Introduction

1.1 A Brief History

In 1958, Jack Kilby built the first integrated circuit flip-flop with two transistors at Texas Instruments. In 2008, Intel’s Itanium microprocessor contained more than 2 billion transistors and a 16 Gb Flash memory contained more than 4 billion transistors. This corresponds to a compound annual growth rate of 53% over 50 years. No other technology in history has sustained such a high growth rate lasting for so long.

This incredible growth has come from steady miniaturization of transistors and improvements in manufacturing processes. Most other fields of engineering involve tradeoffs between performance, power, and price. However, as transistors become smaller, they also become faster, dissipate less power, and are cheaper to manufacture. This synergy has not only revolutionized electronics, but also society at large.

The processing performance once dedicated to secret government supercomputers is now available in disposable cellular telephones. The memory once needed for an entire company’s accounting system is now carried by a teenager in her iPod. Improvements in integrated circuits have enabled space exploration, made automobiles safer and more fuel-efficient, revolutionized the nature of warfare, brought much of mankind’s knowledge to our Web browsers, and made the world a flatter place.

Figure 1.1 shows annual sales in the worldwide semiconductor market. Integrated circuits became a $100 billion/year business in 1994. In 2007, the industry manufactured approximately 6 quintillion (6×10^{15}) transistors, or nearly a billion for every human being on the planet. Thousands of engineers have made their fortunes in the field. New fortunes lie ahead for those with innovative ideas and the talent to bring those ideas to reality.

During the first half of the twentieth century, electronic circuits used large, expensive, power-hungry, and unreliable vacuum tubes. In 1947, John Bardeen and Walter Brattain built the first functioning point contact transistor at Bell Laboratories, shown in Figure 1.2(a) [Riordan97]. It was nearly classified as a military secret, but Bell Labs publicly introduced the device the following year.

We have called it the Transistor, T-R-A-N-S-I-S-T-O-R, because it is a resistor or semiconductor device which can amplify electrical signals as they are transferred through it from input to output terminals. It is, if you will, the electrical equivalent of a vacuum tube amplifier. But there the similarity ceases. It has no vacuum, no filament, no glass tube. It is composed entirely of cold, solid substances.
Ten years later, Jack Kilby at Texas Instruments realized the potential for miniaturization if multiple transistors could be built on one piece of silicon. Figure 1.2(b) shows his first prototype of an integrated circuit, constructed from a germanium slice and gold wires. The invention of the transistor earned the Nobel Prize in Physics in 1956 for Bardeen, Brattain, and their supervisor William Shockley. Kilby received the Nobel Prize in Physics in 2000 for the invention of the integrated circuit.

Transistors can be viewed as electrically controlled switches with a control terminal and two other terminals that are connected or disconnected depending on the voltage or current applied to the control. Soon after inventing the point contact transistor, Bell Labs developed the bipolar junction transistor. Bipolar transistors were more reliable, less noisy, and more power-efficient. Early integrated circuits primarily used bipolar transistors. Bipolar transistors require a small current into the control (base) terminal to switch much larger currents between the other two (emitter and collector) terminals. The quiescent power dissipated by these base currents, drawn even when the circuit is not switching,
limits the maximum number of transistors that can be integrated onto a single die. By the
1960s, Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) began to enter
production. MOSFETs offer the compelling advantage that they draw almost zero control
current while idle. They come in two flavors: nMOS and pMOS, using n-type and p-type
silicon, respectively. The original idea of field effect transistors dated back to the German
scientist Julius Lilienfield in 1925 [US patent 1,745,175] and a structure closely resem-
bling the MOSFET was proposed in 1935 by Oskar Heil [British patent 439,457], but
materials problems foiled early attempts to make functioning devices.

In 1963, Frank Wanlass at Fairchild described the first logic gates using MOSFETs
[Wanlass63]. Fairchild’s gates used both nMOS and pMOS transistors, earning the name
Complementary Metal Oxide Semiconductor, or CMOS. The circuits used discrete tran-
sistors but consumed only nanowatts of power, six orders of magnitude less than their
bipolar counterparts. With the development of the silicon planar process, MOS integrated
circuits became attractive for their low cost because each transistor occupied less area and
the fabrication process was simpler [Vadasz69]. Early commercial processes used only
pMOS transistors and suffered from poor performance, yield, and reliability. Processes
using nMOS transistors became common in the 1970s [Mead80]. Intel pioneered nMOS
technology with its 1101 256-bit static random access memory and 4004 4-bit micropro-
cessor, as shown in Figure 1.3. While the nMOS process was less expensive than CMOS,
nMOS logic gates still consumed power while idle. Power consumption became a major
issue in the 1980s as hundreds of thousands of transistors were integrated onto a single
die. CMOS processes were widely adopted and have essentially replaced nMOS and bipo-
lar processes for nearly all digital logic applications.

In 1965, Gordon Moore observed that plotting the number of transistors that can be
most economically manufactured on a chip gives a straight line on a semilogarithmic scale
[Moore65]. At the time, he found transistor count doubling every 18 months. This obser-
vation has been called Moore’s Law and has become a self-fulfilling prophecy. Figure 1.4
shows that the number of transistors in Intel microprocessors has doubled every 26
months since the invention of the 4004. Moore’s Law is driven primarily by scaling down
the size of transistors and, to a minor extent, by building larger chips. The level of integra-
tion of chips has been classified as small-scale, medium-scale, large-scale, and very large-
scale. Small-scale integration (SSI) circuits, such as the 7404 inverter, have fewer than 10

FIGURE 1.3 (a) Intel 1101 SRAM (© IEEE 1969 [Vadasz69]) and (b) 4004 microprocessor (Reprinted with
permission of Intel Corporation.)
gates, with roughly half a dozen transistors per gate. Medium-scale integration (MSI) circuits, such as the 74161 counter, have up to 1000 gates. Large-scale integration (LSI) circuits, such as simple 8-bit microprocessors, have up to 10,000 gates. It soon became apparent that new names would have to be created every five years if this naming trend continued and thus the term very large-scale integration (VLSI) is used to describe most integrated circuits from the 1980s onward. A corollary of Moore’s law is Dennard’s Scaling Law [Dennard74]: as transistors shrink, they become faster, consume less power, and are cheaper to manufacture. Figure 1.5 shows that Intel microprocessor clock frequencies have doubled roughly every 34 months. This frequency scaling hit the power wall around 2004, and clock frequencies have leveled off around 3 GHz. Computer performance, measured in time to run an application, has advanced even more than raw clock speed. Presently, the performance is driven by the number of cores on a chip rather than by the clock. Even though an individual CMOS transistor uses very little energy each time it switches, the enormous number of transistors switching at very high rates of speed have made power consumption a major design consideration again. Moreover, as transistors have become so small, they cease to turn completely OFF. Small amounts of current leaking through each transistor now lead to significant power consumption when multiplied by millions or billions of transistors on a chip.

