
Efficient Anytime Anywhere Algorithms for Closeness Centrality in Large and
Dynamic Graphs

Eunice E. Santos, John Korah, Vairavan Murugappan, Suresh Subramanian

Department of Computer Science
Illinois Institute of Technology, Chicago, USA

{esantos2, jkorah3}@iit.edu, {vmuruga1, ssubra20}@hawk.iit.edu

Abstract—Recent advances in social network analysis
methodologies for large (millions of nodes and billions of edges)
and dynamic (evolving at different rates) networks have focused
on leveraging new high performance architectures,
parallel/distributed tools and novel data structures. However,
there has been less focus on designing scalable and efficient
algorithms to handle the challenges of dynamism in large-scale
networks. In our previous work, we presented an overarching
anytime anywhere framework for designing parallel and
distributed social network analysis algorithms that are scalable to
large network sizes and can handle dynamism. A key contribution
of our work is to leverage the anytime and anywhere properties of
graph analysis problems to design algorithms that can efficiently
handle network dynamism by reusing partial results, and by
reducing re-computations. In this paper, we present an algorithm
for closeness centrality analysis that can handle changes in the
network in the form of edge deletions. Using both theoretical
analysis and experimental evaluations, we examine the
performance of our algorithm with different network sizes and
dynamism rates.

Keywords-social network analysis; parallel and distributed
processing; centrality analysis; dynamic graphs; anytime
algorithms

I. INTRODUCTION

Social networks provide the capability to leverage graph
algorithms and other computational methodologies to
rigorously analyze various social phenomena such as social
influence. Depending on what relationships are depicted by
the arcs/edges of a social network, the graph can be
represented as directed or undirected. A number of social
network services such as Twitter, LinkedIn, and a myriad of
other similar applications have witnessed explosive growth
in the past decade. As a result, these domains generate
dynamic network information in the order of millions of
nodes and edges. Availability of such large data sets, while
significantly extending our understanding of the underlying
social phenomenon, has also created new challenges for
social network analysis (SNA) research. We now describe the
following key issues in performing SNA on large and
dynamic social networks.
 The most important issue is network size. As the network
size grows, computation time and resources required for
measuring SNA metrics may increase dramatically[1][2].
Computation time can significantly constrain the utility of

SNA techniques in large-scale networks, especially for time
critical applications. A number of recent papers have
proposed various methodologies such as parallel and
multithreaded tools, novel data structures and efficient graph
libraries to perform large-scale graph analysis [3][4][5][6].
While parallelization techniques solve some of the scalability
issues, there are other issues such as network dynamism that
need to be better addressed. Also, these methodologies do not
generally prescribe algorithm designs that take into account
tradeoffs between memory availability and performance.

In many SNA tasks such as real-time social media
analytics, disaster management, etc., the underlying network
is continuously evolving, with nodes and edges being added
and/or removed, during analysis. One approach used to
address this issue is to restart the analysis of the modified
graph from scratch [7]. While this method can be feasible for
smaller graphs with occasional network changes, restarting
the entire analysis from scratch in larger real-time networks
with frequent updates will often yield poor performance.
Another method is to analyze a static snapshot of the dynamic
network. However, this will only yield approximate results
which, depending on the rate of change of the network, can
quickly become obsolete. Although there are some graph
processing methods[6][8] that are sensitive to networks
changes, their main objective is to reduce the load imbalance
caused by dynamism. We believe less attention has been
given to formulating critical algorithm designs that can truly
adapt to different rates of changes in the social networks by
efficiently incorporating the new information, and avoiding
massive re-computations. Finally, as discussed in the
background section, many computational platforms such as
shared-memory, distributed-memory, massively
multithreaded and other specialized architectures are
leveraged to perform large-scale graph analysis. In order to
take advantage of various computational platforms, any
graph analysis algorithm or framework has to be compatible
with these environments.

In order to address these challenges, a parallel/distributed
anytime anywhere methodology for large and dynamic social
network analysis was proposed by Santos et al.[1], [9]. In the
anytime anywhere approach, the large social network graph
is decomposed into smaller sub-graphs. Each sub-graph is
analyzed and refined over time, while providing nontrivial
intermediate results. The quality of these results are

monotonically non-decreasing with respect to the
computation time. Moreover, the dynamic changes in the
network occurring over the course of analysis are
continuously incorporated. In the anytime anywhere
methodology, the term anytime refers to the capability of the
algorithms to provide nontrivial partial results that will get
refined over time. The term anywhere, on the other hand,
refers to the capability to incorporate changes to the network
whenever it happens and to propagate the effects of these
changes to the whole network. We demonstrated our anytime
anywhere approach for centrality measurements [1] and
maximal clique enumeration problem [2] as part of our
previous work. In this work, we provide algorithm designs
that can adapt to edge deletions efficiently, and validate this
approach for the problem of closeness centrality calculations
in social networks. Furthermore, we have provided both
theoretical and experimental evaluations of the proposed
algorithm. Note that our previous algorithm designs[2] for
edge deletions were specific for the maximum clique
problem.

II. BACKGROUND

A number of graph libraries [4][10], computational
frameworks [3][7], tools [5][6], and data structures[3][10]
have been proposed for large-scale graph analysis. However,
even with the existing computational capabilities researchers
and analysts are overwhelmed with the ever-increasing size
of the social network datasets. In addition to the enormous
scale, these data sets exhibit various degrees of dynamism,
which further impedes the network analysis. Some of the
prominent single machine, shared-memory based graph
analysis tools are LEMON [11], Pajek 1 , igraph [12],
NetworkX [13], UCInet [14], etc. Pajek and UCInet are graph
analysis, software tools that provide implementations of
various graph analysis algorithms, and provisions for graph
visualization. LEMON, NetworkX and igraph are graph
libraries that provides APIs and other useful graph data
structures for performing graph analysis. Due to issues such
as limited memory size, these tools can only provide analysis
for small to medium scale (hundreds of thousands of nodes)
graphs. Additionally, these systems are not designed to
handle dynamic graphs.

