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Abstract

The COVID-19 Pandemic has impacted the world’s socio-economic system, resulting in a serious
health crisis and lockdowns around the world. As the growth of infection slows, decisions regarding eas-
ing of lockdown restrictions are required, keeping in view the capacity of the health-care system. In this
paper, we quantify the impact of a multi-phased release of the population from lockdown. Using the SIR
model for epidemic spread, we design and implement a method to determine the earliest time of release
from lockdown restrictions, constrained by a specified threshold on the subsequent peaks of infection.
Trade-offs between the threshold and the earliest times of removing lockdown restrictions are illustrated.
Additionally, we consider alternative policy decisions where the population is released gradually from
lockdown restrictions and illustrate the trade-offs between the rate of release of population and number
of active infections.

1 Introduction

Decisions regarding quarantine and timing of release of lock-downs have played, and will, play an important
role in controlling the spread and impact of the COVID-19 pandemic caused by the SARS-CoV-2 virus [1]
with over 3 million cases worldwide at present. The virus is known to be highly infectious, spreads easily,
and leads to acute respiratory distress.

A particular concern to policy makers is the prediction of the spread of the virus and the timing of re-
moval of quarantine. The lockdown phase, effectively a quarantine, removes a fraction of the population
from contacting the infection. Upon removal of the restriction, the virus would possibly infect the popula-
tion that emerges from lockdown, starting a new infection spreading phase and resulting in new peaks of
infections. Lockdowns have been used in the current pandemic with degrees of success, depending on the
fraction of population that respects the lockdown. The lockdown was enforced strictly in China, as well as in
Italy and Spain, but these policies were implemented after the infection had spread considerably. While the
lockdown has the impact of reducing the infection spread amongst a sizeable fraction of susceptible people,
evidence that easing of lockdown restrictions could possibly restart the infection process can be found in
recent reports [2]. The need for reducing the stress on the healthcare system [3] requires an analysis of the
behavior of the infection spread after the periods of lockdown end. The US has the largest number of active
infectious cases and is undergoing considerably stress [4] on the healthcare system. This indicates need for
the study of a strategically timed release from lockdown.

In this paper, we study methods to determine the trade-offs between the time of removal of restrictions
versus increase in infected cases. We utilize an algorithm that provides the earliest time of removal of
∗Research sponsored by NSF grant No. 2028274. This paper may be found at http://www.cs.iit.edu/∼kapoor/papers/covid1.pdf

These are the results of a study at Kapoor Lab, Department of Computer Science, Illinois Tech, Chicago; conducted by Sanjiv
Kapoor, Yi Zhang and Mohit Hota.
†Corresponding author, kapoor@iit.edu

1

http://www.cs.iit.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}kapoor/papers/covid1.pdf


restrictions of lockdown while containing the spread of the disease to within a threshold. Two scenarios
are considered, one where the restrictions are eliminated in phases and the other where the population is
released from lockdown gradually, as will likely occur. We utilize analysis of epidemic spread models,
more specifically the SIR [5, 6] model (originally from [7–9]). There have been multiple analysis on the
COVID-19 pandemic that model its spread including some that account for lack of complete reporting, a
problem that further complicates the modeling process [10–18]. Our methods require the initial susceptible
population and the infection rates. A regression method is used to fit the model to provide estimates of the
parameters of the standard epidemic model. We then use an optimization method to determine the earliest
release times for the population under lockdown. The fraction of population under lockdown is estimated
using mobility data. Our algorithms to determine the trade-offs utilize a discrete time recurrence to model the
behavior of the spread of infection; this models the dynamics of the disease and is also found in the seminal
works by Kermack and McKendrick [7–9]. To determine the earliest time of release, our algorithm relies on
monotonicity properties of the solution and a logarithmic search over the space of parameters. The results
illustrate that sufficiently delayed and controlled release of lockdown is essential. We note that applications
to public policy decisions require multiple other factors including demographics. Publicly available data
from multiple repositories [19, 20] and the states of Illinois and New York are used to illustrate the method.

We summarize our findings: subject to a known fraction of the population in “lockdown”, and determine
that:

• If the population on lockdown is to be released in equal sized batches (which is likely), then it appears
prudent to wait for a substantial decrease in “active infections”, e.g., to limit the cases to 75% of the
peak, wait for the active cases to drop to 50% of the peak before each phase.

• If the population on lockdown is to be released at a steady rate, then that release rate should be quite
low. Once the number of active infections drops to a certain level, a 1% rate of release of the lockdown
population would still retain the drop in active infections for New York. For Illinois the recovery rate
is abnormally slow, an anomaly that could be resolved from gathering more accurate data.