The feature size of a CMOS manufacturing process refers to the minimum dimension of a transistor that can be reliably built. The 4004 had a feature size of 10 µm in 1971. The Core 2 Duo had a feature size of 45 nm in 2008. Manufacturers introduce a new process generation (also called a technology node) every 2–3 years with a 30% smaller feature size to pack twice as many transistors in the same area. Figure 1.6 shows the progression of process generations. Feature sizes down to 0.25 µm are generally specified in nanometers (10⁻⁹ m), while smaller feature sizes are expressed in nanometers (10⁻⁹ m). Effects that were relatively minor in micron processes, such as transistor leakage, variations in characteristics of adjacent transistors, and wire resistance, are of great significance in nanometer processes.

Moore’s Law has become a self-fulfilling prophecy because each company must keep up with its competitors. Obviously, this scaling cannot go on forever because transistors cannot be smaller than atoms. Dennard scaling has already begun to slow. By the 45 nm
FIGURE 1.5 Clock frequencies of Intel microprocessors

FIGURE 1.6 Process generations. Future predictions from [SIA2007].
Chapter 1 Introduction

6
generation, designers are having to make trade-offs between improving power and improving delay. Although the cost of printing each transistor goes down, the one-time design costs are increasing exponentially, relegating state-of-the-art processes to chips that will sell in huge quantities or that have cutting-edge performance requirements. However, many predictions of fundamental limits to scaling have already proven wrong. Creative engineers and material scientists have billions of dollars to gain by getting ahead of their competitors. In the early 1990s, experts agreed that scaling would continue for at least a decade but that beyond that point the future was murky. In 2009, we still believe that Moore’s Law will continue for at least another decade. The future is yours to invent.

1.2 Preview

As the number of transistors on a chip has grown exponentially, designers have come to rely on increasing levels of automation to seek corresponding productivity gains. Many designers spend much of their effort specifying functions with hardware description languages and seldom look at actual transistors. Nevertheless, chip design is not software engineering. Addressing the harder problems requires a fundamental understanding of circuit and physical design. Therefore, this book focuses on building an understanding of integrated circuits from the bottom up.

In this chapter, we will take a simplified view of CMOS transistors as switches. With this model we will develop CMOS logic gates and latches. CMOS transistors are mass-produced on silicon wafers using lithographic steps much like a printing press process. We will explore how to lay out transistors by specifying rectangles indicating where dopants should be diffused, polysilicon should be grown, metal wires should be deposited, and contacts should be etched to connect all the layers. By the middle of this chapter, you will understand all the principles required to design and lay out your own simple CMOS chip. The chapter concludes with an extended example demonstrating the design of a simple 8-bit MIPS microprocessor chip. The processor raises many of the design issues that will be developed in more depth throughout the book. The best way to learn VLSI design is by doing it. A set of laboratory exercises are available at www_cmosvlsi.com to guide you through the design of your own microprocessor chip.

1.3 MOS Transistors

Silicon (Si), a semiconductor, forms the basic starting material for most integrated circuits [Tsividis99]. Pure silicon consists of a three-dimensional lattice of atoms. Silicon is a Group IV element, so it forms covalent bonds with four adjacent atoms, as shown in Figure 1.7(a). The lattice is shown in the plane for ease of drawing, but it actually forms a cubic crystal. As all of its valence electrons are involved in chemical bonds, pure silicon is a poor conductor. The conductivity can be raised by introducing small amounts of impurities, called dopants, into the silicon lattice. A dopant from Group V of the periodic table, such as arsenic, has five valence electrons. It replaces a silicon atom in the lattice and still bonds to four neighbors, so the fifth valence electron is loosely bound to the arsenic atom, as shown in Figure 1.7(b). Thermal vibration of the lattice at room temperature is enough to set the electron free to move, leaving a positively charged As^+ ion and a free electron. The free electron can carry current so the conductivity is higher. We call this an n-type
1.3 MOS Transistors

A semiconductor because the free carriers are negatively charged electrons. Similarly, a Group III dopant, such as boron, has three valence electrons, as shown in Figure 1.7(c). The dopant atom can borrow an electron from a neighboring silicon atom, which in turn becomes short by one electron. That atom in turn can borrow an electron, and so forth, so the missing electron, or hole, can propagate about the lattice. The hole acts as a positive carrier so we call this a p-type semiconductor.

A junction between p-type and n-type silicon is called a diode, as shown in Figure 1.8. When the voltage on the p-type semiconductor, called the anode, is raised above the n-type cathode, the diode is forward biased and current flows. When the anode voltage is less than or equal to the cathode voltage, the diode is reverse biased and very little current flows.

