Computer
Architecture Review

CS 595

The von Neumann Model

Von Neumann (1946) proposed that a fundamental model of
a computer should include 5 primary components:

e Memory

e Processing Unit
e |Input Device(s)
e Qutput Device(s)

e Control Unit

Memory

For our purposes, an array of bytes. We will not be
dealing with virtual memory

Recall: When we talk about memory, addressability refers
to the size of a memory location (the thing that goes in
and comes out of memory)

Recall: When we talk about address width, we mean how
many bits are required to represent an address

Ex: recent x86-64 machines have 64-bit address width
and are byte addressable

Memory Cont.

How do we access?
| oads and Stores

Accomplished with the help of memory unit on the CPU.
Simplest scheme has two registers:

MAR: memory address register (address from which to
load, to which to store)

MDR: memory data register (stuff to store)

Processing Unit

* (Can consist of many separate functional units (integer
arithmetic, floating point, vector units, DSP, etc. etc.)

e Simplest one is the ALU (arithmetic logic unit)

* Size of data worked on by ALU is the CPU’s word length

COperandl Dperand?

Proc. Unit. contd.

e Temp. Storage: most commonly registers (these are fast
access, close to functional units)

e May also be stack (more on this later)

/0O

The peripherals attached to the machine:
keyboard, mouse, video card, monitor, disk, etc. etc.

Two methods of I/0O: polling (CPU busy waits until
something is read) or interrupt-driven (device raises a wire
hot to notify CPU)

You will become very familiar with the latter

Control Unit

Keeps track of where we are in the program, where to go next

Where we are: Instruction Register (IR) . Register which holds
the currently executing instruction

Where to go next: Instruction Pointer (IP). Memory address of
next instruction to execute. (Also called program counter or
PC).

Finite State Machine: Given current inputs and current
instruction, where do we go next? Essentially implemented as
a lookup table. You will implement as logic in C. ?? Isn’t it
always just IP + 17

MEMORY

—
r =
| MAR MDR
I
! Y
! A
INPUT : OUTPUT
|
|
* Keyboard I Y * Monitor
* Mouse ' * Printer
* Scanner l PROCESSING UNIT * LED
* Card reader : * Disk
* Disk [%
K ! \ALU / TEMP A
I [I
i I |
I | /I\ I
) | | I
I I | |
| 1 | |
| | J| |
CONTROL UNIT
IR
PC

|ISAS

® /nstruction Set Architecture

 The interface to the hardware from the programmer’s
point of view

e Also, the boundary between software and hardware

10

Classes of ISAs

e | oad-Store machines: Can access memory *only™ with
explicit load or store operations (e.g. MIPS)

e Register-Memory machines: Can access memory in other
types of operations as well (e.g. x86)

e Stack Machines: All operations are performed via a LIFO
stack (e.g. JVM)

11

The Instruction Cycle

e For our purposes, instruction dispatch will essentially
occur in three stages:

e Fetch
e Decode

e Execute

12

Let’s design a simple ISA

e Assume 16-bit address width and addressability
e That means 2216 mem locations, 65K (just like the 6502)
e Assume 8 General-purpose registers (GPRs)

e OK, what does our instruction set look like?

13

Things we had to consider

e Instruction length (variable/fixed?) and encoding
e Operand encoding/size

e Memory addressing modes (immediate, PC-relative,
base-index, maybe SID)

e Operations we support (arithmetic, logical, control flow)

e Supporting conditional operations

14

Memory Mapped I/0

Instead of using processor pins for I/O devices, just have
devices respond to special regions of memory addresses

Old machines had hardcoded regions. These days the
regions are programmable, e.g. with the PCI, PCle device
standard specification

Ex: LD R1, $0xa700

Ex: ST R2, $0xa720

15

simple memory controller
logic
word_t read(addr) {
if (addr >= 0xa700 && addr < 0xb700) {
return my_device_read(addr);
} else {

return ram_read(addr);

}

16