• We show that an adaptive gradual release policy with variable rate, results in maintaining reduction in
active infected cases and provides a relatively fast release of the population from lockdown.

The spread of infections alters the behavior of people and the consequent safety measures adopted alter
the rate of infection spread. While some current models attempt to capture this [21], our method, which
relies on discrete simulation, has the ability to incorporate a time-varying rate of infection. In the current
analysis, however, we utilize a constant rate of infection, obtained from parameters derived by fitting the
epidemic model to the data.

2 Methods

Models of Pandemic Spread: We investigate both, the SIR and the SEIR models for the states of Illinois
and New York, in USA. The models are defined below. Each of these models involve parameters obtained
from a regression analysis using available data for each state. The goodness-of-fit is evaluated using the
values of R2 (the co-efficient of determination), and is discussed later in this paper. Our model fitting results
in estimating the fraction of susceptible population and utilizing the inverse of the reported recovery rate
as a substitute for the infectious period. There is a discrepancy between the typical recovery rate and that
estimated by our algorithm pointing to the need for better models to account for a more restrictive infectious
period. The focus of this paper is to illustrate the relationship between the growth of infection and release
of population from lockdown.
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Standard SIR Model: This model uses three parameters, denoted as - S : Size of susceptible population,
I : Number of infected individuals, R : Number of recovered individuals; and assumes that the population
size, N remains constant.

Changes over time in the population categories are modeled by the differential equations:

dS

dt
= −βSI/N ;

dI

dt
= βSI/N − γI;

dR

dt
= γI

where β is the infection rate and γ is the recovery rate.

SEIR Model: The standard form of the model, without birth and death processes, is modeled by:

dS

dt
= −βSI/N ;

dE

dt
= βSI/N − βIE

dI

dt
= βIE − γI;

dR

dt
= γI

where E is the number of individuals exposed to the disease and βI is the infection rate of the exposed
population.

2.1 Phased Release Strategy

We use a discrete-step version to compute the model parameters and adapt the above model to incorporate
“lockdown”. Let h be the fraction of people under lockdown, i.e., the fraction of population that is in
“shelter” condition and consequently, (1 − h)S is the susceptible population. Typically, at the onset of the
spread of infection, h is a function of time, i.e., h(t) which we assume to be a constant for simplicity. Let
lk, k ∈ {1, 2 . . .K} represent the fraction of population to be released from lockdown restrictions at time
Tk, where K is the number of lockdown phases. This represents a step function that will model a phased
release, corresponding to discrete phases.

Optimizing the Release: Our objective is to determine the earliest times of release of the population in
phases so as to limit the growth of infected population after the release. The optimization uses the discrete
step based mathematical program described below. We assume that all places release the lock down at the
same time, allowing us to ignore population changes due to travel. We define indicator variables Zk(t)
which are 1 when the kth phase of release of the lock down begins. The population enters lockdown at
time t0. The susceptible population is ηN , and h0 is the fraction that is on lock down. It is assumed that
the lockdown begins when 200 people are infected. Further, define E(t) to be the number of exposed to
infection population, I(t) the number of infected people, at time t. The modified discrete step SIR model is
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as follows:

min
∑

k

∑
t Zk(t) · t

S(t) =


ηN, if t = 0

S(t)(1− h0)−∆S(t− 1), t = t0

S(t− 1)−∆S(t− 1) +
∑

1≤k≤K lkZ
k(t)ηN, ∀t 6= t0

I(t) = I(t− 1) + ∆S(t− 1)− γI(t− 1), ∀t
R(t) = γI(t− 1), ∀t
I(t) ≤ M ≤ Ip, ∀t ≥ tM∑

t

Zk(t) = 1,∀k

Zk(t) = 0, ∀k, & t ≤ tM
Zk(t) ∈ {0, 1}

where ∆S(t) = βS(t)I(t)/N and M = TH ·IP ; IP is the number of peak infections under lockdown, and
tM the time at which infections reduce to value M after the peak of value IP , under lockdown conditions
and TH is the fraction of the peak that is required to be maintained after lockdown is opened.

Given fixed values of lk we can solve the above program using a simple search method, resulting in a
method that is dependent on the size of the time domain. We next show how to improve this computation.

