Overview of
the HExSA Lab @ IIT

Laboratory for High-performance Experimental Systems and Architecture

PI: Kyle Hale
Three Primary Themes

• High-performance Operating Systems, runtime systems, and virtual machines
• Novel languages and runtimes for parallel and experimental systems
• Experimental computer architectures
Current thrusts
High-performance Operating Systems and Virtual Machines

- **Nautilus** and Hybrid Runtimes *(with Prescience Lab @ Northwestern)*
- Compiler + Kernel fusion [*The Interweaving Project*] *(with CS groups @ Northwestern)*
- Hybrid Runtime for Compiled Dataflows [*HCDF*] *(with DBGroup @ IIT)*
- Address Space Dynamics
- **High-performance Virtualization** [*Palacios VMM*³ and *Pisces Cokernels*⁴] *(with Prescience Lab @ Northwestern; Prognostic Lab @ Pitt)*
- High-performance networking
- Accelerated Asynchronous Software Events [*Nemo*]
- Computational Sprinting (with U. Nevada, Reno and OSU)
Nautilus and HRTs

• High-performance *Unikernel for HPC, parallel computing*¹
• *Hybrid Runtime (HRT)*² = parallel runtime system + kernel mashup
• Lightweight, fast, single-address space Operating System
• *Designed to make parallel runtimes efficient and well-matched to the hardware*
• Sponsored by NSF, DOE, and Sandia National Labs
• Collaboration with Prescience Lab³ at Northwestern

¹http://presciencelab.org
²http://nautilus.halek.co
³http://users.eecs.northwestern.edu/~kch479/docs/nautilus.pdf

Kyle C. Hale
The Interweaving Project\(^1\)

- Unikernels provide a new opportunity for *combining kernel, user, and runtime code*

- **Interweave** them into one binary

- Compiler generates OS code, driver code

- **Compiler/Runtime/OS/Architecture Co-Design**

- Collaboration with Prescience Lab, PARAG@N Lab, and Campanoni Lab @ Northwestern

- NSF sponsored, $1M, 4 PIs

\(^1\)http://interweaving.org
Hybrid Runtime for Compiled Dataflows (HCDF)

- Co-Design database engine and operating system kernel
- Compiled queries placed into tasks, scheduled onto specialized hybrid runtime in an OS kernel
- Runtime extracts parallelism and performance by unfolding query task graph and tailored hardware access
- Collaboration with DB Group @ IIT
Address Space Dynamics

• Ubiquitous virtualization is putting pressure on address translation hardware and software
• New chip designs also pressing the issue (5-level PTs in next-gen Intel chips)
• We’re looking at new address translation mechanisms (Interweaving Project)
• These may require understanding the structure of address spaces over time
• Can we discover this dynamic structure?
Multi-kernel Systems for Supercomputing

• Hybrid Virtual Machines\(^1\) [multi-kernel VMs]
• Multiverse: run legacy apps. on a multi-kernel VM
• Modeling system call delegation [Amdahl’s Law for multikernels]
• High-performance Virtualization [Palacios VMM and Pisces Cokernels]
• Coordinated kernels as containers [SOSR Project]

\(^1\)http://pdinda.org/Papers/vee16.pdf
The Multikernel Approach

General-purpose OS

Specialized OS kernel

Application

Supercomputer Node

Service Requests
Multiverse1

- Typically must *port* your parallel program to run in Multikernel environment
- We automatically port legacy apps to run in this mode
- Uses a *virtualized multikernel* approach
- Working example with the Racket2 runtime system

1http://cs.iit.edu/~khale/docs/icac17-multiverse.pdf
2https://racket-lang.org
Coordinated SOS/Rs for the Cloud

- Specialized Operating Systems and Runtimes (SOS/Rs) (e.g. Unikernels) are difficult to use!
- Leverage programming model and interface of *containers* to ease this problem => *Containerized Operating Systems*
- Treat a collection of SOS/Rs within a single machine as a distributed system (requires coordination)
- Collaboration with Prognostic Lab @ Pitt
- NSF-sponsored, $500K (2 PIs)
Novel Languages and Runtimes for Parallel and Experimental Systems