A Metal-Oxide-Semiconductor (MOS) structure is created by superimposing several layers of conducting and insulating materials to form a sandwich-like structure. These structures are manufactured using a series of chemical processing steps involving oxidation of the silicon, selective introduction of dopants, and deposition and etching of metal wires and contacts. Transistors are built on nearly flawless single crystals of silicon, which are available as thin flat circular wafers of 15–30 cm in diameter. CMOS technology provides two types of transistors (also called devices): an n-type transistor (nMOS) and a p-type transistor (pMOS). Transistor operation is controlled by electric fields so the devices are also called Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) or simply FETs. Cross-sections and symbols of these transistors are shown in Figure 1.9. The n+ and p+ regions indicate heavily doped n- or p-type silicon.
Each transistor consists of a stack of the conducting gate, an insulating layer of silicon dioxide (SiO$_2$, better known as glass), and the silicon wafer, also called the substrate, body, or bulk. Gates of early transistors were built from metal, so the stack was called metal-oxide-semiconductor, or MOS. Since the 1970s, the gate has been formed from polycrystalline silicon (polysilicon), but the name stuck. (Interestingly, metal gates reemerged in 2007 to solve materials problems in advanced manufacturing processes.) An nMOS transistor is built with a p-type body and has regions of n-type semiconductor adjacent to the gate called the source and drain. They are physically equivalent and for now we will regard them as interchangeable. The body is typically grounded. A pMOS transistor is just the opposite, consisting of p-type source and drain regions with an n-type body. In a CMOS technology with both flavors of transistors, the substrate is either n-type or p-type. The other flavor of transistor must be built in a special well in which dopant atoms have been added to form the body of the opposite type.

The gate is a control input: It affects the flow of electrical current between the source and drain. Consider an nMOS transistor. The body is generally grounded so the p–n junctions of the source and drain to body are reverse-biased. If the gate is also grounded, no current flows through the reverse-biased junctions. Hence, we say the transistor is OFF. If the gate voltage is raised, it creates an electric field that starts to attract free electrons to the underside of the Si–SiO$_2$ interface. If the voltage is raised enough, the electrons outnumber the holes and a thin region under the gate called the channel is inverted to act as an n-type semiconductor. Hence, a conducting path of electron carriers is formed from source to drain and current can flow. We say the transistor is ON.

For a pMOS transistor, the situation is again reversed. The body is held at a positive voltage. When the gate is also at a positive voltage, the source and drain junctions are reverse-biased and no current flows, so the transistor is OFF. When the gate voltage is lowered, positive charges are attracted to the underside of the Si–SiO$_2$ interface. A sufficiently low gate voltage inverts the channel and a conducting path of positive carriers is formed from source to drain, so the transistor is ON. Notice that the symbol for the pMOS transistor has a bubble on the gate, indicating that the transistor behavior is the opposite of the nMOS.

The positive voltage is usually called V_{DD} or POWER and represents a logic 1 value in digital circuits. In popular logic families of the 1970s and 1980s, V_{DD} was set to 5 volts. Smaller, more recent transistors are unable to withstand such high voltages and have used supplies of 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, and so forth. The low voltage is called GROUND (GND) or V_{SS} and represents a logic 0. It is normally 0 volts.

In summary, the gate of an MOS transistor controls the flow of current between the source and drain. Simplifying this to the extreme allows the MOS transistors to be viewed as simple ON/OFF switches. When the gate of an nMOS transistor is 1, the transistor is ON and there is a conducting path from source to drain. When the gate is low, the nMOS transistor is OFF and almost zero current flows from source to drain. A pMOS transistor is just the opposite, being ON when the gate is low and OFF when the gate is high. This switch model is illustrated in Figure 1.10, where g, s, and d indicate gate, source, and drain. This model will be our most common one when discussing circuit behavior.
1.4 CMOS Logic

1.4.1 The Inverter

Figure 1.11 shows the schematic and symbol for a CMOS inverter or NOT gate using one nMOS transistor and one pMOS transistor. The bar at the top indicates \(V_{DD} \) and the triangle at the bottom indicates GND. When the input \(A \) is 0, the nMOS transistor is OFF and the pMOS transistor is ON. Thus, the output \(Y \) is pulled up to 1 because it is connected to \(V_{DD} \) but not to GND. Conversely, when \(A \) is 1, the nMOS is ON, the pMOS is OFF, and \(Y \) is pulled down to '0.' This is summarized in Table 1.1.

1.4.2 The NAND Gate

Figure 1.12(a) shows a 2-input CMOS NAND gate. It consists of two series nMOS transistors between \(Y \) and GND and two parallel pMOS transistors between \(Y \) and \(V_{DD} \). If either input \(A \) or \(B \) is 0, at least one of the nMOS transistors will be OFF, breaking the path from \(Y \) to GND. But at least one of the pMOS transistors will be ON, creating a path from \(Y \) to \(V_{DD} \). Hence, the output \(Y \) will be 1. If both inputs are 1, both of the nMOS transistors will be ON and both of the pMOS transistors will be OFF. Hence, the output will be 0. The truth table is given in Table 1.2 and the symbol is shown in Figure 1.12(b). Note that by DeMorgan’s Law, the inversion bubble may be placed on either side of the gate. In the figures in this book, two lines intersecting at a T-junction are connected. Two lines crossing are connected if and only if a dot is shown.

1.4.3 CMOS Logic Gates

The inverter and NAND gates are examples of static CMOS logic gates, also called complementary CMOS gates. In general, a static CMOS gate has an nMOS pull-down network to connect the output to 0 (GND) and pMOS pull-up network to connect the output to 1 (\(V_{DD} \)), as shown in Figure 1.14. The networks are arranged such that one is ON and the other OFF for any input pattern.
The pull-up and pull-down networks in the inverter each consist of a single transistor. The NAND gate uses a series pull-down network and a parallel pull-up network. More elaborate networks are used for more complex gates. Two or more transistors in series are ON only if all of the series transistors are ON. Two or more transistors in parallel are ON if any of the parallel transistors are ON. This is illustrated in Figure 1.15 for nMOS and pMOS transistor pairs. By using combinations of these constructions, CMOS combinational gates can be constructed. Although such static CMOS gates are most widely used, Chapter 9 explores alternate ways of building gates with transistors.

In general, when we join a pull-up network to a pull-down network to form a logic gate as shown in Figure 1.14, they both will attempt to exert a logic level at the output. The possible levels at the output are shown in Table 1.3. From this table it can be seen that the output of a CMOS logic gate can be in four states. The 1 and 0 levels have been encountered with the inverter and NAND gates, where either the pull-up or pull-down is OFF and the other structure is ON. When both pull-up and pull-down are OFF, the high-impedance or floating Z output state results. This is of importance in multiplexers, memory elements, and tristate bus drivers. The crowbarred (or contention) X level exists when both pull-up and pull-down are simultaneously turned ON. Contention between the two networks results in an indeterminate output level and dissipates static power. It is usually an unwanted condition.
1.4.4 The NOR Gate

A 2-input NOR gate is shown in Figure 1.16. The nMOS transistors are in parallel to pull the output low when either input is high. The pMOS transistors are in series to pull the output high when both inputs are low, as indicated in Table 1.4. The output is never crowbarred or left floating.