MultiThreaded Graph Library (MTGL) [10] and GraphCT
[3] provide graph analysis algorithms and data structures for
massively multithreaded, shared-memory platforms.
However, massively multithreaded, shared-memory tools are
generally developed for specialized supercomputer
architectures, such as Cray Multi-Threaded Architecture
(MTAs) and eXtreme MultiThreaded Machine (XMTs).
Also, they are not suited for distributed-memory clusters. The
primary focus of massively multithreaded graph libraries is
to provide high performance graph data structures and
algorithms for large-scale graph analysis that are fine tuned

1 http://mrvar.fdv.uni-lj.si/pajek/

2 http://giraph.apache.org/

for massive shared-memory and many thread processor
architectures. Our anytime anywhere framework, on the other
hand, is computational platform independent and can be used
to develop dynamic large-scale algorithms for both cluster
computing platforms and other specialized architectures.

MapReduce[15] is a popular framework that provides a
simple, scalable and fault tolerant programming model for
developing parallel applications. It is specifically designed
for processing large amounts of data stored on commodity
clusters. Large-scale graph analysis tools such as Surfer [5]
and PEGASUS [4] were developed based on the MapReduce
framework. However, most graph analysis algorithms are
iterative in nature [16], and MapReduce systems are not well
suited for such tasks. Pregel [7], a vertex-centric and Bulk
Synchronous Parallel (BSP) model based graph analysis
platform, was designed to address these issues. In this model,
the computation is divided into a sequence of iterations or
supersteps. During each superstep, a user defined function is
performed at each graph vertex. Messages are exchanged
between the vertices at the end of each superstep. This
iterative framework can be used to formulate a number of
graph algorithms. In addition, a user defined function can be
invoked for each vertex, theoretically in parallel, so the
maximum number of parallel tasks in the system could be as
high as the number of vertices in the graph, thereby making
this framework highly scalable. This framework provides
ease of programming due to the synchronicity imposed by the
supersteps. Giraph2, Hama3, Mizan [6] and Pregelix [17] are
some of the popular Pregel based graph analysis systems
[18]. These systems provide efficient data structures, APIs,
and platforms for large-scale graph analysis. However,
MapReduce and Pregel are programming frameworks, and do
not specify efficient algorithm designs for handling dynamic
graphs.

A large part of existing work on SNA algorithms,
especially for computing shortest path related metrics for
dynamic graphs [19][20], is focused on providing efficient
serial algorithms. While these solutions perform well for the
analysis of small to medium sized graphs, they are not
scalable and are usually inefficient for large-scale graph
analysis. While parallel/distributed graph analysis algorithms
can overcome the inherent scalability issue in serial
algorithms, designing such algorithms involve performing
several challenging tasks such as efficiently partitioning the
graph to balance workload, handling communication
overhead, etc. An anytime anywhere framework addresses
these issues efficiently. We have demonstrated our anytime
anywhere approach and framework in previous work by
developing and evaluating SNA algorithms for centrality
analysis [9] and maximum cliques [2]. Specifically, we
demonstrated the capability of our framework to deal with
increase and decrease in edge weight during centrality
analysis [1]. We have also designed algorithms to deal with

3 http://hama.apache.org/

jkorah
Highlight

addition and deletions of edges during maximal clique
enumeration [2]. In this paper, we further extend our
capability to analyze dynamic graphs by designing a
closeness centrality algorithm that can handle edge deletions.
Although we have developed anytime anywhere algorithms
to handle edge deletions for maximum clique enumeration,
edge deletions generate wider network ripple effects in
closeness centrality analysis, thereby requiring different
algorithmic design strategies.

In many SNA scenarios it is beneficial to obtain nontrivial
intermediate results earlier during the course of analysis,
which is one of the capabilities of the anytime anywhere
framework [2][1]. In many real-world networks such as
online social networks, the underlying graph structure is
highly dynamic. In such networks, vertices and edges are
continuously evolving and analyzing these graphs in real-
time has to be a continuous process. Thus, it is critical for the
graph analysis algorithms to be able to accommodate the
dynamic graph changes during the course of analysis. Some
recent works addressed the issues caused by dynamic large-
scale graphs from a load balancing perspective [6][8]. Our
key focus in this work is to design algorithms that can
efficiently handle dynamic structural changes, and refine the
results instead of restarting or re-computing the entire
analysis.

III. ANYTIME ANYWHERE METHODOLOGY

The anytime anywhere framework handles the analysis of
large and dynamic real-world social networks by providing
two key features: nontrivial intermediate results and handling
network dynamism. The central idea in our framework is to
divide the large-scale graph into smaller sub-graphs and
analyze these sub-graphs by incrementally refining and
combining their results. In general, many graph analysis
algorithms are iterative in nature and exhibit anytime and
anywhere properties [1][21][22]. Anytime algorithms have
the following properties: 1) Interruptibility: The algorithm
can be paused at any intermediate step, and a valid result can
be obtained, 2) Preemptability: The algorithm can be
suspended and restarted with minimal overhead, 3) Result
Quality: A measure for the quality of the intermediate results
generated by the algorithm can be defined, and 4)
Predictability: The quality of the results has a monotonically
non-decreasing relation with the amount of computational
time and resources available to the algorithm. Moreover,
performance profiles of an anytime algorithm can be
formulated that allow for the prediction of the quality of
future results.

