent data
transmission. Clearly, MPI communication time intervals
are determined by computation time intervals and data
transmissions. For example, the second MPI communication
time interval of P0 can be computed as Tc = t2−t1 = (t0+
Ttrans)− t1, and the start time of P0 for the communication
in the next time step is t3 = t2 + TP . Therefore, using the
estimated physics computation time and data transmission
time for each time step of each process, the emulator is
able to estimate the MPI communication time including both
data transmission time and synchronization time without
evaluating synchronization time separately.

In summary, by emulating time steps with the perfor-
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mance models to characterize runtime components, the emu-
lator can estimate the performance of the ART code without
executing physics solvers.

IV. LOAD BALANCING SCHEMES

One of the major design goals of our performance emula-
tor is to evaluate the performance of different load balancing
schemes, thus avoiding time-consuming and complicated
implementation in code without knowing potential effects
of the modification. The ART code performs cosmology
simulations using a cubic computational domain, which rep-
resents the universe. The computational domain is initially
divided into many uniform cubic cells at level 0. We refer
to such cells at level 0 as root cells since they are the roots
of oct-trees. Each root cell keeps all its child cells at finer
refinement levels as a single composite unit, thus being the
basic unit for load balancing. In this section, we present
three representative load balancing schemes which will be
evaluated later in Section V.

A. SFC-Based Load Balancing (SFCLB)
Currently, the ART code employs a load balancing scheme

based on Hilbert space-filling curve (SFC) [12]. We denote
this scheme as SFCLB. It assigns a unique SFC ID for each
root cell according to their spatial coordinates, then gener-
ates an SFC curve by connecting root cells with continuous
SFC IDs, and finally divides the SFC curve into Np (Np

is the number of processes) segments with similar amount
of workload. Specifically, this scheme considers the total
workload of each root cell, and adopts a greedy algorithm
to split the SFC curve, so that the workload can be evenly
distributed among all the processes. Currently, SFCLB is
widely used for parallel AMR [13], [14], [15]. One salient
feature of this SFCLB scheme is its good spatial locality,
where each process gets root cells with continuous SFC IDs
resulting in a continuous computational domain. However,
SFCLB restricts the assignments of root cells to processes
by the SFC curve, and does not consider the communication
among processes when splitting the SFC curve.

B. Graph Partitioning-Based Load Balancing (GraphLB)
Graph partitioning is an alternative approach for the

load balancing of cell-based AMR applications. We denote
it as GraphLB. To apply the graph method, we need to
map the load balancing problem into a graph partitioning
problem. One straightforward mapping is to use vertices to
represent root cells, and edges to represent communication
relationships between neighboring root cells. The weight of
each vertex is the workload of the corresponding root cell.
Although this mapping does make sense, it results in a large
graph, which is difficult to partition using acceptable amount
of runtime and memory. For example, in our cosmology
simulation, a cubic computational domain of 2563 root cells
maps into a graph with 2563 vertices and about 6 × 2563

edges. Partitioning such a large graph is almost prohibitive.
Therefore, we must reduce the graph size for efficient
partitioning. In our preliminary experiments, it is observed

that only the root cells in a few localized regions are deeply
refined to finer levels, while most root cells are not refined.
Thus, we use a single vertex to represent the unrefined
root cells with continuous SFC IDs, and create the edges
accordingly in order to generate a manageable graph.

The assignments of root cells to processes can be obtained
by partitioning the vertices in the graph into Np partitions.
Note that graph partitioning algorithms typically minimize
the total edge-cuts subject to the constraints that the parti-
tions are of similar size. When they are applied for the load
balancing of cell-based AMR applications, we are actually
minimizing the amount of communication among processes
while ensuring that the workload is well-balanced. In our
implementation, we use the graph partitioning tool METIS
[17] to partition the graph.

C. Group-Based Load Balancing (GroupLB)
The aforementioned two load balancing schemes only

consider the total workload of each root cell. However, as
the ART code evolves time steps for each level, it is also
critical to balance the workload of each level in order to
reduce the synchronization time. Besides, it is observed that
the communication at deep refinement levels usually results
in large synchronization cost, so it is important to minimize
the communication at deep refinement levels. To meet these
requirements, we design a new load balancing scheme called
GroupLB .

This scheme first assigns neighboring root cells into
groups, where each group has the lowest possible boundary
level and satisfies a set of group workload constraints to
control the granularity. The assignment of root cells to
groups is based on the Friends-of-Friends algorithm [18].
Second, GroupLB assigns root cell groups to processes by
solving a constrained bin packing problem to balance the
workload of each level, where each bin corresponds to a
process. Specifically, we sort the groups in non-increasing
order according to their workload, and pack them into bins
sequentially. To achieve good spatial locality, we compute
the distances between groups using Voronoi tessellations
[19], and try to assign each group to the process which
holds its neighboring groups. In this way, GroupLB is able to
achieve good level-by-level load balance and spatial locality.