Binary Search for Release Time: Assume the infection reaches its peak at time tP . Let SP = S(tP ),
the number of susceptible people at the time, tP of peak of active infections, and IP = I(tP ). We get the
following

dI

dt

∣∣∣∣
IP

=
βSP IP
N

− γIP = 0

SP =
γN

β

It is clear that at any time t > tP , dS
dt < 0 and dI

dt < 0. Let t1, t2 be 2 different times such that
tP < t1 < t2. We consider releasing F , a fraction of the lockdown population such that F + S(t2) >

γN
β ,

at two different time t1 and t2, leading to new peaks IP1 and IP2 respectively.

Lemma 1 For the SIR model, IP1 > IP2
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Proof :

dI

dS
=
dI

dt
/
dS

dt
=
γN

βS
− 1

IP1 = I(t1) +

ˆ SP

S(t1)+F
(
γN

βS
− 1)dS (as in [22])

IP1 = I(t1) +
γN

β

(
ln(

γN

β
)− 1

)
+ F + S(t1)−

γN

β
ln
(
S(t1) + F

)
Similarly, IP2 = I(t2) +

γN

β

(
ln(

γN

β
)− 1

)
+ F + S(t2)−

γN

β
ln
(
S(t2) + F

)
IP1 − IP2 = I(t1)− I(t2) + S(t1)− S(t2)−

γN

β
ln
S(t1) + F

S(t2) + F

Let ∆S = S(t1)− S(t2), ∆I = I(t1)− I(t2),

IP1 − IP2 = ∆I + ∆S − γN

β
ln
(

1 +
∆S

S(t2) + F

)
∆S < S(t1) < SP & S(t2) + F > SP =⇒ ∆S

S(t2) + F
< 1 =⇒ ln

(
1 +

∆S

S(t2) + F

)
<

∆S

S(t2) + F

IP1 − IP2 > ∆I + ∆S − γN

β

∆S

S(t2) + F

= ∆I + ∆S
(

1− γN

β
· 1

S(t2) + F

)
> ∆I ≥ 0

Since the value of the new peak IP decreases monotonically with respect to the release time, we can
perform a binary search to determine the earliest release time that satisfies the peak threshold.

2.2 Gradual Release Strategy

Let δS be the change in population that we wish to to compute, while maintaining a negative rate of active
infections. Changes over time in the population categories is expressed as :

dS

dt
= −β(S + δS)I/N ;

dI

dt
= β(S + δS)I/N − γI;

dR

dt
= γI

where β is the infection rate and γ the recovery rate. To maintain the rate of infection decrease to be ra < 0
we obtain:

β(S + δS)I/N − γI ≤ ra < 0 (1)

or
δS ≤ (γ/β)N − S
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3 Results and Discussion

We investigatethe trade-offs between the time of release of lockdown and the consequent impact on the
number of infections. In the analysis, a fraction of the population, h, that is under lockdown is eliminated
from consideration during the initial stages of the infection, and is then re-introduced into the model when
the lockdown restrictions are relaxed. Removal of restrictions of the lockdown impacts the susceptible
population. We consider two strategies for removal of restrictions. In the first strategy restrictions are
relaxed on an equal fraction of the population at distinct times and we determine the earliest time of such
release, subject to conditions on growth of active cases. In the second scenario the population is released
gradually in small fractions over time and we determined the impact of the release strategy on the number
of active cases. We focus on the number of active cases as this metric is important for health-care systems.

The current population under lockdown is estimated using the mobility numbers to roughly 50% average
(The Google COVID-19 Community Mobility Reports [23] indicate a 45% decrease in transit and workplace
mobility in New York). The analysis of the spread of the infection utilized both the SIR and SEIR models,
and in order to fit the models we minimized an error function. The parameter space includes the size of the
initial susceptible population, β and γ, the parameter for recovery time, guided by reports that the typical
recovery time have a mean value of 14 days [24]. However the recovery data did not indicate a mean
recovery period of 14 days but a much longer period. We describe the determination of the model parameter
in a later section 4. Details of these parameter estimates are provided for two states, Illinois and New York .
The SIR model provided a more accurate fit of the model and is used in our results on release strategies.

3.1 Phased Removal of Restrictions

In the analysis of a phased release, a fraction of the population, h, that is under lockdown is eliminated from
the population in the system, and this fraction is re-introduced at later stages. Given the model parameters,
we introduce this population in phases, releasing a third of this population at every phase. Other release
proportions are allowed to be easily incorporated. This population cannot be introduced before the peak of
infection, measured by the number of active cases and is illustrated in Figure 1 where the active cases grow
substantially when a fraction of the population is released from the lockdown just around or before the peak.
In both the states, gradual reopening at a rate of 1.5% of the population under lockdown results in a spike
of cases ( Figure 1), with Illinois projected to be worse. We note that the data for recovered cases in Illinois
is sparse and impacted the projections adversely. The two projections illustrated are for two scenarios (a) 2
weeks after the number of new cases peak and (b) 2 weeks after the peak of the active infected cases.

