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Abstract— One of the primary challenges of modeling the
social resilience of communities is that resilience may depend
on a number of multidomain factors, ranging from ecological
to political. In addition, the impacts and interactions of the
relevant factors may not be fully understood. There is also the
challenge of representing the intricate behaviors of the social
actors, both individuals and groups, in order to model their
responses to perturbations in the environment and to internal
changes. In light of these challenges, current works tend to make
a number of simplifying assumptions. In this paper, we propose a
computational framework to formulate multiple resilience func-
tions, each modeling a particular hypothesis about the system’s
resilience. One of our key contributions is the ability to use social
theories to compose these individual resilience functions into an
umbrella resilience function, while providing qualitative analysis.
We validate our framework by modeling the resilience of a
fishing community in Somalia over the period of 1999–2012, as it
underwent a series of dramatic ecological, political, and economic
changes. We formulated resilience functions to computationally
model the competing support for the community’s traditional
occupation of fishing and alternatively for taking up piracy on
the high seas. We then provide an overall resilience function
by combining these individual resilience functions using social
theories such as the social norm theory and risk theory.

Index Terms— Bayesian knowledge bases (BKBs), community
resilience, computational modeling, resilience function, social
norms, social resilience.

I. INTRODUCTION

SOCIAL resilience is defined by Adger [1] as the “ability of
groups or communities to cope with external stresses and

disturbances as a result of social, political, and environmental
change.” Social resilience can provide important insights into
problems of great interest in the field of computational social
systems, including understanding how communities respond to
natural disasters and changes in ecology [2], [3]. Incorporating
social resilience into existing methodologies for well-studied
problems such as group formation [4] can also provide more
realistic models for scenarios, where individuals contend with
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myriad centrifugal and centripetal social forces that form
part of a social group’s resilience. However, current work on
social resilience has been mostly conceptual [5], aiming to
provide qualitative explanations for factors and processes that
impact social resilience. What is lacking is a generic modeling
methodology for social resilience incorporating a wide variety
of relevant factors and system information, while dealing with
the dynamism seen in real-world scenarios, and simultaneously
providing quantitative analysis and, notably, explanations.

An overarching computational framework for social
resilience must tackle inherently complex and unique model-
ing challenges. First, resilience within a social system may
be the result of multidomain factors (including economic,
political, and ecological factors). Mathematically, the overall
resilience exhibited by a system could be represented as
a combination of interacting resilience functions. Although
there are conceptual models that represent resilience as a set
of interacting processes [6], little work has been completed
in incorporating these into computational models without
simplifying assumptions. Second, there may be competing
hypotheses or assumptions (born out of observed data or an
applicable social theory) about the relevance of factors and
their interactions. Thus, we suggest an overarching framework
must define and computationally represent multiple resilience
functions based on specific hypotheses, and utilize them to
construct an overall resilience function. In addition, factors
impacting social resilience may switch between active and
inactive states over time, and also change how they interact
with each other. Finally, there are difficulties imposed by
the uncertainty in individual and group behaviors, and by
incomplete social information.

In this paper, we present an overarching computa-
tional framework for social resilience composed of multiple
resilience functions, where each function represents a specific
aspect of resilience. To manage the uncertainty of social
behavior and the incompleteness of modeling data, we repre-
sent available sociocultural information, applicable constraints
in social behaviors, relationships provided by relevant social
theories, insights provided by subject matter experts (SMEs),
and/or other key information using a probabilistic framework,
such as a Bayesian knowledge base (BKB) [7]. The resilience
of the social system is a result of the interactions of various
entities, in the forms of individuals and groups, represented
with BKBs. The interactions between these entities can be
implemented in our modeling framework by using BKB fusion
algorithms [8], which combine fragments to reflect aggregate
behaviors.
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At this juncture, it is prudent to mention the contributions
of this paper. In short, the contributions are as follows.

1) The capability to integrate multiple hypotheses about the
resilience of a system as one or more resilience functions
and their compositions, by employing social theories is
demonstrated. A more detailed discussion is provided in
Section IV-E, after sufficient details of the framework
have been discussed. Note that for this effort, theories
on social norms and risk analysis were employed, but,
as conceived, the framework could integrate any theories
deemed relevant to the scenario.

2) We demonstrated how resilience values can be computed
using our framework.

3) Key aspects of the social resilience model, including the
selection of social theories to tie the individual resilience
functions together, are demonstrated.

4) The validation resulted in an initial set of resilience
functions and measures (see Section V-C), which pro-
vides a foundation for more sophisticated resilience
models.

Details of the framework and experimental validation are
described in the following sections.

II. CURRENT WORK

The concept of resilience has been used in many disciplines
to model the robustness of a system. In this section, we pro-
vide examples of models and metrics that were formulated
for studying resilience in systems ranging from engineering
systems to more complex social systems.