Table 1.4: NOR gate truth table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 1.1

Sketch a 3-input CMOS NOR gate.

SOLUTION: Figure 1.17 shows such a gate. If any input is high, the output is pulled low through the parallel nMOS transistors. If all inputs are low, the output is pulled high through the series pMOS transistors.

1.4.5 Compound Gates

A compound gate performing a more complex logic function in a single stage of logic is formed by using a combination of series and parallel switch structures. For example, the derivation of the circuit for the function $Y = (A \cdot B) + (C \cdot D)$ is shown in Figure 1.18. This function is sometimes called AND-OR-INVERT-22, or AOI22 because it performs the NOR of a pair of 2-input ANDs. For the nMOS pull-down network, take the uninverted expression $(A \cdot B) + (C \cdot D)$ indicating when the output should be pulled to ‘0.’ The AND expressions $(A \cdot B)$ and $(C \cdot D)$ may be implemented by series connections of switches, as shown in Figure 1.18(a). Now ORing the result requires the parallel connection of these two structures, which is shown in Figure 1.18(b). For the pMOS pull-up network, we must compute the complementary expression using switches that turn on with inverted polarity. By DeMorgan’s Law, this is equivalent to interchanging AND and OR operations. Hence, transistors that appear in series in the pull-down network must appear in parallel in the pull-up network. Transistors that appear in parallel in the pull-down network must appear in series in the pull-up network. This principle is called conduction complements and has already been used in the design of the NAND and NOR gates. In the pull-up network, the parallel combination of A and B is placed in series with the parallel combination of C and D. This progression is evident in Figure 1.18(c) and Figure 1.18(d). Putting the networks together yields the full schematic (Figure 1.18(e)). The symbol is shown in Figure 1.18(f).
This AOI22 gate can be used as a 2-input inverting multiplexer by connecting \(C = \bar{A} \) as a select signal. Then, \(Y = B \) if \(C \) is 0, while \(Y = D \) if \(C \) is 1. Section 1.4.8 shows a way to improve this multiplexer design.

Example 1.2

Sketch a static CMOS gate computing \(Y = (A + B + C) \cdot D \).

SOLUTION: Figure 1.19 shows such an OR-AND-INVERT-3-1 (OAI31) gate. The nMOS pull-down network pulls the output low if \(D \) is 1 and either \(A \) or \(B \) or \(C \) are 1, so \(D \) is in series with the parallel combination of \(A, B, \) and \(C \). The pMOS pull-up network is the conduction complement, so \(D \) must be in parallel with the series combination of \(A, B, \) and \(C \).

1.4.6 Pass Transistors and Transmission Gates

The strength of a signal is measured by how closely it approximates an ideal voltage source. In general, the stronger a signal, the more current it can source or sink. The power supplies, or rails, (\(V_{DD} \) and GND) are the source of the strongest 1s and 0s.

An nMOS transistor is an almost perfect switch when passing a 0 and thus we say it passes a strong 0. However, the nMOS transistor is imperfect at passing a 1. The high voltage level is somewhat less than \(V_{DD} \), as will be explained in Section 2.5.4. We say it passes a degraded or weak 1. A pMOS transistor again has the opposite behavior, passing strong 1s but degraded 0s. The transistor symbols and behaviors are summarized in Figure 1.20 with \(g, s, \) and \(d \) indicating gate, source, and drain.

When an nMOS or pMOS is used alone as an imperfect switch, we sometimes call it a pass transistor. By combining an nMOS and a pMOS transistor in parallel (Figure 1.21(a)), we obtain a switch that turns on when a 1 is applied to \(g \) (Figure 1.21(b)) in which 0s and 1s are both passed in an acceptable fashion (Figure 1.21(c)). We term this a transmission gate or pass gate. In a circuit where only a 0 or a 1 has to be passed, the appropriate transistor (n or p) can be deleted, reverting to a single nMOS or pMOS device.
Note that both the control input and its complement are required by the transmission gate. This is called double rail logic. Some circuit symbols for the transmission gate are shown in Figure 1.21(d).1 None are easier to draw than the simple schematic, so we will use the schematic version to represent a transmission gate in this book.

In all of our examples so far, the inputs drive the gate terminals of nMOS transistors in the pull-down network and pMOS transistors in the complementary pull-up network, as was shown in Figure 1.14. Thus, the nMOS transistors only need to pass 0s and the pMOS only pass 1s, so the output is always strongly driven and the levels are never degraded. This is called a fully restored logic gate and simplifies circuit design considerably.

In contrast to other forms of logic, where the pull-up and pull-down switch networks have to be ratioed in some manner, static CMOS gates operate correctly independently of the physical sizes of the transistors. Moreover, there is never a path through ‘ON’ transistors from the 1 to the 0 supplies for any combination of inputs (in contrast to single-channel MOS, GaAs technologies, or bipolar). As we will find in subsequent chapters, this is the basis for the low static power dissipation in CMOS.

1We call the left and right terminals \textit{a} and \textit{b} because each is technically the source of one of the transistors and the drain of the other.
A consequence of the design of static CMOS gates is that they must be inverting. The nMOS pull-down network turns ON when inputs are 1, leading to 0 at the output. We might be tempted to turn the transistors upside down to build a noninverting gate. For example, Figure 1.22 shows a noninverting buffer. Unfortunately, now both the nMOS and pMOS transistors produce degraded outputs, so the technique should be avoided. Instead, we can build noninverting functions from multiple stages of inverting gates. Figure 1.23 shows several ways to build a 4-input AND gate from two levels of inverting static CMOS gates. Each design has different speed, size, and power trade-offs.

Similarly, the compound gate of Figure 1.18 could be built with two AND gates, an OR gate, and an inverter. The AND and OR gates in turn could be constructed from NAND/NOR gates and inverters, as shown in Figure 1.24, using a total of 20 transistors, as compared to eight in Figure 1.18. Good CMOS logic designers exploit the efficiencies of compound gates rather than using large numbers of AND/OR gates.