Optimizing the Release: The SIR model is used to compute the peak of active infections. We note that
the parameters also include the susceptible population size, which is required to be estimated. We account
for the “lockdown effect” by decreasing the susceptible population since lockdown effectively removes a
sizable fraction of the population from the infection dynamics. This hidden population is returned to the
susceptible population in 3 phases, uniformly, and at time instances that are computed by the algorithm.
We set a bound on the projected future growth of the active infections, as provided by the SIR model. This
bound TH is set to be a percentage of IP , the number of active infected cases at the peak of the spread of
the virus.

The objective of our algorithm is determine T1, T2 and T3, i.e., the earliest times at which restrictions
are removed under the constraint that the active cases do not exceed the threshold percentage (TH) of the
number of active infections at the peak that occurred during lockdown. Our optimization method has been
detailed in section 2.1. For the states of New York and Illinois, the earliest times of release of each of the
three phases and the consequent behavior of the release of the hidden population is illustrated in Figure 2 and
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(Illinois) (New York)

Figure 1: Release prior to peak of active infections ( population under lockdown released gradually at a rate
of 1.5%).

Figure 3. Releasing population in phases will result in increase in number of infections and the increase in
the active cases is illustrated in Figure 2, while the rise and the pattern of growth in the cumulative infected
cases is shown in Figure 3. In this simulation, it is assumed that 50% of the population in Illinois and New
York is under “lockdown” after the number of infections hit a figure of 200. This half of the population is
released from lockdown in equal phases. The figures do not account for additional measures that may be
used against the spread of the infection, including testing and stricter social distancing in public transport
and public places. These measures will alter the model parameters.

(Illinois) (New York)

Figure 2: Active infections as a function of days for different threshold percentage TH during a three phase
release plan.

Impact of Infection Transmission rates: The estimate of the transmission rate is dependent on a number
of parameters and may vary. We consider the variation in this factor in determining a relationship between
the threshold percentage, TH, and the percentage drop from the peak at which the first hidden population
is to be released from lockdown (Figure 4) when optimizing for the release time. This relationship is
approximately linear. The measure of infection rate, β is used as a variable to compute this relationship for
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(Illinois) (New York)

Figure 3: Cumulative Infections as a function of days for different TH, peak threshold during a three phase
release plan that limits infection to threshold percentage TH.

the range of β ∈ [β ∗ .6, β ∗ 1.4], given the current estimate of β. This relationship can be used to determine
the lockdown release expressed as a percentage of the peak of active infections, given a threshold percentage
TH of the first peak of active infection cases that can be afforded by the health-care system without stress.
As an example, if the health-care system has the capacity to handle 75% of the first peak, then the release of
the lockdown should be at around 50 percent drop from the peak active cases in Illinois. For New York, the
corresponding drop is estimated at 50%.

(Illinois) (New York)

Figure 4: Percentage drop from peak infection required for reopening vs threshold percentage TH.

In terms of number of days till removal of restrictions, Figure 5 illustrates the relationship between the
earliest release day of the first phase, as a percentage of the day to the peak infection rate versus threshold
percentage, TH, that the active infected cases are to be limited to. As an example, in Illinois, the relationship
shows that to limit further infections to TH value of 75% of the active infection peak cases under lockdown,
reopening the economy should start after waiting for at least 1.5 times the number of days to the first peak.
This is more applicable to counties which are most affected by the spread of infection.
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(Illinois) (New York)

Figure 5: Number of days to restart / Number of days to peak vs threshold percentage TH.

3.2 Gradual Release of Restrictions Policy

We contrast the phased removal of restrictions with a graded release policy. The first gradual release policy
considered is as follows: A percentage, κ, of the original population under lockdown is released linearly,
starting at 14 days after the peak. The results are illustrated in Figure 6 for various values of κ. The results
show that the release should be very gradual.

(Illinois) (New York)

Figure 6: Number of active infections for various linear release percentages. The percentage of population
under lockdown is assumed to be 50%.

