
Computer
Architecture Review

CS 595

1

The von Neumann Model
Von Neumann (1946) proposed that a fundamental model of
a computer should include 5 primary components:

• Memory

• Processing Unit

• Input Device(s)

• Output Device(s)

• Control Unit

2

• For our purposes, an array of bytes. We will not be
dealing with virtual memory

• Recall: When we talk about memory, addressability refers
to the size of a memory location (the thing that goes in
and comes out of memory)

• Recall: When we talk about address width, we mean how
many bits are required to represent an address

• Ex: recent x86-64 machines have 64-bit address width
and are byte addressable

Memory

3

Memory Cont.
• How do we access?

• Loads and Stores

• Accomplished with the help of memory unit on the CPU.
Simplest scheme has two registers:

• MAR: memory address register (address from which to
load, to which to store)

• MDR: memory data register (stuff to store)

4

Processing Unit

• Can consist of many separate functional units (integer
arithmetic, floating point, vector units, DSP, etc. etc.)

• Simplest one is the ALU (arithmetic logic unit)

• Size of data worked on by ALU is the CPU’s word length

5

Proc. Unit. contd.

• Temp. Storage: most commonly registers (these are fast
access, close to functional units)

• May also be stack (more on this later)

6

I/O

• The peripherals attached to the machine:

• keyboard, mouse, video card, monitor, disk, etc. etc.

• Two methods of I/O: polling (CPU busy waits until
something is read) or interrupt-driven (device raises a wire
hot to notify CPU)

• You will become very familiar with the latter

7

Control Unit
• Keeps track of where we are in the program, where to go next

• Where we are: Instruction Register (IR) . Register which holds
the currently executing instruction

• Where to go next: Instruction Pointer (IP). Memory address of
next instruction to execute. (Also called program counter or
PC).

• Finite State Machine: Given current inputs and current
instruction, where do we go next? Essentially implemented as
a lookup table. You will implement as logic in C. ?? Isn’t it
always just IP + 1?

8

9

ISAs

• Instruction Set Architecture

• The interface to the hardware from the programmer’s
point of view

• Also, the boundary between software and hardware

10

Classes of ISAs

• Load-Store machines: Can access memory *only* with
explicit load or store operations (e.g. MIPS)

• Register-Memory machines: Can access memory in other
types of operations as well (e.g. x86)

• Stack Machines: All operations are performed via a LIFO
stack (e.g. JVM)

11

The Instruction Cycle

• For our purposes, instruction dispatch will essentially
occur in three stages:

• Fetch

• Decode

• Execute

12

Let’s design a simple ISA

• Assume 16-bit address width and addressability

• That means 2^16 mem locations, 65K (just like the 6502)

• Assume 8 General-purpose registers (GPRs)

• OK, what does our instruction set look like?

13

Things we had to consider

• Instruction length (variable/fixed?) and encoding

• Operand encoding/size

• Memory addressing modes (immediate, PC-relative,
base-index, maybe SID)

• Operations we support (arithmetic, logical, control flow)

• Supporting conditional operations

14

Memory Mapped I/O

• Instead of using processor pins for I/O devices, just have
devices respond to special regions of memory addresses

• Old machines had hardcoded regions. These days the
regions are programmable, e.g. with the PCI, PCIe device
standard specification

• Ex: LD R1, $0xa700

• Ex: ST R2, $0xa720

15

simple memory controller
logic

word_t read(addr) {

if (addr >= 0xa700 && addr < 0xb700) {

 return my_device_read(addr);

} else {

 return ram_read(addr);

}

16