Engineering systems are designed to operate around
one or more equilibrium points and, as such, their resilience
measures are qualitatively defined as the ability to absorb
perturbations and subsequently return to the previous stable
state or equilibrium [5], [9]. One quantitative metric commonly
used to measure engineering resilience is the magnitude of
the force absorbed while still recovering [10], another is
the magnitude of the resulting deformation, and a third is
the recovery rate [9]. In social systems, researchers have
applied engineering resilience by looking at resilience in social
networks. One statistic used is minimum m-degree [11], the
minimum number of edges that must be removed to separate
the network into two components with exactly m vertices.

However, engineering resilience measures cannot capture
the resilience seen in complex systems, where a system’s
reaction to change can involve a transformation of form
and function. Complex systems are highly adaptive and can
have fitness landscapes with multiple equilibrium points [12].
Dynamic system theory has been used to define the concept
of resilience in complex systems, commonly termed adaptive
resilience, in terms of stability landscapes and basins of attrac-
tion [12]. A stability landscape is determined by the values of
state variables which change over time. The landscape is char-
acterized by basins and their attractors. Resilience metrics that
are qualitatively related to the depth and width of the basins
were identified. In a related work, Bruneau et al. [13] propose
quantitative measures based on four properties of resilience—
robustness, rapidity, resourcefulness, and redundancy. They
also identify analytical steps for measuring the performance

of these properties. Ayyub [14] proposes a measure for the
resilience of a multihazard environment using a performance-
based approach. However, this model only provides a static
resilience measure. Chang and Shinozuka [15] proposed a
methodology where they measure the performance of a system
during a disaster event versus during normal operations, and
quantify the difference and the recovery time as the resilience
measure. Similarly, Cimellaro et al. [16] provide an analytical
method for representing resilience during natural and man-
made disasters as mathematical functions. These functions
consider the loss in functionality caused by the disasters.
However, when modeling complex scenarios, required data
are often incomplete and uncertain. Thus, defining loss and
recovery functions according to the above methodology is
challenging. Finally, Gao et al. [17] present an analytical
methodology for representing the resilience of multidimen-
sional systems where the components interact through a com-
plex network. Here the resilience of interlinked networks is
collapsed into a single universal function that is independent
of the network topology and is determined by the system’s
dynamics. However, each system or scenario requires the
formulation of unique mathematical equations and analysis
techniques to represent the relevant actors, forces, and net-
works within that situation. A similar approach is taken by
Bozza et al. [18], who use multiple networks, multiple reward
functions (figures of merit), and agent-based simulation to
estimate resilience.

Following the work from Gunderson [19], who pointed out
that uncertainty is a critical aspect to modeling resilience,
many works in ecology have striven to overcome this challenge
while modeling resilience. Marshall and Marshall [20] model
the resilience of fisheries using questionnaires, and reduce
dimensionality via principal component analysis, identifying
four major domain-dependent components. They followed this
paper with a case study to validate their model. However,
responses to survey questions are taken as ground truth as to
whether a stakeholder is resilient [21], and the work does not
make an effort to generalize beyond formulation of resilience
policy. Machine learning and statistical methods have been
applied in ecology as well. For example, Frey and Rusch [22]
applied neural networks to analyzing the relationships between
common pool resource lists of factors that were found to be
significant from inventories; however, this paper only identifies
how factors might be related and any predictions that the
system gives are difficult to interpret and have high error
rates (36%). In related work, Weirich et al. [23] used gen-
eralized linear models over time series to assess the resilience
of wastewater treatment plants. These approaches are useful in
identifying key factors and how the factors relate to each other.
Our approach differs in that we use available (quantitative
and qualitative) data and SMEs to model how factors interact
with each other. Moreover, when SMEs disagree, we combine
their opinions via a process called fusion [24]. Factors from
these other approaches can also form variables within our
model. The goal is not only prediction of when the system
is resilient, but more importantly to understand and explain
why the system is resilient. Resilience models, we have found,
focus on one or the other.