On the other hand, algorithms with anywhere property
have the ability to incorporate changes occurring in any part
of the network, and efficiently propagate its effects across the
whole network. Social network analysis performed using our
methodology leverages these innate properties in graph
algorithms such as the Floyd-Warshall’s algorithm for
calculating all pairs shortest paths (APSPs). Our anytime
anywhere methodology consists of three phases: domain

decomposition (DD), initial approximation (IA) and
recombination (RC) and has been discussed in [1][2]. In the
DD phase, the large social network graph is partitioned into
smaller sub-graphs, which are then distributed among a set of
compute nodes such that the workload is evenly distributed.
Initial results computed during IA phase is incrementally
combined, and refined in the RC Phase. Furthermore, RC
phase incorporates any dynamic changes to the network.
Detailed explanations for each of these phases are provided
below.

A. Domain decomposition

Many social networks have community structures, such
that nodes within a community are more tightly connected
(i.e. share more edges), than nodes between different
communities. Therefore, partitioning the graphs along these
community structures helps to ensure that communication
and computation costs are distributed equally across the
processors. Computational costs for processing each sub-
graph depends on the number of vertices in the sub-graph.
Whereas, communication cost is determined by cut-edges
and cut-size. Cut-edges are edges, whose endpoints belong to
different sub-graphs, and cut-size is the number of such
edges. Intuitively, sub-graphs with higher cut-size will share
more edges with other sub-graphs, thereby increasing the
amount of communications performed during each iterative
step. On the other hand, sub-graphs with smaller number of
cut-edges will provide better anytime results, since most
information required by the sub-graph are self-contained.

To address these issues, we used a partitioning
methodology based on the Parallel Graph Partitioning and
Fill-reducing Matrix Ordering (ParMETIS) algorithms [23].
ParMETIS partitions the graph such that the resulting sub-
graphs have minimal cut-edges. Naturally, as the number of
cut-edges becomes smaller the amount of communications
performed in the RC phase reduces significantly.

B. Initial approximation

The IA phase provides the preliminary approximation
results for the whole network. The quality of results obtained
in this phase is dependent on the computation time applied
and the amount of information contained in the sub-graphs.
Algorithms employed in the IA phase are designed such that
the partial results calculated from each sub-graph can be
combined and refined further in the RC phase.

C. Recombination

In the RC phase, the partial results are incrementally
combined and refined to obtain a final result. It is iterative,
with each iteration consisting of two key steps: 1) Refine the
results obtained from the previous RC step, and 2) Adopt the
dynamic changes in the graph. During each iteration, partial
results in each sub-graph is refined based on the updates
obtained from the neighboring sub-graphs. Furthermore, as
discussed in earlier sections, the vertices and edges of
dynamic social networks change over time. The RC phase
continuously incorporates these changes into the network and

propagates the effects to the whole network. Communication
costs are a major component of the overall run time of
parallel/distributed algorithms. Therefore, a careful design of
communication schedules based on the analysis requirements
and on the computational platform is necessary. The anytime
anywhere framework supports rigorous performance analysis
using performance models such as LogP[24], which in turn,
provides insights for choosing the appropriate
communication schedule. Note that the RC phase does not
impose a fixed communication model or schedule. Moreover,
the framework is also platform independent.

IV. ANYTIME ANYWHERE ALGORITHM DESIGN FOR

CLOSENESS CENTRALITY

Closeness centrality[25] is a key social network analysis
(SNA) metric for identifying important actors/nodes. Such
nodes figure prominently in the social process being analyzed
as they play an important role in spreading social interactions
and information. Closeness centrality analysis requires the
computation of all pairs shortest paths (APSPs) in the
network. Due to the computational challenges of calculating
APSPs of large and dynamic networks, closeness centrality
is a suitable problem to demonstrate the strengths of the
anytime anywhere framework. Various heuristic based
algorithm designs have been proposed for finding
approximate centrality values [26], [27]. However, these
designs require a “restart” when the graph changes and do not
efficiently reuse already calculated partial solutions. Our
anytime anywhere framework [1] was formulated to deal
with large and dynamic social networks and we will provide
algorithm designs based on this framework that efficiently
deal with graph changes.

A. Closeness centrality

Definition 1: Given a graph (,) with a set of vertices
and a set of edges such that | | = and | | = ,
closeness centrality of a vertex ∈ 	is defined as, () = 1∑ (,)
where (,) represents the shortest path distance between
the vertices and .
 In [1], we presented algorithms for handling dynamic
increases and decreases in edge weight. We now extend the
work to efficient algorithm design for dynamic edge
deletions. Unlike changes to edge weight, edge deletions
cause substantial changes to the structure of the network. A
deleted edge can completely disconnect a sub-graph from the
rest of the network. Our focus is on algorithm designs for
efficiently reusing the partial solutions and reduce re-
computations during edge deletions. The other challenge for
parallel/distributed algorithm design is that, dynamic changes
can cause load imbalances. However, the question of
dynamic load balancing will be dealt in future work.

Below, we provide details on the algorithm design for
closeness centrality, followed by discussions on the designs
for handling dynamic changes. As we described earlier,

algorithms designed using our anytime anywhere approach
have three phases: 1) Domain decomposition (DD), 2) Initial
approximation (IA), and 3) Recombination (RC).