Gradual Policy to uniformly reduce active infections One possible policy would be to release a per-
centage of the population with the objective that the number of infections do not increase. Let δS be the
increase in population and ra the rate of decrease of active infections . In order to ensure that ra is negative
(see inequality (1)), the relationship

δS ≤ αS(N(γI)/(Iβ)− S), αS ≤ 1
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must hold and we utilize this relationship to determine the percentage of population from which the
lockdown restrictions are removed. In our simulations we choose different values of αS where δS =
αS((γ/β)N − S), with αS regulating the release of population as follows: When αS = 0 no new pop-
ulation element is released, while αS = 1 indicates releasing a portion of the population that results in no
decrease of active cases. Note that this release rate is a function of time. The graph of the active infections
(Figure 7) for various release factors shows that the efficacy of the gradual release policy.

A measure of efficiency of this mechanism is the days required to complete the removal of restriction,
termed “Release-end”. The time of start of this release policy also impacts the “Release-end” days. The
gradual release policy is to be activated at the peak of active infections and to start after “delay” days. The
decrease relationship between the Release-end days and the release factor rI is illustrated in Figure 8 for
various values of “delay”. Figure 9 illustrates the increase relationship between the Release-end days and
the delay for various release factors.

(Illinois) (New York)

Figure 7: Active Infections vs lockdown release factor, αS

(Illinois) (New York)

Figure 8: The number of days required for complete removal of lockdown vs rate of release from lockdown,
αS for different start delays .
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(Illinois) (New York)

Figure 9: The number of days required for complete removal of lockdown vs start delay of gradual release
policy for different release factors, αS .

SEIR Model The SEIR model parameters were investigated and did not provide additional insight as the
recovery data in the two states considered was sparse.

4 Model parameters

Model parameters were obtained using a program to fit the model equations. The variables used in the model
are η, β and γ, where η specifies the susceptible set, i.e. S0 = ηN . An optimizer was used to fit determine
the parameters using a loss function

L(η, β, γ) = α1f1(∆I(t),∆I ′(t)) + (1− α1)f2(I
′(t), R′(t))

where ∆I ′(t) is the derivative of the computed active infections, I ′(t), ∆I(t) is the derivative of the actual
data time series of active infected cases, I(t); the functions f1 was chosen to be either the RMSE, alterna-
tively the R2 value (coefficient of determination) of the differences in the parameters , while f2 is again a
convex combination of the RMSE, alternatively R2), values of differences in the two time series I ′(t) and
R′(t) with respect to the data time series I(t) and R(t). The data was obtained from multiple sources that
include [19, 20, 25]. Note that the data for recovered patients does not seem to fit the average recovery time
that has been reported; as such our results are to be considered with this caveat. Our model fitting results in
utilizing the inverse of the reported recovery rate as a substitute for the infectious period instead of forcing
that period from reports external to the model.

The results for our curve fitting are illustrated in Figure 10. We sampled over multiple dates to find the
best fit, i.e., that minimizes the error function above (we in fact maximized the R2 value since we needed to
normalize the two function f1 and f2). After some experimentation, we choose α1 = 0.3 and the convex
combination weights inside f2 for I ′(t) and R′(t) were 0.7 and 0.3, respectively. There is the distinct
possibility and drawback of an over-fit but given the sparsity of the recovery data the determination of the
degree of overfit was not conducted in this current version. The parameters obtained are β = 22.80, γ =
0.00554, η = 0.005724 for Illinois and β = 10.41, γ = 0.01863, η = 0.016788 for New York. No
additional advantage is seen in the SEIR model as compared to the SIR model.
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(Illinois) (New York)

Figure 10: Model fitting to estimate parameters

5 Appendix

5.1 Impact of adherence to lockdown in Phased release.

The above relationships are all contingent to the assumption that 50% of the population were in lockdown.
To illustrate the variation with the lockdown rate we consider the percentage number of days to reopen
versus the lockdown factor, specified by h in Figure 11. As the percentage of population that is on lockdown
increases, the number of days to start the first phase of the removal of the lockdown restriction increases
non-linearly. This is positively countered by reduced number of infections. The threshold used in this
simulation was 75%.

(Illinois) (New York)

Figure 11: Number of days to restart / Number of days to peak vs lockdown percentage (h).

5.2 SEIR Model Parameters

Sampling over multiple dates to minimize the error function and find the best fit, we obtained the parameters
β = 77.65839487, βI = 0.02227246, γ = 0.05438232, and η = 0.01698456 for New York, and β =
328.03177107, βI = 0.00525391, γ = 0.01430008, and η = 0.00625742 for Illinois. We illustrate the
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(Illinois) (New York)

Figure 12: Model fitting to estimate parameters in the SEIR model

results in Figure 12. However application of these results did not yield significant differences and will be
the focus of future work.
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