188 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Researchers have also studied the psychological resilience
of individuals. For example, Ungar [25] studied the impact
of social and physical ecologies on personal psychologi-
cal resilience. Ungar presented four basic principles for an
ecological interpretation of the resilience construct: decen-
trality, complexity, atypicality, and cultural relativity. These
factors informed a definition of resilience that emphasizes the
environmental antecedents of positive growth for individuals.
Bonanno et al. [26] applied multivariate models to examine
potential predictors of psychological resilience using large-
scale survey data after the 9/11 terrorist attack. They found
that several factors, including demographics, depression and
substance use, resources, and additional trauma exposure and
life stressors, are significantly associated with psychological
resilience. Another important approach is the study of stress
within individuals caused by the presence or absence of
resources. Resources are broadly defined as factors, including
social, economic, and personal factors that have an influence
on an individual’s stress. For example, Hobfoll’s [27] con-
servation of resource (COR) theory postulates that loss of
resources leads to an increase in stress. COR theory also
states that individuals take steps to reduce or reverse the loss
by recouping the resources or acquiring alternative resources.
Recent works in the allostatic theory [28] have looked at
integrating such social theories in modeling the brain’s role
in regulating emotions to deal with stress. Although psycho-
logical resilience models have provided significant insights in
understanding behaviors, they focus on individual resilience,
even while incorporating social factors [25] and not on the
resilience of social groups. In the current version of our model,
we did not focus on these individual level factors for several
reasons. Most significantly, surveys of individuals in the com-
munity are required to identify factors critical for modeling
psychological resilience. This is not possible or practical in
real-world scenarios from troubled parts of the world, such
as that used in our work. In contrast to the objectives of the
many works in the psychological resilience domain, our work
focuses on understanding how social and cultural influences
impact the overall resilience of a social system. Resilience in
social systems is especially complex due to the interactions of
social actors and their autonomy in decision-making. Analyz-
ing community resilience requires modeling the social system,
which is dynamic and multilayered [29]. Social systems can be
highly dynamic, resulting from pressures to change from both
endogenous and exogenous factors. Endogenously, the beliefs
and goals of individuals can change over time, leading to
changes in the social system. Likewise, tribes, communities,
and organizations can be exogenously affected [30] due to
political, economic, or ecological forces, among others, which
in turn affect the behavior of individuals or groups, which
can subsequently translate to societal changes. Such are the
considerations to be weighed when modeling social resilience.

III. TECHNICAL BACKGROUND

Before we discuss our resilience framework, we intro-
duce key mathematical methods that we use to represent
the sociocultural information of the scenario and to analyze
the resilience. We represent the sociocultural information

using (BKBs) [7]. A BKB is an established probabilistic
reasoning structure used to represent uncertain behaviors.
BKBs are particularly well-suited because they provide the
ability to explain which factors, or which arguments, were
important to the conclusions reached during analysis. BKB
reasoning algorithms [7] also help in quantifying resilience
measures in our framework.

A. Bayesian Knowledge Bases

The following background discussions on BKBs have also
appeared in a work by Santos and Santos [7]. A BKB
is a directed, bipartite graph G consisting of instantiation
nodes (I-nodes) and support nodes (S-nodes). Each I-node
is an instantiation of a random variable written as R = v,
where R is the random variable and v is the value of the
variable in that instantiation. Each S-node q in the correlation
graph G is assigned a weight w(q), which represents the
conditional probability of the I-node following q , given the
preceding I-node. BKBs can also be described as “if-then”
rules, where each S-node q in a BKB K = (G, w) corresponds
to a conditional probability rule. We can fuse several related
BKBs into a single BKB through a process called BKB
fusion, as described by Santos et al. [24]. Belief updating is
used to perform posterior analysis. Belief updating calculates
the probability of a random variable in the BKB having a
certain state, given the evidence. A detailed description of the
Bayesian updating algorithm for BKBs is provided by Santos
and Santos [7].

B. Cultural Fragments

A key factor that characterizes actor behaviors and inter-
actions is culture. We define culture as any behavior
learned, or knowledge gained, from our environment [31].
Culture influences the intent, decisions, and actions of actors.
Hence, having the capability to systematically incorporate
relevant cultural information is essential to effectively model
and analyze social organizations. Incorporating cultural infor-
mation is a challenging task, since available information is
often incomplete and uncertain.

We address this challenge by using BKBs to represent
cultural fragments. BKBs model cultural factors of actors
and organizations as causal chains between the variables
that represent axioms, beliefs, goals, and actions. Axioms
represent the actors’ perceptions about themselves. Beliefs
refer to the perceptions one actor has toward other actors
and the environment. Goals denote the end states an actor
would like to attain. Actions indicate the choices and activities
available to achieve an actor’s goals. Intent [32] is used to
map relevant cultural factors to an individual’s or a group’s
behavior. The intent model prescribes the set of rules for
interconnecting axioms, beliefs, goals, and actions. It also aids
in understanding the observed behavior. Cultural factors and
their relevance to actors’ behaviors vary based on the scenario.
To incorporate the effects of these diverse factors, the Bayesian
fusion algorithm is used to combine several cultural fragments
into a single BKB.

Consider Fig. 1, for example. Fig. 1 illustrates a simple
cultural fragment designed for a fictional, aspiring graduate
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Fig. 1. Sample cultural fragment.

student scenario. As a standard, we prefix belief random
variables with “(B),” axioms with “(X),” goals with “(G),”
and actions with “(A).” According to Fig. 1, if this student
possesses a self-belief (axiom) that indicates a keen interest
in science, then he or she is highly likely to have a goal to
pursue graduate studies in science. Conversely, if the student
has a low interest in science, then he or she is unlikely to
pursue graduate studies in science. Similarly, if the student
has a goal to pursue graduate studies and believes scholarship
are available for a graduate program, then the student is likely
to apply for scholarships.