B. Domain decomposition

We used a partitioning algorithm based on the Parallel
Graph Partitioning and Fill-reducing Matrix Ordering
(ParMETIS) algorithm [23]. The partitioning algorithm
provides roughly vertices in each partition [28], where

and are the number of vertices and number of processors
respectively. Following the methodology in ParMETIS
algorithm, the graph partitioning in DD consists of the
following steps: coarsening, folding, initial partitioning, un-
coarsening and un-folding. One of the limitations of
ParMETIS is that it requires perfect square number of
processors. Since the anytime anywhere framework does not
impose such restrictions on processor count, we overcome
this limitation in the graph partitioning by idling a subset of
the processors during the DD phase.
 Coarsening is the first phase of ParMETIS algorithm.
During coarsening, multiple vertices are merged together into
super nodes. Heavy edge matching, random matching, light
edge matching, etc. are some of the strategies used for
merging vertices. For balanced partitioning in our
implementation, we ensure that during initial partitioning, no

partition gets more than Ο vertices, where is the

number of vertices in the graph. In the ideal case, the graph
is coarsened to partitions, where is the number of
processors. However, achieving this level of coarsening in
small world/scale free networks is challenging and time
consuming. Therefore, we set a threshold of 20% as the
required reduction in number of vertices. Since initial
partitioning utilizes a randomized serial bisection algorithm,
it was performed using all processors, and the best partition
based on the edge cut-size is selected.

C. Initial approximation

In the initial approximation phase, the all pairs shortest
paths are calculated for the sub-graphs assigned to each
processor. Any all pairs shortest paths algorithm such as
Dijkstra’s or Floyd-Warshall’s algorithm, that exhibits the
anytime and anywhere properties can be used here. Since
shortest paths for different sources can be computed in
parallel, we used a multithreaded version of Dijkstra’s single
source shortest path algorithm in our implementation. We
used a binary search tree for the graph traversal aspect of the
algorithm.

D. Recombination

Recombination algorithm for closeness centrality uses the
partial results calculated during initial approximation phase
and further refines them on every iteration. In the
recombination phase, updates from multiple sub-graphs are
combined in an iterative process to generate better result. We
used Distance Vector Routing (DVR) algorithm [29], a well-
known distributed algorithm, to process incremental updates.

In DVR, each processor notifies its neighboring processors
periodically (in this case during every RC step) about changes
in its sub-graph, by sending its updated distance vectors.
Distance vector (DV) of node stores the currently known
shortest path distances from node to all other nodes in
graph	 .

During each iteration, partial results from each sub-graph
are propagated to its neighboring processors through
boundary vertices. Recombination phase makes use of the fact
that a boundary vertex acts as a gateway to its corresponding
sub-graph. Therefore, there is a need to only communicate the
updates for the boundary vertices. This significantly reduces
the amount of data communicated during each iteration.

1. INPUT: = ,… ,… //set of processors assigned
to the problem

2. INPUT: n //number of vertices in the overall graph G
3. INPUT: (,) //sub-graph assigned to processor

4. INPUT: //Distance Vectors | |	 	 for sub-

graph generated in IA phase
5. FOR EACH processor do in parallel
6. = 0 //initialize the recombination step index
7. DO //propagate updates to neighboring processors
8. = + 1 // increment the recombination step

index
9. FOR = 1 to
10. IF ≠
11. RECV DVs of external boundary

 nodes from processor in
 messages of size .

12. Update local boundary vertices
 using the DVs of external boundary
 vertices.

13. ELSE
14. SEND DVs of respective external

boundary vertices to (− 1)
processors in messages of size .

15. END FOR
16. Perform dynamic changes
17. Update the local DVs to generate
18. UNTIL = − 1 OR no more updates in any

processor
19. END FOR

Figure 1. Pseudo-code 1: Recombination algorithm for closeness
centrality

In Figure 1, lines 9 – 15 represent the personalized all-to-
all communication that happens during the recombination
phase. We use a communication schedule that avoids network
flooding by ensuring that only one message traverses the
network at any given time. In this schedule, only one
processor sends at any one time, and each sender sends its
updates to neighboring processors sequentially before the next
sender starts communicating. Other forms of all-to-all
communication scheduling (such as, linear wrap around, pair-

wise exchange, etc.[30]) exist in which multiple processors
communicate simultaneously. However, in practice, these
schedules can lead to network congestion, and result in
unpredictable performance. This is especially true for the
Ethernet network[30] fabric, which was used in our
experimental setup, described in later sections. Even though
our all-to-all scheduling takes () steps (where is the
number of processors) in the worst case, it mitigates excessive
network flooding. In each communication step, the boundary
vertices of every sub-graph receive the updated values, which
are then used to update the shortest paths by utilizing the
Floyd-Warshall’s algorithm.

Dynamic changes to the network can be incorporated at
any step during the recombination phase. However, in order
to increase the accuracy of the data that is being propagated
to other processors; dynamic changes (Figure 1 line 16) to the
graph are applied before local computations are initiated.
This ensures that the data being shared between processors is
up to date with the changes in the local sub-graph. In a static
graph, maximum number of iterations/steps in the
recombination (RC) phase is bounded by the number of sub-
graphs, which in this case is equivalent to the number of
processors, . On the other hand, updates can occur during
any iteration in a dynamically changing graph. Therefore,
refinement of the results in the RC phase continues until there
are no more updates to be shared between processors.