1.4.7 Tristates

Figure 1.25 shows symbols for a tristate buffer. When the enable input EN is 1, the output Y equals the input A, just as in an ordinary buffer. When the enable is 0, Y is left floating (a ‘Z’ value). This is summarized in Table 1.5. Sometimes both true and complementary enable signals EN and EN are drawn explicitly, while sometimes only EN is shown.

<table>
<thead>
<tr>
<th>EN / EN</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 / 1</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0 / 1</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>1 / 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 / 0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The transmission gate in Figure 1.26 has the same truth table as a tristate buffer. It only requires two transistors but it is a nonrestoring circuit. If the input is noisy or otherwise degraded, the output will receive the same noise. We will see in Section 4.4.2 that the delay of a series of nonrestoring gates increases rapidly with the number of gates.
Figure 1.27(a) shows a tristate inverter. The output is actively driven from V_{DD} or GND, so it is a restoring logic gate. Unlike any of the gates considered so far, the tristate inverter does not obey the conduction complements rule because it allows the output to float under certain input combinations. When EN is 0 (Figure 1.27(b)), both enable transistors are OFF, leaving the output floating. When EN is 1 (Figure 1.27(c)), both enable transistors are ON. They are conceptually removed from the circuit, leaving a simple inverter. Figure 1.27(d) shows symbols for the tristate inverter. The complementary enable signal can be generated internally or can be routed to the cell explicitly. A tristate buffer can be built as an ordinary inverter followed by a tristate inverter.

Tristates were once commonly used to allow multiple units to drive a common bus, as long as exactly one unit is enabled at a time. If multiple units drive the bus, contention occurs and power is wasted. If no units drive the bus, it can float to an invalid logic level that causes the receivers to waste power. Moreover, it can be difficult to switch enable signals at exactly the same time when they are distributed across a large chip. Delay between different enables switching can cause contention. Given these problems, multiplexers are now preferred over tristate busses.

1.4.8 Multiplexers

Multiplexers are key components in CMOS memory elements and data manipulation structures. A multiplexer chooses the output from among several inputs based on a select signal. A 2-input, or 2:1 multiplexer, chooses input D_0 when the select is 0 and input D_1 when the select is 1. The truth table is given in Table 1.6; the logic function is $Y = S \cdot D_0 + \overline{S} \cdot D_1$.

<table>
<thead>
<tr>
<th>S / \overline{S}</th>
<th>D_1</th>
<th>D_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 / 1</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 / 1</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 / 0</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1 / 0</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

Two transmission gates can be tied together to form a compact 2-input multiplexer, as shown in Figure 1.28(a). The select and its complement enable exactly one of the two transmission gates at any given time. The complementary select \overline{S} is often not drawn in the symbol, as shown in Figure 1.28(b).

Again, the transmission gates produce a nonrestoring multiplexer. We could build a restoring, inverting multiplexer out of gates in several ways. One is the compound gate of Figure 1.18(e), connected as shown in Figure 1.29(a). Another is to gang together two tristate inverters, as shown in Figure 1.29(b). Notice that the schematics of these two approaches are nearly identical, save that the pull-up network has been slightly simplified and permuted in Figure 1.29(b). This is possible because the select and its complement are mutually exclusive. The tristate approach is slightly more compact and faster because it...
requires less internal wire. Again, if the complementary select is generated within the cell, it is omitted from the symbol (Figure 1.29(c)).

Larger multiplexers can be built from multiple 2-input multiplexers or by directly ganging together several tristates. The latter approach requires decoded enable signals for each tristate; the enables should switch simultaneously to prevent contention. 4-input (4:1) multiplexers using each of these approaches are shown in Figure 1.30. In practice, both inverting and noninverting multiplexers are simply called multiplexers or muxes.

1.4.9 Sequential Circuits

So far, we have considered combinational circuits, whose outputs depend only on the current inputs. Sequential circuits have memory: their outputs depend on both current and previous inputs. Using the combinational circuits developed so far, we can now build sequential circuits such as latches and flip-flops. These elements receive a clock, CLK, and a data input, D, and produce an output, Q. A D latch is transparent when $CLK = 1$, meaning that Q follows D. It becomes opaque when $CLK = 0$, meaning Q retains its previous value and ignores changes in D. An edge-triggered flip-flop copies D to Q on the rising edge of CLK and remembers its old value at other times.
1.4.9.1 Latches A D latch built from a 2-input multiplexer and two inverters is shown in Figure 1.31(a). The multiplexer can be built from a pair of transmission gates, shown in Figure 1.31(b), because the inverters are restoring. This latch also produces a complementary output, \bar{Q}. When $CLK = 1$, the latch is transparent and D flows through to Q (Figure 1.31(c)). When CLK falls to 0, the latch becomes opaque. A feedback path around the inverter pair is established (Figure 1.31(d)) to hold the current state of Q indefinitely.

The D latch is also known as a level-sensitive latch because the state of the output is dependent on the level of the clock signal, as shown in Figure 1.31(e). The latch shown is a positive-level-sensitive latch, represented by the symbol in Figure 1.31(f). By inverting the control connections to the multiplexer, the latch becomes negative-level-sensitive.

1.4.9.2 Flip-Flops By combining two level-sensitive latches, one negative-sensitive and one positive-sensitive, we construct the edge-triggered flip-flop shown in Figure 1.32(a–b). The first latch stage is called the master and the second is called the slave.

While CLK is low, the master negative-level-sensitive latch output (QM) follows the D input while the slave positive-level-sensitive latch holds the previous value (Figure 1.32(c)). When the clock transitions from 0 to 1, the master latch becomes opaque and holds the D value at the time of the clock transition. The slave latch becomes transparent, passing the stored master value (QM) to the output of the slave latch (Q). The D input is blocked from affecting the output because the master is disconnected from the D input (Figure 1.32(d)). When the clock transitions from 1 to 0, the slave latch holds its value and the master starts sampling the input again.