IV. SOCIAL RESILIENCE MODELING FRAMEWORK

Social systems represent one of the most challenging
domains for computational resilience modeling. We quantify
social resilience using a set of resilience functions. A resilience
function is defined as a mapping from a set of states of
social-economic factors to a continuous variable ranging from
0 to 1, where 0 indicates least resilient and 1 indicates most
resilient. Each resilience function describes a community’s
resilience from a different perspective. To model a commu-
nity’s overall resilience, we group multiple resilience functions
into a single umbrella function by considering the interac-
tions of predictor variables in each aspect of resilience. This
umbrella resilience function collectively determines a com-
munity’s overall resilience. As complex adaptive systems [33],
social systems consist of entities, each with distinct behavioral
characteristics, interacting with each other and responding to
changes in the environment. Consequently, it is possible there
are multiple resilience functions operating within the systems,
and it is the interaction between these functions that gives
rise to the overall resilience of the systems. The key research
questions then become what needs to be represented in these
individual resilience functions and, even more critically, how
to compose these functions to form an umbrella resilience
function.

To model social resilience for complex real-world scenarios,
it is vital to overcome several modeling challenges. These
include the following.

1) Multidomain Factors: Case studies [3], [30] have shown
that resilience in social systems can be dependent on a
large number of multidomain factors, whose impacts and

interactions may not be well-understood. These interac-
tions and behaviors may, in turn, reinforce or weaken
system resilience. A team of SMEs may thus be required
to understand their impacts, which adds subjectivity to
the modeling process.

2) Multiple Resilience Functions: Current computational
models for social resilience are restrictive and may
not provide adequate explanations for all aspects of
resilience in a system. Moreover, creating an overarching
resilience function from the ground up may not be
feasible due to numerous underlying factors and their
interactions. Therefore, a modeling framework that can
integrate individual resilience functions into an overar-
ching resilience function is desired.

3) Incomplete Information: Sociocultural information on
scenarios is often incomplete, missing information on
factors relevant to the resilience being measured. Exten-
sive quantitative studies may not be available, and so
modelers may need to employ qualitative or anecdotal
information. The social group under study may also not
be accessible for extensive field studies. In such cases,
approximations of factors must suffice.

In this section, we present a modeling framework that over-
comes these challenges. Our key insight behind this framework
is to utilize social theories to compose multiple resilience
functions into a single overarching resilience function. The
framework is generic and can support various mathematical
and computational methods to represent resilience information.
In addition, our framework provides formalism on defining
resilience functions and directions on how to use social
theories to compose an umbrella resilience function. In the
remainder of this section, we provide a description of our
modeling framework, and detail our method for computing
the resilience values.

As stated previously, one strength of our framework is the
capability to design new computational models while also
leveraging the existing work. To achieve this level of flexibil-
ity, our framework has four components, each encapsulating
key capabilities. Our framework accommodates the fact that
multiple models, based on different collections of sociocultural
information, social theories, and system constraints, can be
constructed for the same social system and scenario. For
each of these models, a set of resilience functions, based on
varying hypotheses about resilience, can be formulated. The
framework provides the capability for the system model to
expose relevant factors and interactions for utilization in the
resilience functions. A collection of relevant social theories
is presented and serves to provide the critical underpinnings
for composing multiple resilience functions into an overall
resilience function. We allow for the incorporation of social
and/or resilience theories at different points in the framework
to provide broader capabilities for modeling, testing, and
evaluation. For example, if a particular resilience concept that
does not vary with different resilience formulations is used, our
framework allows for the possibility to incorporate it within
the system model itself. On the other hand, if we are testing the
utility of a resilience concept for a given scenario, then it may
be incorporated during the formulation of a resilience function.
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Fig. 2. Social resilience modeling framework.

A detailed account of the key components of our framework
architecture (see Fig. 2) is provided below.

A. Collection of Domain Information and Constraints α

This collection represents the available relevant informa-
tion for modeling a social system S in a selected scenario.
We denote this collection as α. Collection α encapsulates a
variety of behaviors of individuals, groups, and other social
entities within the system, both under broad and specific
contexts. It also includes their responses to disturbances in
the environment. For example, the behaviors of the system
may be either considered under broad contexts, such as its
resilience to changes in the national economy, or under specific
contexts, such as its resilience to fluctuations in specific local
real estate values. Naturally, this affects the scale and detail
of the information that must be collected. The information in
the collection may be represented in a variety of formats. The
domain information for a scenario may be directly retrieved
from field studies conducted on location, or derived from other
forms of data, such as census information. The data may also
be qualitative, in the form of opinions from SMEs, which can
help to inform the impact of certain factors on the resilience of
the system. Collection α also contains constraint information
that aids formulating more realistic models. This might be in
the form of qualitative or quantitative relationships between
factors that help to filter out implausible behaviors. Constraint
information will also assist in identifying the regions or ranges
for relevant factors. Social theories that provide additional
insights into behaviors or fill in gaps in our information
also form part of the collection. Note that information can
be gathered from multiple sources with varying reliability.
Moreover, the information could be fragmentary and incom-
plete. The challenges of reliability and incompleteness need to
be considered, as α is used to build the model for the scenario.
Since social systems are also dynamic, and the impacts of
factors and their interactions can change over time, α should
include data that will help to model these changes.