• Exploration of **Julia** for large-scale, parallel computing
• **XTask** – A runtime system for extrem-scale, fine-grained, many-task computing (**with DataSys Lab @IIT**)
• **New systems languages**
• **New virtual machine architectures** for dataflow-oriented programming models (virtual, spatial computing)
XTask

- Future supercomputers will have millions and millions of short, fine-grained tasks (think user/green threads)
- Current tasking runtimes assume long-running, computation heavy tasks
- How do we build efficient, low-overhead runtimes to support this?
- Collaboration with DataSys Lab @ IIT and Prescience Lab @ Northwestern
Experimental Computer Architectures

• **State-associative prefetching**: using neuromorphic chips to prefetch data between levels of deep memory hierarchies

• **DSAs for Hearing** Assistance *with collab. at Interactive Audio Lab @ Northwestern*

• **Incoherent Multicore Architectures** *(with CS @ Northwestern)*
Incoherent Multicore Architectures

- The cost of cache coherence (keeping local caches consistent in multi-cores) goes up with scale
- Certain software doesn’t need it, but pays for its effects
- *Can we get rid of it?* What would software-managed coherence look like?
Domain-Specific Architectures for Hearing Assistance

• “Cocktail problem”: Identify speaker in a crowded (loud) room
• Brain is very good at this
• Hearing aids are not (they typically apply some pretty simple signal processing)
• We’re looking to design a new chip architecture for hearing aids based on audio source separation (a machine learning-based technique)
“Out there” stuff

• “Parsec-scale” parallel computing

• Exploring the kinematics of execution contexts ("can you use a Lagrangian to describe processes as a dynamical system?")

• Decentralized hash algorithm evaluation and verification “hashes for the masses”
Collaborators

- **IIT**
 - Scalable Systems Laboratory (Xian-He Sun)
 - DB Group (Boris Glavic)
 - DataSys Lab (Ioan Raicu)
- **Northwestern University**
 - Prescience Lab (Peter Dinda)
 - PARAG@N Lab (Nikos Hardavellas)
 - Campanoni Lab (Simone Campanoni)
- **University of Pittsburgh**
 - Prognostic Lab (Jack Lange)
- **Ohio State University**
 - ReRout Lab (Christopher Stewart)
 - PACS Lab (Xiaorui Wang)
- **University of Nevada @ Reno**
 - IDS Lab (Feng Yan)
- **University of Chicago**
 - Kyle Chard
 - Justin Wozniak
- **Sandia National Laboratories**
 - Kevin Pedretti
- **Pacific Northwest National Laboratories**
 - High Performance Computing Group (Roberto Gioiosa)
We’re hiring!

Funded opportunities available (both PhDs and undergrads!)

See http://cs.iit.edu/~khale/student_apps.html
Relevant Courses

• **CS 450**: Operating Systems
• **CS 562**: Virtual Machines (was formerly CS 595 F17, F18)
• **CS 595-03**: OS and Runtime Design for Supercomputing (Research Seminar)
• **CS 551**: Operating System Design and Implementation (grad OS, I’m not teaching this yet)
Completed Projects

• Philix Xeon Phi OS Toolkit\(^1\)
• Palacios VMM\(^2\)
• Guest Examination and Revision Services (GEARS\(^3\))
• Guarded Modules\(^4\)
• Virtualized Hardware Transactional Memory\(^5\)

\(^1\)http://philix.halek.co
\(^2\)http://v3vee.org/palacios
\(^3\)http://users.eecs.northwestern.edu/~kch479/docs/gears.pdf
\(^4\)http://users.eecs.northwestern.edu/~kch479/docs/gm.pdf
\(^5\)http://users.eecs.northwestern.edu/~msw978/resources/palacios-htm.pdf
Cool hardware

• HExSA Rack
 • Newest Skylake and AMD Epyc machines (may-core)
 • Designed for booting OSes

• Supercomputer Access
 • Stampede2 Supercomputer @ TACC
 • Comet Cluster @ SDSC
 • Jetstream Supercomputer @ IU
 • Chameleon Cloud

• MYSTIC Cluster
 • 8 Dual Arria 10 FPGA systems
 • 8 Mellanox Bluefield SoC systems
 • Newest ARM servers
 • IBM POWER9
 • Xeon Scalable Processor systems
 • 16 NVIDIA V100 GPUs
 • 100Gb internal network (Infiniband and 10GbE)