V. EXPERIMENTS

In this section, we present two sets of experiments. In
the first experiment, we assess the accuracy of the emulator.
In the second experiment, we examine the load balancing
schemes using the emulator with realistic cosmology data,
and discuss their advantages and shortcomings.

A. Experimental Setup
We instrument the ART code with performance counters

and timers for analysis. We use a real cosmological sim-
ulation of a box of 36 comoving Mpc on a side, covered
with the uniform top level grid of 2563 root cells. This
simulation represents a scaled-down version of our future
petascale cosmological simulations. In fact, the petascale
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Figure 6. Comparison of actual runtime and emulated runtime of ART.

simulation is 100 times the volume of this dataset, and these
100 box pieces are essentially independent of each other.

Our testbed is the Intel 64 cluster Abe located at NCSA
[20]. It is equipped with InfiniBand network and Lustre
parallel file system. Each node has either 8GB or 16GB
memory, and two quad-core CPUs running at 2.33 GHz.
As ART is a hybrid “MPI+OpenMP” code and there are 8
processors available on each node of Abe, we assign an MPI
process with 8 openMP threads to each node.

B. Accuracy of Performance Emulator

To measure the accuracy of the emulator, we conduct
experiments using the emulator with the current load balanc-
ing scheme of ART – SFCLB, and compare the emulated
performance results with the actual runtimes of the ART
code. As the emulator emulates time steps without running
physics solvers, it only consumes a few minutes to estimate
the performance of ART.

Figure 6 presents the comparison of actual runtime and
emulated runtime. Here, the runtime includes physics com-
putation time and MPI communication time. The difference
between the actual runtime and emulated runtime is within
12%. The error is mainly due to some extra communication
routines in the ART code except for exchanging boundary in-
formation between processes. The emulator does not model
such extra communications because they will be removed in
our next version of ART. Therefore, the emulator is accurate.
More importantly, we notice that both curves in the figure
have exactly the same trend. This further indicates that our
emulator can clearly predict the performance and scalability
of realistic cosmology simulations, and the performance
analysis based on this emulator is reliable.

C. Evaluation of Load Balancing Schemes

In this set of experiments, we assess three load balancing
schemes presented in Section IV for cosmology simulations
by means of the emulator. For the same cosmology dataset
described in Section V-A, we test two different resolution
cases: the coarse resolution case and the fine resolution
case. The coarse resolution case represents a simulation
with an intermediate resolution which reaches a maximum
refinement level of 6. The fine resolution case represents
a simulation with an extremely high resolution, which is
allowed to refine dynamically to level 9.
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balancing schemes for coarse resolution case.
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Figure 8. Comparison of emulated runtime by using different load
balancing schemes for fine resolution case.

We use three metrics, namely execution time, load balance
ratio, and communication time per level, for evaluation.
Specifically, load balance ratio represents the quality of
workload distributions among processes. It is defined as

Load Balance Ratio
Δ
=

1
Np

∑Np−1
i=0 Wi

max0≤i≤Np−1 Wi
× 100%,

where Wi is the workload of process i and Np is the num-
ber of processes. Note that Load Balance Ratio is always
smaller than or equal to 100%, and a much closer value to
100% indicates a better load balance quality.

Figure 7 and 8 present emulated runtime by using differ-
ent load balancing schemes for coarse resolution and fine
resolution case, respectively. In both figures, the runtime
using GroupLB scheme is smaller than that of the other
two schemes, especially in the coarse resolution case. In
Figure 8, we notice that as the number of processors
increases, three curves are trending toward the same value.
Such trend is caused by granularity, which is determined by
the maximum workload of root cells. In the fine resolution
case, there are several root cells whose individual workload
is much larger than the average workload of each process
when running on 512 and 1024 processors, thus introducing
significant synchronization cost.

Table I presents the overall Load Balance Ratio among
processes for different load balancing schemes. The closer
the metric is to 100%, the better load balance is achieved.
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Table I
OVERALL LOAD BALANCE RATIO OF DIFFERENT LOAD BALANCING SCHEMES

Number of Coarse Resolution Case Fine Resolution Case

Processors SFCLB GraphLB GroupLB SFCLB GraphLB GroupLB

192 92.83% 64.89% 96.63% 90.21% 85.48% 91.17%

256 91.16% 73.54% 96.43% 71.35% 78.81% 88.51%

512 82.51% 53.76% 95.84% 53.74% 54.02% 51.73%

1024 70.49% 42.74% 92.21% 26.98% 27.01% 26.75%
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Figure 9. Load Balance Ratio of each level for coarse resolution case.
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Figure 10. Load Balance Ratio of each level for fine resolution case.