B. Model Mα

Model Mα , denoting a computational model of the social
system, is formulated using the information and constraints

provided in collection α. Mα can contain multiple knowledge
representations and submodels. Although different models,
of varying complexity and detail, can be potentially built using
collection α, its utility toward the formulation of resilience
functions should be the guiding principle behind model for-
mulation. Focusing on those factors and behaviors that have
an impact on how the social entities within the system respond
to both internal changes and external disturbances will help to
guide the modeling process. The events in the scenario also
shape the model, as they point to response behaviors to be
included. As such, in our experimental validation involving the
Somali fishing community, we focused on those factors within
the community, such as fishing infrastructure and religious
values, which were impacted due to the changing conditions.

The framework can support a wide variety of knowledge
representations, including semantic networks to represent rela-
tionships between concepts and Bayesian approaches to repre-
sent causal relations. Moreover, our framework also supports
the utilization of both existing modeling techniques, such
as agent-based models and social network models, and new
modeling techniques, to represent the relevant actors and their
behaviors. Although the framework can support a wide variety
of submodels and knowledge representations, clearly there are
certain desired characteristics of Mα that are particularly useful
for designing effective resilience functions. For example, the
utility of Mα is enhanced by the use of knowledge represen-
tations and submodels that allow variables and relationships
to be easily identified and mapped to resilience functions.
Another desirable characteristic for Mα is the ability to
represent and model social behaviors, at relevant temporal
and spatial scales, which are useful in the formulation of
resilience functions. In addition, employing methodologies in
Mα amenable to appropriate reasoning and analysis methods
will also aid in the formulation of useful resilience measures.

For instance, in our experimental validation, we selected
cultural fragments, described in Section III-B, and BKBs,
described in Section III-A, to represent complex and dynamic
social behaviors in the form of an entity’s beliefs, goals, and
actions, and to connect them to their underlying sociocultural
factors. We decided to utilize BKBs and cultural fragments,
as they allow for the application of probabilistic reasoning
algorithms within our model Mα , and to in turn allow for
quantitative measures of resilience.

C. Resilience Functions {R1, . . . , Rn}

Using computational representations and submodels
within Mα , our framework supports the formulation of
multiple resilience functions which may be based on varying
hypotheses about which factors and interactions impact the
system’s resilience. Our framework also supports a broad
set of methodologies, ranging from a weighting system to
more sophisticated statistical techniques, to formulate and
refine resilience functions. We present below one possible
design for resilience functions that provide measures which
can be used to perform analysis, such as comparative and
explanatory analysis, of the system’s resilience.

1) In this design, which is also used in our experimental
validation, we leverage BKB methodology to define
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TABLE I

EXAMPLE OF A METHOD FOR COMPUTING VALUES
OF RESILIENCE FUNCTION Ri

a resilience function Ri : (K , E, Fi , Ci ) → [0, 1], where
K is a set of BKBs, E is its corresponding set of
evidence variable instantiations [7], Fi is the set of target
variable instantiations (factors relevant to the resilience
function), and Ci is a set of constraint functions. The
evidence variable instantiations set E contains informa-
tion that is known with high certainty, thus pruning
possible states in the BKB K . The target set Fi =
{ fi,0, . . . , fi,l , . . . , fi,|Fi |−1} represents factors that we
selected based on available information, initial assump-
tions, and/or recommendations from SMEs, and which
are considered to have an impact on resilience. Similar
concepts of constraint functions have been used in the
dynamic systems area based on the idea of resilience
basins or wells, which are regions within which the
system is considered resilient [12]. We define the set of
constraint functions Ci = {ci,0, . . . , ci,l , . . . , ci,|Fi |−1},
where ci,l : (E, K , Wl ) → {0, 1} is the constraint func-
tion for a target variable fi,l ∈ Fi . Here, Wl represent the
relative importance of the target variable. The constraint
function Ci is said to be satisfied if ∀ci,l ∈ Ci , ci,l → 1.
As shown in Table I, a system is considered resilient
with respect to a resilience function if all its factors
satisfy their respective constraints.

As mentioned before, the design described above is only one of
the many possibilities within our framework. Different types of
complex resilience functions, including those that incorporate
other types of information such as factors varying over time,
etc., can be formulated within our social resilience framework.