While we have shown a transmission gate multiplexer as the input stage, good design practice would buffer the input and output with inverters, as shown in Figure 1.32(e), to

![Figure 1.31 CMOS positive-level-sensitive D latch](image-url)
preserve what we call “modularity.” Modularity is explained further in Section 1.6.2 and robust latches and registers are discussed further in Section 10.3.

In summary, this flip-flop copies D to Q on the rising edge of the clock, as shown in Figure 1.32(f). Thus, this device is called a positive-edge triggered flip-flop (also called a D flip-flop, D register, or master–slave flip-flop). Figure 1.32(g) shows the circuit symbol for the flip-flop. By reversing the latch polarities, a negative-edge triggered flip-flop may be
constructed. A collection of *D* flip-flops sharing a common clock input is called a *register*. A register is often drawn as a flip-flop with multi-bit *D* and *Q* busses.

In Section 10.2.5 we will see that flip-flops may experience hold-time failures if the system has too much *clock skew*, i.e., if one flip-flop triggers early and another triggers late because of variations in clock arrival times. In industrial designs, a great deal of effort is devoted to timing simulations to catch hold-time problems. When design time is more important (e.g., in class projects), hold-time problems can be avoided altogether by distributing a two-phase nonoverlapping clock. Figure 1.33 shows the flip-flop clocked with two nonoverlapping phases. As long as the phases never overlap, at least one latch will be opaque at any given time and hold-time problems cannot occur.

1.5 CMOS Fabrication and Layout

Now that we can design logic gates and registers from transistors, let us consider how the transistors are built. Designers need to understand the physical implementation of circuits because it has a major impact on performance, power, and cost.

Transistors are fabricated on thin silicon wafers that serve as both a mechanical support and an electrical common point called the *substrate*. We can examine the physical layout of transistors from two perspectives. One is the top view, obtained by looking down on a wafer. The other is the cross-section, obtained by slicing the wafer through the middle of a transistor and looking at it edgewise. We begin by looking at the cross-section of a complete CMOS inverter. We then look at the top view of the same inverter and define a set of masks used to manufacture the different parts of the inverter. The size of the transistors and wires is set by the mask dimensions and is limited by the resolution of the manufacturing process. Continual advancements in this resolution have fueled the exponential growth of the semiconductor industry.

1.5.1 Inverter Cross-Section

Figure 1.34 shows a cross-section and corresponding schematic of an inverter. (See the inside front cover for a color cross-section.) In this diagram, the inverter is built on a p-type substrate. The pMOS transistor requires an n-type body region, so an n-well is diffused into the substrate in its vicinity. As described in Section 1.3, the nMOS transistor
has heavily doped n-type source and drain regions and a polysilicon gate over a thin layer of silicon dioxide (SiO$_2$, also called gate oxide). n+ and p+ diffusion regions indicate heavily doped n-type and p-type silicon. The pMOS transistor is a similar structure with p-type source and drain regions. The polysilicon gates of the two transistors are tied together somewhere off the page and form the input A. The source of the nMOS transistor is connected to a metal ground line and the source of the pMOS transistor is connected to a metal V_{DD} line. The drains of the two transistors are connected with metal to form the output Y. A thick layer of SiO$_2$ called field oxide prevents metal from shorting to other layers except where contacts are explicitly etched.

A junction between metal and a lightly doped semiconductor forms a Schottky diode that only carries current in one direction. When the semiconductor is doped more heavily, it forms a good ohmic contact with metal that provides low resistance for bidirectional current flow. The substrate must be tied to a low potential to avoid forward-biasing the p-n junction between the p-type substrate and the n+ nMOS source or drain. Likewise, the n-well must be tied to a high potential. This is done by adding heavily doped substrate and well contacts, or taps, to connect GND and V_{DD} to the substrate and n-well, respectively.

1.5.2 Fabrication Process

For all their complexity, chips are amazingly inexpensive because all the transistors and wires can be printed in much the same way as books. The fabrication sequence consists of a series of steps in which layers of the chip are defined through a process called photolithography. Because a whole wafer full of chips is processed in each step, the cost of the chip is proportional to the chip area, rather than the number of transistors. As manufacturing advances allow engineers to build smaller transistors and thus fit more in the same area, each transistor gets cheaper. Smaller transistors are also faster because electrons don’t have to travel as far to get from the source to the drain, and they consume less energy because fewer electrons are needed to charge up the gates! This explains the remarkable trend for computers and electronics to become cheaper and more capable with each generation.

The inverter could be defined by a hypothetical set of six masks: n-well, polysilicon, n+ diffusion, p+ diffusion, contacts, and metal (for fabrication reasons discussed in Chapter 3, the actual mask set tends to be more elaborate). Masks specify where the components will be manufactured on the chip. Figure 1.35(a) shows a top view of the six masks. (See also the inside front cover for a color picture.) The cross-section of the inverter from Figure 1.34 was taken along the dashed line. Take some time to convince yourself how the top view and cross-section relate; this is critical to understanding chip layout.
Consider a simple fabrication process to illustrate the concept. The process begins with the creation of an n-well on a bare p-type silicon wafer. Figure 1.36 shows cross-sections of the wafer after each processing step involved in forming the n-well; Figure 1.36(a) illustrates the bare substrate before processing. Forming the n-well requires adding enough Group V dopants into the silicon substrate to change the substrate from p-type to n-type in the region of the well. To define what regions receive n-wells, we grow a protective layer of
oxide over the entire wafer, then remove it where we want the wells. We then add the n-type dopants; the dopants are blocked by the oxide, but enter the substrate and form the wells where there is no oxide. The next paragraph describes these steps in detail.