1414



�

	�

���

�	�

���

�	�

���

�	�

� � � � � 	 


�����

�������

�������

+%���,����--��"��!"�� !"-��#���$������%��
&�
��'����((��()�����(�� �(���!"��*

."-
��&(*

��%��

�

	�

���

�	�

���

�	�

���

�	�

� � � � � 	 


�����

�������

�������

+%���,����--��"��!"�� !"-��#���$������%��
&�	
�'����((��()�����(�� �(���!"��*

��%��

."-
��&(*

�

	�

���

�	�

���

�	�

���

�	�

� � � � � 	 


�����

�������

�������

+%���,����--��"��!"�� !"-��#���$������%��
&	���'����((��()�����(�� �(���!"��*

��%����%��

."-
��&(*

�

	�

���

�	�

���

�	�

���

�	�

� � � � � 	 


�����

�������

�������

+%���,����--��"��!"�� !"-��#���$������%��
&�����'����((��()�����(�� �(���!"��*

."-
��&(*

��%�� �

Figure 11. Average communication time of each level for coarse resolution case.
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Figure 12. Average communication time of each level for fine resolution case.

Obviously, both SFCLB and GroupLB achieve better load
balance for the coarse resolution case in comparison with
the fine resolution case. This is because finer grid resolution
increases the workload of root cells and results in larger
granularity, which makes load balancing more challenging.
GraphLB behaves differently since its primal objective is
to minimize the communication among processes instead of
balancing the workload. Comparing these schemes, Grou-
pLB achieves the best load balance for the coarse resolution
case and the first two tests of the fine resolution case. For
the fine resolution case with 512 and 1024 processors, all
of these three schemes fail to provide good load balance
because of granularity problem.

Figure 9 and 10 show the Load Balance Ratio of
each level for coarse resolution case and fine resolu-
tion case, respectively. In the coarse resolution tests, the
Load Balance Ratio for almost all the levels of GraphLB
is obviously smaller than that of the other two schemes;
SFCLB and GroupLB provide similar load balance at re-
finement level 4 to 6; GroupLB also delivers well-balanced
workload distribution at level 0 to 3. In the fine resolution
tests, these schemes achieve comparable load balance at
level 6 to 9, while GroupLB is more effective in balancing
the workload at lower levels. In general, GroupLB achieves
better level-by-level load balance than SFCLB and GraphLB
for both coarse and fine resolution cases.
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Figure 11 and 12 illustrate the average communication
time of each level for the two resolution cases, respectively.
In Figure 11, as the number of processors increases, the
level-by-level communication time is decreasing. Generally,
GroupLB introduces smaller level-by-level communication
time than SFCLB and GraphLB because it achieves better
load balance at each level. In Figure 12, the communication
time is not scaling down with the increasing number of
processors because the granularity problem results in poor
load balance. GroupLB and GraphLB have much smaller
communication time than SFCLB at level 7 to 9 since both
methods try to reduce communication. However, for 512
and 1024 processors, GroupLB and GraphLB still have large
communication time due to the granularity.

In summary, by comparing these three load balancing
schemes, we conclude that GroupLB provides the best per-
formance. It achieves a good load balance quality by balanc-
ing both overall and level-by-level workload, and minimizes
communication cost by preserving spatial locality. While
SFCLB maintains an overall load balance and keeps spatial
locality using the SFC curve, it does not take into considera-
tion of level-by-level load balance, thereby introducing non-
trivial synchronization cost. Although GraphLB minimizes
communication cost, it doesn’t provide satisfactory load
balance quality.

VI. CONCLUSION

In this paper, we have presented a performance emulator
for cell-based AMR cosmology simulations. It uses perfor-
mance models to characterize computation time and data
transmission time, and emulates time steps to estimate per-
formance without executing physics solvers. Experimental
results on realistic cosmology dataset have demonstrated that
the performance emulator is accurate. More importantly, it
serves as an efficient tool to evaluate the performance of
various load balancing schemes. We have studied three typ-
ical load balancing schemes using the performance emulator.
Our experiments have indicated that GroupLB provides the
best performance. This scheme not only achieves good load
balance quality, but also minimizes communication cost by
reducing synchronization and preserving spatial locality.
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