D. Composite Resilience Function Rn+1

The key insight in our resilience framework is to use
social theories to formulate a composite resilience function
from individual resilience functions. When constructing such
a composite function, it is necessary to select relevant social
theories. Social theories are good at explaining interactions
among factors in human behavior; as such, they can help
formulate modeling frameworks for social resilience. In short,
social theories provide the theoretical foundations to calibrate
our model so that it matches reality and provides reasonable
explanations. One of the challenges of using a social theory

is that it may only provide descriptive analysis, limiting its
direct application in a computational framework. For example,
social norm theory [34] tells us how social norms form and
evolve, but it does not define a mathematical function to
describe how the procedure happens; therefore, it is hard
to quantitatively determine the influence of social norms on
social resilience. Some of the ways in which social theories
can be used to formulate the composite function include the
following.

1) Factor Selection: Social theories can be used to select
the set of factors Fn+1 from the set of factors

⋃n
i=1 Fi

of the underlying resilience functions. Descriptive social
theories may be useful to determine relative importance
to aid factor selection.

2) Factor Masking: In a dynamic scenario where the influ-
ence of a factor may vary over time, social theories can
provide insights into when a factor contributes to system
resilience and when it does not.

3) Factor Weights: The weighting of relevant factors can
also change with time, depending on relative importance.
Social theories can help determine dynamic weights in
resilience models.

In Section V-B, we will demonstrate how to apply the
modeling framework to a real-world scenario. We will explain
a process that can be followed to represent sociocultural behav-
iors of the individuals and groups that impact the resilience of
a social system, and then formulate resilience functions based
on these factors and their constraints.

E. Contributions of the Framework

One key contribution of our framework is its capability
to model each of the hypotheses about the resilience of the
system as one or more resilience functions. For instance,
a particular hypothesis about resilience may correspond to a
subset of the factors and their interactions represented within
the aforementioned cultural fragments, and can be utilized to
formulate a specific resilience function. The framework also
has the capability to compose a global or umbrella resilience
function from individual resilience functions using select
social theories. In some cases, the information on how factors
of different resilience functions interact may not be available.
Social theories can help to fill in these gaps while providing
important insights into how individual resilience functions
interact, when one or more resilience functions dominate, and
when they only have a minor influence. However, note that our
overall modeling framework is not tied to any particular social
theory or knowledge representation. Relevant social theories
are selected based on the scenario to be modeled. In the
scenario for this investigation, the experimenters have utilized
theories related to social norms and risk analysis to inform the
model.

This initial effort focuses on key aspects of the social
resilience model, including the application of social theories
to tie the individual resilience functions together. To accom-
plish this, we defined resilience functions for both fishing
and piracy. An overall resilience function was then defined
by employing select social theories related to social norms
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and risk analysis. In the experimental validation, we lever-
age sociocultural modeling methods previously explored as
part of our earlier work with computational sociocultural
modeling [35]–[37].

V. EXPERIMENTAL VALIDATION

While selecting a suitable scenario for our simulation,
we had several criteria in mind. Perhaps the most critical
was finding a situation with enough complexity to require
the application of multiple views of resilience, as previously
discussed in the introduction. We also selected a scenario
to highlight other strengths of our framework, namely, its
ability to represent diverse types of information and to leverage
existing representations and modeling techniques, if applica-
ble. In addition, to demonstrate the capability of our system
to handle not only uncertainty, but also incomplete infor-
mation, we were interested in finding a setting which had
copious information, yet was not so well documented and
studied that it was essentially a completely known entity.
Thus, we required a real-world scenario that exhibited com-
plex forms of resilience and yielded detailed information
for incorporation into the model, while still retaining some
unknowns and uncertainties. In Section V-A, we describe the
selected scenario, and then review details of the experiment
configuration and execution.

A. Scenario

To validate our resilience framework, we chose to model
a fishing community along the coastal regions of Somalia
from 1991 to 2012 [38]–[41]. With the fall of the Barre
regime in 1991, Somalia devolved into civil strife among its
clans. The absence of a central government led to damaging
illegal activities in Somali coastal waters. Excessive fishing
by illegal international vessels and disposal of toxic waste,
followed by the destruction caused by a tsunami, led to
depletion of fish resources and loss of livelihood for Somali
fishermen [42]. The impacts of these environmental factors are
captured in our model using BKBs. For instance, the effects
of the tsunami are reflected in the BKB in Fig. 3, represented
by the random variable “(B) Tsunami is destructive,” which
leads to a reduction in the availability of boats and fishing
equipment. Similarly, the impact of other factors, such as
illegal fishing and illegal waste dumping, was included in
the scenario during the initial stages (T1 and T2 of Table II).
As the economic situation of the fishermen worsened, such
hardships eventually gave rise to piracy. Piracy in the Somali
waters reached its peak in 2008 and 2009 [38]. The events
surrounding the rise and fall of piracy in Somalia which
we incorporated into our simulation are detailed in Table II.
The specific modeling question we asked was: “How did the
livelihood provided by two competing occupations, namely,
fishing and illegal piracy, contribute toward the resilience
of the community?” Considering the economic hardships the
fishing community endured during these years, this scenario
provided the complexity, dynamism, and information that
we desired to validate our framework. We also leveraged
information from [35] and [36] on Somalia, which focused

Fig. 3. BKB representing the tsunami event in Somalia.