E. Anytime anywhere approach for edge deletion

1. INPUT: = ,… ,… //set of processors assigned to
the problem

2. INPUT: n // number of vertices in the overall graph G
3. INPUT: (,) //sub-graph assigned to processor
4. INPUT: //Adjacency list of the vertices of the sub-

graph ; the list also contains the boundary nodes in all other
sub-graphs which are connected to a vertex in

5. INPUT: //Distance Vectors | |	 	 for sub-graph
6. INPUT: = (,), … , , … (,) // set of edges to

be deleted
7. INPUT: = ,… , , … , //weights of the edges to be

deleted
8. INPUT: = ,… , , … , //processor containing the

vertex of the edge to be deleted
9. INPUT: = ,… , , … , //processor containing the

vertex of the edge to be deleted
10. FOR EACH processor do in parallel
11. FOR EACH edge , to be deleted
12. IF is a node in sub-graph
13. SEND row to all other processors //using tree

 broadcast
14. ELSE
15. RECV row from processor
16. END IF
17. IF == 	
18. FOR EACH ∈
19. FOR EACH ∈
20. IF 	 	! = ∞	 																															 == + +

21. = ∞
22. Enqueue edge (,) into Queue Q
23. END IF
24. END FOR
25. END FOR
26. END IF
27. IF ∈ //update the adjacency list after deleting edge
28. DELETE edge , from and
29. IF ∉ 	 	 is empty // for cut-edge

deletion
30. Notify 	to stop sending DV of to
31. END IF
32. END IF
33. END FOR
34. WHILE Q is not empty
35. Dequeue (,) from Q
36. FOR EACH neighbor of in sub-graph
37. IF > +
38. = +
39. mark	 as updated //for local computations

and propagation through RC
40. END IF
41. END FOR
42. END WHILE
43. END FOR

Figure 2. Pseudo-code 2: Anytime anywhere approach for edge deletion

 In a social network, continuing an ongoing analysis after
an edge deletion is a challenging task. However, as described
in earlier sections, algorithms such as all pairs shortest paths
have anytime characteristics, where removal of an edge may
not alter every shortest path. Therefore, the shortest paths that
are not affected by the deleted edge need not be re-computed.
Moreover, the shortest paths that are altered can be efficiently
recomputed using the sub-paths information, which were
previously generated and stored. This is the core idea behind
our algorithm for efficiently dealing with edge deletions in
dynamic social networks.
 The delete edge algorithm, described in this paper, makes
use of the fact that the shortest path values affected by the
deletion of the edge (,) are those, which contain the
vertices 	and in their paths. When an edge is deleted, each
processor checks the distance vectors (DVs) of its local
and boundary vertices to see if any of the paths went through
that edge. This can be done by checking if, ==+ (,) +	 	where ∈ and ∈ .

In order to perform this check, the processor that owns
vertex 	 broadcasts the distance vector of 	() to all
other processors (Figure 2 line 11 – 13). Every path that
satisfies this equality condition is reset to infinity. Once the
paths, that contain the deleted edge, are reset, they have to be
recalculated. To do this efficiently, we use the fact that if
there exists another path between vertices , , then it has to
go through a neighboring vertex (′) of . Hence we only
need to check the paths going through the neighboring
vertices of . Note that this could be an overestimation and

there may be a better path between vertices and . A
shorter path will then be discovered during successive
recombination steps. After the deletion of an edge, if there is
no path between and that goes through ′ it is either
because there exists no path between and or the new path
has not been discovered yet. The latter case will also be
handled during successive iterations of the recombination
phase. When a new shortest path is discovered, it is
communicated to the neighboring processors, and their
boundary vertices and local DVs are updated.

V. ALGORITHM ANALYSIS (COMPLEXITY/RUN TIME

ANALYSIS)

In this section, we analyze the delete edge algorithm
described in the previous section, along with the time
complexity of the initial approximation (IA) and
recombination (RC) phases. We do not include the analysis
of the domain decomposition (DD) phase as graph partition
is only done once, and dynamism in the graph does not trigger
repartitions in our implementation. Given a graph (,)	with a set of vertices 	and a set of edges 	such that | | = and | | = . Let = , ,… , be the set of
compute nodes or processors available for processing the
graph. A processor is assigned a vertex set ⊆ . During
the DD phase, the vertex set is partitioned into subsets of
vertices such that ⋃ = and ⋂ = . (,) denotes the sub-graph of induced from the vertex
set and assigned to processor during the DD phase.
Given an edge (,) ∈ , where ∈ and ∈ , if ≠

 then (,) is referred to as a cut-edge, and and are
referred to as a boundary node of and , respectively. Also ⊆ denotes the set of boundary nodes in . Moreover,
given a vertex ∈ , _ () is defined to be the
number of cut-edges, where is one of the vertices in the
edges. Furthermore, we define = max∈ _ ().

We leveraged the LogP distributed memory model[24] to
analyze the asymptotic run time (provided below) of the
various phases of our anytime anywhere algorithm. The LogP
model utilizes the following four parameters: 1) Latency (L):
the delay incurred by the message to reach the target
processor, 2) Overlap (o): the amount of time spent
exclusively by the source processor on sending a message or
the time spent exclusively by the target processor on
receiving a message, 3) Gap (g): the minimum time interval
between two consecutive send operations at the source
processor or two consecutive receive operations at the target
processor, and 4) Processors (p): the number of processors
utilized.

A. Initial Approximation

During the initial approximation (IA) phase, each
processor creates partial results from the information
available within its local sub-graph. These partial values can
be combined later with the information from other sub-graphs

during recombination. Therefore, it is essential to use or
design algorithms for IA such that they exhibit the anytime
and anywhere properties. We used Dijkstra’s algorithm to
calculate all pairs shortest paths within the local sub-graph
during initial approximation. The runtime for Dijkstra’s
algorithm[31] on processor using a binary search tree is (| || | log| |) . Assuming that in the worst case, the
processors are assigned fully connected sub-graphs, the

runtime of IA is log . However, real world social

networks tend to exhibit the scale free property with
relatively few high degree nodes. Therefore the sub-graphs
generated during domain decomposition are generally not
fully connected graphs. If support for multithreads is
available on the processors, the shortest paths for different
sources in the Dijkstra’s algorithm can be calculated in
parallel. The run time of IA with multithread support is log where is the number of threads used in each

processor.