The wafer is first oxidized in a high-temperature (typically 900–1200 °C) furnace that causes Si and O₂ to react and become SiO₂ on the wafer surface (Figure 1.36(b)). The oxide must be patterned to define the n-well. An organic photoresist that softens where

![Diagram showing the process of manufacturing the n-well](image)

FIGURE 1.36 Cross-sections while manufacturing the n-well

²Engineers have experimented with many organic polymers for photoresists. In 1958, Brumford and Walker reported that Jello™ could be used for masking. They did extensive testing, observing that "various Jellos™ were evaluated with lemon giving the best result."
exposed to light is spun onto the wafer (Figure 1.36(c)). The photoresist is exposed through the n-well mask (Figure 1.35(b)) that allows light to pass through only where the well should be. The softened photoresist is removed to expose the oxide (Figure 1.36(d)). The oxide is etched with hydrofluoric acid (HF) where it is not protected by the photoresist (Figure 1.36(e)), then the remaining photoresist is stripped away using a mixture of acids called piranha etch (Figure 1.36(f)). The well is formed where the substrate is not covered with oxide. Two ways to add dopants are diffusion and ion implantation. In the diffusion process, the wafer is placed in a furnace with a gas containing the dopants. When heated, dopant atoms diffuse into the substrate. Notice how the well is wider than the hole in the oxide on account of lateral diffusion (Figure 1.36(g)). With ion implantation, dopant ions are accelerated through an electric field and blasted into the substrate. In either method, the oxide layer prevents dopant atoms from entering the substrate where no well is intended. Finally, the remaining oxide is stripped with HF to leave the bare wafer with wells in the appropriate places.

The transistor gates are formed next. These consist of polycrystalline silicon, generally called polysilicon, over a thin layer of oxide. The thin oxide is grown in a furnace. Then the wafer is placed in a reactor with silane gas (SiH₄) and heated again to grow the polysilicon layer through a process called chemical vapor deposition. The polysilicon is heavily doped to form a reasonably good conductor. The resulting cross-section is shown in Figure 1.37(a). As before, the wafer is patterned with photoresist and the polysilicon mask (Figure 1.35(c)), leaving the polysilicon gates atop the thin gate oxide (Figure 1.37(b)).

The n+ regions are introduced for the transistor active area and the well contact. As with the well, a protective layer of oxide is formed (Figure 1.37(c)) and patterned with the n-diffusion mask (Figure 1.35(d)) to expose the areas where the dopants are needed (Figure 1.37(d)). Although the n+ regions in Figure 1.37(e) are typically formed with ion implantation, they were historically diffused and thus still are often called n-diffusion. Notice that the polysilicon gate over the nMOS transistor blocks the diffusion so the source and drain are separated by a channel under the gate. This is called a self-aligned process because the source and drain of the transistor are automatically formed adjacent to the gate without the need to precisely align the masks. Finally, the protective oxide is stripped (Figure 1.37(f)).

The process is repeated for the p-diffusion mask (Figure 1.35(e)) to give the structure of Figure 1.38(a). Oxide is used for masking in the same way, and thus is not shown. The field oxide is grown to insulate the wafer from metal and patterned with the contact mask (Figure 1.35(f)) to leave contact cuts where metal should attach to diffusion or polysilicon (Figure 1.38(b)). Finally, aluminum is sputtered over the entire wafer, filling the contact cuts as well. Sputtering involves blasting aluminum into a vapor that evenly coats the wafer. The metal is patterned with the metal mask (Figure 1.35(g)) and plasma etched to remove metal everywhere except where wires should remain (Figure 1.38(c)). This completes the simple fabrication process.

Modern fabrication sequences are more elaborate because they must create complex doping profiles around the channel of the transistor and print features that are smaller than the wavelength of the light being used in lithography. However, masks for these elaborations can be automatically generated from the simple set of masks we have just examined. Modern processes also have 5–10+ layers of metal, so the metal and contact steps must be repeated for each layer. Chip manufacturing has become a commodity, and many different foundries will build designs from a basic set of masks.
1.5.3 Layout Design Rules

Layout design rules describe how small features can be and how closely they can be reliably packed in a particular manufacturing process. Industrial design rules are usually specified in microns. This makes migrating from one process to a more advanced process or a different foundry’s process difficult because not all rules scale in the same way.

Universities sometimes simplify design by using scalable design rules that are conservative enough to apply to many manufacturing processes. Mead and Conway [Mead80] popularized scalable design rules based on a single parameter, λ, that characterizes the resolution of the process. λ is generally half of the minimum drawn transistor channel length. This length is the distance between the source and drain of a transistor and is set by the minimum width of a polysilicon wire. For example, a 180 nm process has a minimum polysilicon width (and hence transistor length) of 0.18 μm and uses design rules with

Figure 1.37 Cross-sections while manufacturing polysilicon and n-diffusion
\(\lambda = 0.09 \, \mu m \). Lambda-based rules are necessarily conservative because they round up dimensions to an integer multiple of \(\lambda \). However, they make scaling layout trivial; the same layout can be moved to a new process simply by specifying a new value of \(\lambda \). This chapter will present design rules in terms of \(\lambda \). The potential density advantage of micron rules is sacrificed for simplicity and easy scalability of lambda rules. Designers often describe a process by its feature size. Feature size refers to minimum transistor length, so \(\lambda \) is half the feature size.

Unfortunately, below 180 nm, design rules have become so complex and process-specific that scalable design rules are difficult to apply. However, the intuition gained from a simple set of scalable rules is still a valuable foundation for understanding the more complex rules. Chapter 3 will examine some of these process-specific rules in more detail.

The MOSIS service [Pina02] is a low-cost prototyping service that collects designs from academic, commercial, and government customers and aggregates them onto one mask set to share overhead costs and generate production volumes sufficient to interest fabrication companies. MOSIS has developed a set of scalable lambda-based design rules that covers a wide range of manufacturing processes. The rules describe the minimum width to avoid breaks in a line, minimum spacing to avoid shorts between lines, and minimum overlap to ensure that two layers completely overlap.

A conservative but easy-to-use set of design rules for layouts with two metal layers in an n-well process is as follows:

- Metal and diffusion have minimum width and spacing of 4 \(\lambda \).
- Contacts are 2 \(\lambda \times 2 \lambda \) and must be surrounded by 1 \(\lambda \) on the layers above and below.
- Polysilicon uses a width of 2 \(\lambda \).

Some 180 nm lambda-based rules actually set \(\lambda = 0.10 \, \mu m \), then shrink the gate by 20 nm while generating masks. This keeps 180 nm gate lengths but makes all other features slightly larger.
- Polysilicon overlaps diffusion by 2λ where a transistor is desired and has a spacing of 1λ away where no transistor is desired.
- Polysilicon and contacts have a spacing of 3λ from other polysilicon or contacts.
- N-well surrounds pMOS transistors by 6λ and avoids nMOS transistors by 6λ.