TABLE II

TIMELINE OF EVENTS USED TO MODEL RESILIENCE

on modeling the instability in Somalia during the fall of the
Islamic Courts Union (ICU) in 2006.

B. Experimental Setup
In this section, we first describe the general construction of

the Somali fishing community model, so that it follows the
general scenario just described. After highlighting the events
central to the simulation, we then review the formulation of
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Fig. 4. Partial BKB representing fishermen.

our individual resilience functions for two distinct types of
livelihood for that region, namely, fishing and piracy. Next,
we describe the social theories we employed to identify
relevant factors to be applied to our general resilience func-
tion. In concert with the applicable social theories, in the
following section we discuss the process used to determine
which resilience target variables were masked to produce an
overarching resilience function. We also describe the rationale
behind the dynamic weights in the overall resilience function
for the selected resilience target variables.

1) Scenario Simulation: We used information on fishing
communities in Somalia to validate our resilience model.
As the initial step, BKBs were constructed based on fac-
tors that could affect the fishermen’s decisions regarding
fishing or piracy as a means of livelihood. These BKBs
were considered as a baseline from which the simulation
was conducted. An example of the fisherman BKB is shown
in Fig. 4. Due to the large size of the fisherman BKB, only a
portion of the BKB is shown. Next, we identified relevant
events from public media sources that could have affected
the resilience of the fishing community. As the information
was gathered from public sources, there are no privacy issues
to be considered, nor any actual human participants in our
experiment. Our results and analysis are based wholly on our
computational model.

The resilience of the community was measured and ana-
lyzed over the time period from 1991 to 2012. In order to
focus on the most critical factors, only major events which
could influence the resilience of the fishing community were
considered while modeling the scenario. The scenario was
extensively researched, and information was gathered from
various resources, including journals, news articles, websites,
and open sources. The 11 major events selected by the
SMEs for this time period are depicted in Table II. These
events include initial circumstances that then drove actions
and reactions which spiraled into the failure of the fishing
industry in Somalia, a growth of piracy as a response to lost
income, and then eventually the suppression of piracy and
a resurgence of fishing for livelihood. All of these actions
and reactions originate from forces, both internal and external,
on the Somali village, which are captured by the application

of risk theory and social norms, and by economic, religious,
political, and social pressures within the local and international
community. All of these factors contribute to the overall
resilience of fishing and piracy in the village. Each event
is represented in the model using BKBs. An example of
an event BKB representing the tsunami that occurred during
December 2004 can be seen in Fig. 3. Overall, the model
consisted of 14 BKBs with 45 random variables.

2) Individual Resilience Functions: Two major aspects of
the fishing community that contributed to its resilience were
analyzed. They were: 1) R1—resilience with fishing as a
livelihood and 2) R2—resilience with piracy as a livelihood.
To gauge the resilience measures R1 and R2, a portion of the
team selected factors central to the resilience of fishing and
piracy, then designed functions for resilience based upon con-
ditional probabilities for variable instantiations. The resilience
random variables for R1 and R2 are found in Table IV.

We define resilience functions for each of the livelihoods,
a fishing resilience, R1 : (K , E1, F1, C1, ) → [0, 1], and a
piracy resilience, R2 : (K , E2, F2, C2, ) → [0, 1], where the
modeling information represented as BKBs is the same, but
the evidence, targets, and constraints vary. It should be noted
that these two survival methodologies were not presumed to be
either more or less viable (or preferred) than the other by the
experimenters. The longevity and effectiveness of each would
be determined by social pressures, both internal and external,
placed upon the community.

It may also be noted that we selected the social theories
based on the need to model factors and social processes
that we deemed to be relevant for the Somali scenario. For
instance, the decision to adopt piracy is fraught with social
and economic risks from various sources, including risk of
social ostracization within the community and the danger of
armed retaliation from foreign navies. This can be adequately
represented by risk theories [43], [44]. However, risk the-
ories do not capture the complex and dynamic sentiments
of the community toward piracy. We utilized social norms
theories [45]–[47] to represent community sentiments that
have their roots in the religious and cultural beliefs of the
people. However, note that our resilience framework is not
tied to specific theories. As such, the social resilience results,
analysis, and explanations provided by our framework are
driven by the specific social theories utilized.

