The Multiplexer

Many Inputs

Pick One!

"n to 1 switch"

Select

2 Inputs

\[S = k \]

\[A \]

\[B \]

\[Z \]

High Level

\[2 \]

\[3 \]

\[4 \]

4 Inputs

\[s_0, s_1, a, b, c, d, p \]

\[z \]

\[A \]

\[B \]

\[S \]

\[2 \]

\[3 \]

\[4 \]

\[S_S, S, S' \]
CALCULATOR

4 FUNCTIONS

1. BITWISE AND (A, B)
2. BITWISE OR (A, B)
3. BITWISE XOR (A, B)
4. BITWISE NOT (A)

WE ALREADY HAVE COMPONENTS!

A AND B A AND B A AND B A

WE NEED TO SELECT ONE BASED ON A NUMBER "OPCODE"

00 MEANS "AND"
01 MEANS "OR"
10 MEANS "XOR"
11 MEANS "NOT"

CALL IT S[1:0]
The Full Adder

How to add 2 binary #s?

Make a truth table!

Inputs: A B C_in
Outputs: S C_out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_in</th>
<th>S</th>
<th>C_out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = \overline{A}B\overline{C_{in}} + \overline{A}BC_{in} + A\overline{B}\overline{C_{in}} + ABC_{in} \]

\[C_{out} = \overline{A}BC_{in} + \overline{A}BC_{in} + A\overline{B}C_{in} + ABC_{in} \]
1-bit ADDER
"FULL ADDER"

Diagram of a 1-bit adder circuit with inputs A_1, B_1, A_0, and B_0, and outputs S_1, S_0, C_{out}, and C_{in}.