Figure 1.39 shows the basic MOSIS design rules for a process with two metal layers. Section 3.3 elaborates on these rules and compares them with industrial design rules.

In a three-level metal process, the width of the third layer is typically 6λ and the spacing 4λ. In general, processes with more layers often provide thicker and wider top-level metal that has a lower resistance.

Transistor dimensions are often specified by their Width/Length (W/L) ratio. For example, the nMOS transistor in Figure 1.39 formed where polysilicon crosses n-diffusion has a W/L of 4/2. In a 0.6 μm process, this corresponds to an actual width of 1.2 μm and a length of 0.6 μm. Such a minimum-width contacted transistor is often called a unit transistor. pMOS transistors are often wider than nMOS transistors because holes move more slowly than electrons so the transistor has to be wider to deliver the same current. Figure 1.40(a) shows a unit inverter layout with a unit nMOS transistor and a double-sized pMOS transistor. Figure 1.40(b) shows a schematic for the inverter annotated with Width/Length for each transistor. In digital systems, transistors are typically chosen to have the minimum possible length because short-channel transistors are faster, smaller, and consume less power. Figure 1.40(c) shows a shorthand we will often use, specifying multiples of unit width and assuming minimum length.

Such small transistors in modern processes often behave slightly differently than their wider counterparts. Moreover, the transistor will not operate if either contact is damaged. Industrial designers often use a transistor wide enough for two contacts (9λ) as the unit transistor to avoid these problems.
1.5.4 Gate Layouts

A good deal of ingenuity can be exercised and a vast amount of time wasted exploring layout topologies to minimize the size of a gate or other cell such as an adder or memory element. For many applications, a straightforward layout is good enough and can be automatically generated or rapidly built by hand. This section presents a simple layout style based on a "line of diffusion" rule that is commonly used for standard cells in automated layout systems. This style consists of four horizontal strips: metal ground at the bottom of the cell, n-diffusion, p-diffusion, and metal power at the top. The power and ground lines are often called supply rails. Polysilicon lines run vertically to form transistor gates. Metal wires within the cell connect the transistors appropriately.

Figure 1.41(a) shows such a layout for an inverter. The input A can be connected from the top, bottom, or left in polysilicon. The output Y is available at the right side of the cell in metal. Recall that the p-substrate and n-well must be tied to ground and power, respectively. Figure 1.41(b) shows the same inverter with well and substrate taps placed under the power and ground rails, respectively. Figure 1.42 shows a 3-input NAND gate. Notice how the nMOS transistors are connected in series while the pMOS transistors are connected in parallel. Power and ground extend 2 λ on each side so if two gates were abutted the contents would be separated by 4 λ, satisfying design rules. The height of the cell is 36 λ, or 40 λ if the 4 λ space between the cell and another wire above it is counted. All these examples use transistors of width 4 λ. Choice of transistor width is addressed further in Chapters 4–5 and cell layout styles are discussed in Section 14.7.

These cells were designed such that the gate connections are made from the top or bottom in polysilicon. In contemporary standard cells, polysilicon is generally not used as a routing layer so the cell must allow metal2 to metal1 and metal1 to polysilicon contacts.
to each gate. While this increases the size of the cell, it allows free access to all terminals on metal routing layers.

1.5.5 Stick Diagrams

Because layout is time-consuming, designers need fast ways to plan cells and estimate area before committing to a full layout. Stick diagrams are easy to draw because they do not need to be drawn to scale. Figure 1.43 and the inside front cover show stick diagrams for an inverter and a 3-input NAND gate. While this book uses stipple patterns, layout designers use dry-erase markers or colored pencils.

With practice, it is easy to estimate the area of a layout from the corresponding stick diagram even though the diagram is not to scale. Although schematics focus on transistors, layout area is usually determined by the metal wires. Transistors are merely widgets that fit under the wires. We define a routing track as enough space to place a wire and the required spacing to the next wire. If our wires have a width of 4λ and a spacing of 4λ to the next wire, the track pitch is 8λ, as shown in Figure 1.44(a). This pitch also leaves room for a transistor to be placed between the wires (Figure 1.44(b)). Therefore, it is reasonable to estimate the height and width of a cell by counting the number of metal tracks and multiplying by 8λ. A slight complication is the required spacing of 12λ between nMOS and pMOS transistors set by the well, as shown in Figure 1.45(a). This space can be occupied by an additional track of wire, shown in Figure 1.45(b). Therefore, an extra track must be allocated between nMOS and pMOS transistors regardless of whether wire is actually used in that track. Figure 1.46 shows how to count tracks to estimate the size of a 3-input NAND. There are four vertical wire tracks, multiplied by 8λ per track to give a cell width of 32λ. There are five horizontal tracks, giving a cell height of 40λ. Even though the horizontal tracks are not drawn to scale, they are still easy to count. Figure 1.42
shows that the actual NAND gate layout matches the dimensions predicted by the stick diagram. If transistors are wider than 4λ, the extra width must be factored into the area estimate. Of course, these estimates are oversimplifications of the complete design rules and a trial layout should be performed for truly critical cells.

Example 1.3

Sketch a stick diagram for a CMOS gate computing $Y = (A + B + C) \cdot D$ (see Figure 1.18) and estimate the cell width and height.

SOLUTION: Figure 1.47 shows a stick diagram. Counting horizontal and vertical pitches gives an estimated cell size of 40 by 48 λ.

1.6 Design Partitioning

By this point, you know that MOS transistors behave as voltage-controlled switches. You know how to build logic gates out of transistors. And you know how transistors are fabricated and how to draw a layout that specifies how transistors should be placed and connected together. You know enough to start building your own simple chips.

The greatest challenge in modern VLSI design is not in designing the individual transistors but rather in managing system complexity. Modern *System-On-Chip* (SOC) designs combine memories, processors, high-speed I/O interfaces, and dedicated application-specific logic on a single chip. They use hundreds of millions or billions of transistors and cost tens of millions of dollars (or more) to design. The implementation...