B. Recombination

The worst case analysis of the recombination phase is
provided here. During the recombination (RC) phase (refer
pseudo-code in Figure 1), the size of data that is
communicated by a processor depends on the number of
boundary vertices of the sub-graph assigned to it. In the worst
case, processor has to send | | data items to all the other
processors. Note that the data is communicated in messages
of size in order to mitigate network flooding and to also
constrain memory requirements. Time taken for updating the
distance vector (DV) of boundary vertices (see Figure 1, line
12) in processor is (| |) . In real world social
networks with the scale free property, we make the following
assumption on the maximum number of cut-edges that a
boundary vertex assigned to processor [32], [33][34] can
have: ≤ . The time taken for updating the DV of the

sub-graphs using the updated information from boundary

vertices (see Figure 1, line 17) is .

The run time to complete the RC phase is: (+ log + +)
C. Edge Deletion using anywhere approach

In this section we analyze the performance of the delete
edge anytime anywhere approach (refer pseudo-code in
Figure 2). Let be the number of edges to be deleted.

• Figure 2 Line 11 – 16: This communication utilizes
a tree broadcast approach. Hence the time
complexity for this operation is log (+) .

• Figure 2 Line 17 – 26: The time complexity for
equality comparisons by a processor , to check if
the edge is present in any of the paths, is (| |).

• Figure 2 Line 34 – 42: In the worst case all the paths
in are affected, hence the time taken to
recalculate new paths using its neighbors is (| |).

Total runtime of anytime anywhere delete edge algorithm in

the worst case is + + log (+) .

It may be noted that the analysis provided above takes into
account the additional computations required to incorporate
changes in the DVs of the sub-graphs so that the processors
can continue with the RC phase. An additional (− 1) steps
may be needed once an edge is deleted regardless of how
many RC steps have already been performed.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented and tested our approach on a distributed-
memory cluster with 32 compute nodes connected over 1
Gb/s Ethernet network. Each compute node had dual Intel
Xeon E5 (1.8 GHz) processors (total of 16 cores per node)
and 32 GB of memory. The algorithms were implemented in
C++. MPICH’s Message Passing Interface (MPI) library was
used for inter-node communications, and the multithreaded
aspect of the IA phase was implemented using OpenMP.

A. Experimental setup

As real world social network graphs tend to exhibit the
scale free property, we generated a test bed of medium sized
social networks using the Pajek tool, with the node degree of
the networks obeying the power law property. Keeping in
mind the prevalence of various online social networking
applications such as Twitter and YouTube, where the
underlying social networks contain directed edges, our
experimental study focused on the closeness centrality
analysis of directed graphs. However our anytime anywhere
approach is applicable to both directed and undirected graphs,
and our current implementation can also handle undirected
graphs. As this is preliminary work, the experimental results
presented in this paper, focus on understanding the
performance of our approach for handling deletions of
regular edges in medium sized graphs. In future work, we
plan to provide a more comprehensive experimental study
that includes performance results with larger networks, and
with deletions of both regular edges and cut-edges.

Although, there are existing work on analysis of dynamic
networks, their focus has been on designing efficient data
structures to handle graph changes or studying the effects of
load balancing. To the best of our knowledge the anytime
anywhere framework described in this paper, is the only work
that focuses on the parallel algorithm design aspects of the
dynamic social network problems. Due to this reason, we
compared our anytime anywhere approach with the baseline
restart approach, where the network analysis has to be
restarted from scratch when an edge is deleted. The baseline
algorithm also has the domain decomposition (DD), initial
approximation (IA), and recombination (RC) phases. The
crucial difference is that the baseline algorithm has to restart

the analysis, i.e., redo both the IA and RC stages when the
network changes.

B. Results

In this section we report the performance results of our
edge deletion algorithm. According to the performance
analysis in Section V, the stage in the analysis at which the
change (i.e. one or more edge deletions) happens, size of
change and the rate at which the change happens has
significant impact on the performance of our anytime
anywhere algorithm. Based on these factors, we expect the
baseline approach to perform better when edge deletions
happen at an initial stage of the analysis. However, when the
change occurs at a later stage, the anytime anywhere
approach should benefit from the precomputed partial results.
In addition, the size of the change affects the number of
shortest paths that have to be recomputed. In order to
understand the performance variations caused by these
factors, we designed two experiments. In the first experiment,
we keep the rate of change low by selecting a specific
recombination step and introducing edge deletions during
that step. In the second experiment, we introduce edge
deletions at multiple points during the graph processing.
Therefore the dynamism rate is much higher in the second
experiment.

Figure 3 shows the results for the first experiment which
was performed on a graph with 50,000 vertices using 16
processors. In separate experimental runs, edge deletions
were introduced during the initial (RC0) and later (RC09)
steps of the RC phase. Note that the edges deleted were
equally divided among the processors. As mentioned in
Section V.C, our anytime anywhere methodology for edge

deletion has a worst case running time of + +(+) log . The dominant terms in the run time are

() and (), which correspond to the time complexity for

determining the affected shortest paths and recalculating
those paths, respectively. When edge deletions occur during
the initial steps of recombination (e.g. RC0), the number of
informative partial results available is low. Hence the time
taken to calculate the shortest paths by the baseline and the
anytime anywhere method is similar. However, the anywhere

approach has an additional cost () of determining the paths

that are affected by the deleted edges, which is dependent on
the number of deletions, occurring at a particular RC step.
As a result, for smaller number of edge deletions both
methods perform similar whereas, as the number of deletions
increases, the anytime anywhere method takes longer due to
the additional computational and/or communication
overhead.

Figure 3. Performance comparison of anytime anywhere vs. baseline edge
deletions at recombination (RC) step RC0 and RC9 using 16 processors on

graph with 50,000 vertices

Figure 4. Performance comparison of anytime anywhere vs. baseline

incremental edge deletions using 8 processors on graphs with 50,000 and
100,000 vertices

For changes happening during later stages of the RC phase,
the time for re-computation is less when compared to the
baseline due to the utilization of partial results. Therefore, our
anytime anywhere method performs better than the baseline
for smaller number of edge deletions. However, as the
number of changes increases, the time taken to identify and
recalculate the affected shortest paths also increases, thereby
affecting the performance of our anytime anywhere
approach. Note that this experiment requires the baseline to
restart only once as all the edge deletions occur in the same
RC step. The performance of our approach should be
significantly better when edge deletions occur in multiple
steps of the RC, as the baseline now has to be restart multiple
times.

Our next set of experiments were designed to understand
the effect of multiple changes during the course of analysis.
In these scenarios, we expect the anytime anywhere approach

to perform better since baseline method does not utilize
partial results, and has to restart from scratch for every
change. To study the performance of our anytime anywhere
approach under these conditions, we introduce edge deletions
across multiple iterations. Given , the total number of edge
deletions, that are introduced in the network during RC

steps or iterations, i.e. = . For the baseline, this would

require restarting the analysis times, each time with the
modified network. This would require a significant amount
of time and resources. To simplify the experimental analysis,
we ran the baseline after deleting the specified number of
edges () from the network and measured the runtime for
each iteration separately. This ensures a computational
advantage for the baseline algorithm as it essentially
processes a smaller network (in terms of number of edges)
than the anytime anywhere approach. This also helps in
reducing the experimentation time, since essentially we need
to run the baseline only once.

Figure 5. Performance comparison of anytime anywhere vs. baseline

incremental edge deletions using 16 processors on graphs with 50,000 and
100,000 vertices

Figure 4 and Figure 5 shows the incremental edge deletions
on 8 and 16 processors respectively. In the experimental run
with 8 processors, the edge deletion operations are split
equally across 8 iterations. On the other hand, in the run with
16 processors, edge deletions are split across 10 iterations.
Here, the baseline method has to restart from scratch every
time a change occurs, whereas anytime anywhere method
utilizes the partial results without restarting the computations.
When compared to the previous evaluations discussed in
Figure 3, the number of edge deletions are distributed over
the RC phase, which reduces the number of shortest paths that
needs to be re-computed at any given iteration. A large
number of partial results calculated thus far would still be
useful; therefore, our anytime anywhere approach performs
much better than the baseline in this case. Figure 4 shows the
results for graphs with 50,000 and 100,000 vertices computed
on 8 processors and Figure 5 shows the results for the same
on 16 processors.

The experimental results agree with the theoretical
analysis, and it is clear that the anytime anywhere approach
performs much better at higher rates of network dynamism.
Also, changes occurring, in the final steps of the RC
refinement process have a more negative impact on the
baseline performance. The results also show that when
baseline does not have to restart multiple times, its
performance is significantly better when is large. It is clear
from the results that our approach of using anytime anywhere
design is highly effective in real world scenarios where the
rate of change of networks is high.

VII. CONCLUSION

In this work, we designed an anytime anywhere
methodology for calculating closeness centrality in large and
dynamic social networks that allows for edge deletions.
Using both theoretical analysis and experimental evaluations,
we demonstrated the ability of our methodology to reuse
partial results and to reduce the overheads caused by re-
computations. We evaluated our approach to handle edge
deletions on a test bed of scale free graphs under different
dynamism rates. Performance of the edge delete algorithm
was compared with a baseline method. While smaller or less
dynamic networks did not readily benefit from our
methodology, our method performed significantly better than
the baseline under high dynamism rates and as network sizes
increased. Our approach is platform independent, and is only
constrained by the memory available on the underlying
architectures. Overall, these results have further
demonstrated the ability of our anytime anywhere framework
to handle network dynamisms in social network analysis.

In the future, we plan to extend our anytime anywhere
methodology to handle various other network dynamisms
such as node additions and deletions. Approaches used in
handling social network dynamisms can also be utilized to
design algorithms that adapt to hardware failures.
Furthermore, we are interested in applying our methodology
to analyze and handle load imbalances, caused by node and
edge deletions/additions in platforms such as cloud
computing.

ACKNOWLEDGEMENT

This work has been supported by NPSG-N00244-15-1-
0046.

REFERENCES

[1] E. E. Santos, L. Pan, D. Arendt, and M. Pittkin, “An
Effective Anytime Anywhere Parallel Approach for
Centrality Measurements in Social Network Analysis,” in
2006 IEEE International Conference on Systems, Man and
Cybernetics, 2006, vol. 6, pp. 4693–4698.

[2] L. Pan and E. E. Santos, “An anytime-anywhere approach
for maximal clique enumeration in social network
analysis,” in the IEEE International Conference on
Systems, Man and Cybernetics - SMC 2008, 2008, pp.
3529–3535.

[3] D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader,
“GraphCT: Multithreaded Algorithms for Massive Graph
Analysis,” Parallel Distrib. Syst. IEEE Trans., vol. 24, no.
11, pp. 2220–2229, 2013.

[4] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS:
Mining peta-scale graphs,” Knowl. Inf. Syst., vol. 27, no. 2,
pp. 303–325, 2011.

[5] R. Chen, X. Weng, B. He, and M. Yang, “Large graph
processing in the cloud,” Proc. 2010 Int. Conf. Manag.
Data - SIGMOD ’10, no. June, pp. 1123–1126, 2010.

[6] Z. Khayyat, K. Awara, A. Alonazi, and D. Williams,
“Mizan : A System for Dynamic Load Balancing in Large-
scale Graph Processing,” EuroSys, pp. 169–182, 2013.

[7] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski, “Pregel : A System
for Large-Scale Graph Processing,” in SIGMOD’10, 2010,
pp. 135–145.

[8] L. M. Vaquero and C. Martella, “Adaptive Partitioning of
Large-Scale Dynamic Graphs,” in Proceedings of the 4th
Annual Symposium on Cloud Computing, 2014, pp. 35:1–
35:2.

[9] E. E. Santos, L. Pan, D. Arendt, H. Xia, and M. Pittkin, “An
Anytime Anywhere Approach for Computing All Pairs
Shortest Paths for Social Network Analysis,” in Integrated
Design and Process Technology, 2006.

[10] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny,
“Software and Algorithms for Graph Queries on
Multithreaded Architectures,” 2007 IEEE Int. Parallel
Distrib. Process. Symp., 2007.

[11] B. Dezso, A. Jüttner, and P. Kovács, “LEMON - An open
source C++ graph template library,” Electron. Notes Theor.
Comput. Sci., vol. 264, no. 5, pp. 23–45, 2011.

[12] G. Csardi and T. Nepusz, “The igraph software package for
complex network research,” InterJournal, vol. Complex
Sy, p. 1695, 2006.

[13] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring
network structure, dynamics, and function using
NetworkX,” in Proceedings of the 7th Python in Science
Conference (SciPy2008), 2008, vol. 836, pp. 11–15.

[14] S. P. Borgatti, M. G. Everett, and L. C. Freeman,
“Encyclopedia of Social Network Analysis and Mining,”
R. Alhajj and J. Rokne, Eds. New York, NY: Springer New
York, 2014, pp. 2261–2267.

[15] S. Sakr, A. Liu, and A. G. Fayoumi, “The Family of
MapReduce and Large-Scale Data Processing Systems,”
ACM Comput. Surv., vol. 46, no. 1, pp. 1–44, 2013.

[16] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, S.-M.-
R. Beheshti, A. Barnawi, and S. Sakr, “Large scale graph
processing systems: survey and an experimental
evaluation,” Cluster Comput., vol. 18, no. 3, pp. 1189–
1213, Jul. 2015.

[17] Y. Bu, V. Borkar, J. Jia, M. Carey, and T. Condie,
“Pregelix: Big (ger) Graph Analytics on A Dataflow

Engine,” Vldb, pp. 161–172, 2015.

[18] R. R. McCune, T. Weninger, and G. Madey, “Thinking
Like a Vertex,” ACM Comput. Surv., vol. 48, no. 2, pp. 1–
39, 2015.

[19] C. Demetrescu and G. F. Italiano, “A new approach to
dynamic all pairs shortest paths,” J. ACM, vol. 51, no. 6,
pp. 968–992, 2004.

[20] M.-J. Lee, S. Choi, and C.-W. Chung, “Efficient algorithms
for updating betweenness centrality in fully dynamic
graphs,” Inf. Sci. (Ny)., vol. 326, pp. 278–296, Jan. 2016.

[21] S. Zilberstein, “Using Anytime Algorithms in Intelligent
Systems,” AI Mag., vol. 17, no. 3, p. 73, 1996.

[22] J. Korah, E. E. Santos, and E. Santos, “Multi-agent
framework for real-time processing of large and dynamic
search spaces,” in Proceedings of the 27th Annual ACM
Symposium on Applied Computing - SAC ’12, 2012, p. 755.

[23] G. Karypis and V. Kumar, “A parallel algorithm for
multilevel graph partitioning and sparse matrix ordering,”
J. Parallel Distrib. Comput., pp. 1–21, 1998.

[24] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E.
Santos, K. E. Schauser, R. Subramonian, and T. von
Eicken, “LogP: a practical model of parallel computation,”
Commun. ACM, vol. 39, no. 11, pp. 78–85, 1996.

[25] S. Wasserman and K. Faust, Social Network Analysis:
Methods and Applications. Cambridge University Press,
1994.

[26] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail,
“Approximating Betweenness Centrality,” Technology,
vol. 4863, pp. 124–137, 2007.

[27] D. Eppstein and J. Wang, “Fast Approximation of
Centrality,” J. Graph Algorithms Appl., vol. 8, no. 1, p. 2,
2000.

[28] G. Karypis and V. Kumar, “Multilevel k-way Partitioning
Scheme for Irregular Graphs,” J. Parallel Distrib.
Comput., vol. 48, no. 1, pp. 96–129, 1998.

[29] J. F. Kurose and K. W. Ross, Computer Networking A Top-
Down Approach Featuring the Internet, vol. 1. 2005.

[30] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra, “Performance analysis of
MPI collective operations,” Tert. Educ. Manag., vol. 10,
no. 2, pp. 127–143, 2004.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. The MIT Press, 2009.

[32] M. E. J. Newman, “Ego-centered networks and the ripple
effect,” Soc. Networks, vol. 25, no. 1, pp. 83–95, 2003.

[33] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003.

[34] R. Albert and A. L. Barabasi, “Statistical mechanics of
complex networks,” Rev. Mod. Phys., vol. 74, no. 1, pp.
47–97, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