Our framework does not prescribe a specific method to
compute resilience values. For the experimental validation
presented here, we use the posterior probability of each factor
to determine if it satisfies its corresponding constraint. Clearly,
the constraints for the factors can be modeled within our
framework in several ways. For our validation experiment,
we use thresholds and weights within the constraints to rep-
resent the range within which the factor contributes toward
the system’s resilience, and to represent their relative impor-
tance, respectively. Based on available scenario information
and recommendations by SMEs, we select a set of weights
Wi = {wi,0, . . . , wi,l , . . . wi,|F |−1} and a set of threshold
values Qi = {qi,0, . . . , qi,l , . . . qi,|F |−1}, where qi,l is the
threshold for factor fi,l . Note that our framework is flexible
and allows for inclusion of diverse types of quantitative and
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TABLE III

METHODOLOGY USED IN EXPERIMENTAL VALIDATION
FOR CHECKING RESILIENCE CONSTRAINTS

TABLE IV

TARGET VARIABLES AND THRESHOLDS

TABLE V

EXAMPLE OF A METHODOLOGY FOR COMPUTING RESILIENCE VALUES

qualitative information. For each factor, we determine if it
satisfies its constraint using the procedure in Table III. If all
the factors satisfy their constraints, the system is said to be
resilient. Note that the weights and thresholds (see Table IV)
for R1 and R2 factors are based on the scenario information.
As this is the initial validation of the framework, we chose to
keep the factor weights and thresholds static, and then use the
L2-norm as the basis for the distance of the operating point of
the system from the basin (as represented by the thresholds),
and thus compute how resilient or nonresilient the system is
(see Table V). Note that our framework is not tied to this
methodology of using the L2-norm, and other measures can
be used in its place.

The simulation is initiated using the BKBs representing the
fundamental behaviors of fishermen and pirates as mentioned
before, followed by the 11 time steps depicting the major
events. At every time step, changes are incorporated into
the model by fusing an event BKB corresponding to that

time step and/or by setting evidence in the BKBs. Belief
updating is performed on the fused BKB during each time
step, and the posterior probabilities of random variables used
to measure resilience are calculated. For example, during
the simulation runs for measuring R1, at each time step the
posterior probabilities of all the states of random variables
selected for R1 are noted. As time progresses, prior events may
not have the same effect at the current point in time. Therefore,
a fading effect is introduced by reducing the reliability index of
previous event BKBs when fused in later time steps. Lowering
the reliability index of the preceding BKBs will reduce their
impact within the current fused BKB. The fading effects varied
across time steps and were based on factors such as time
interval between events and the effect of BKBs at the time
of the events.

3) Composite Resilience Function (R3): This section
describes the computation of R3 from individual resilience
functions R1 and R2. Recall that R3 is not computed by
directly combining R1 and R2 with weights. Instead, we break
down R1 and R2 at the variable level and recombine relevant
variables according to select social theories. The challenge
of formulating an umbrella resilience function is to under-
stand how to model the interactions between its constituent
functions. Take for instance our scenario, where the central
challenge faced by the Somali fishing community is earning a
livelihood under the pressures of illegal fishing, environmental
change, and the collapse of the Somali government. The
fishing community must compete with better equipped foreign
fishing companies invading their fishing grounds if they are to
continue fishing. If switching careers, they must consider the
risks associated with rampant unemployment during civil war.
To properly incorporate such considerations when developing
a composite resilience function for the community, we explore
the use of various social theories to help determine the
relevance of the individual resilience factors throughout the
scenario. Specifically, we use social theories related to social
norms and risk analysis to determine weights to model the
relative importance of the factors in the scenario. For each
time step of our scenario, we apply relevant social theories to
determine pertinent factors and their weights. The procedure
for computing R3 at each time step includes the following
operations.

1) Select social theories that can best describe the major
driving force of community behavior at the time.

2) Based on these social theories and time-step related
events, pick relevant factors from R1 and R2 to form
the key factors of R3, and assign their weights, denoting
their relative importance during the time step, based on
feedback from SMEs.

3) According to chosen factors and their weights, calculate
R3 on that time step. In the following sections, we pro-
vide examples of the weights and masking factors for
selected time steps.

a) Social norms and risk analysis: When constructing
the composite resilience function, two social theories were
determined to be well-suited for the scenario of interest: social
norms and risk analysis.
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Social norm theories are a group of social theories describ-
ing human behavior under complex social and economic con-
ditions. According to Cialdini and Trost [34], “social norms are
rules and standards that are understood by members of a group,
and that guide and/or constrain social behavior without the
force of laws.” Social norms divide into two groups: descrip-
tive norms [45] and injunctive norms [46], [47]. Descriptive
norms describe human behaviors in specific situations and
injunctive norms focus on the social acceptability of specific
behaviors.

Social norms have in fact been employed in resilience
research in the past. Adger et al. [3] briefly mention social
norms in the context of adjusting management behaviors to
implement recommended measures to limit the hazards of
coastal disasters. In contrast, Poortinga [48] employs social
norms when addressing community resilience, but notes that
“unhealthy” social norms can result in less desirable outcomes,
and thus applies social norms to the analysis of the dynamics
within a community. This is somewhat akin to our use of
social norms here, where the pressures exerted upon villagers’
choices of livelihood are identified by examining social norms.

The conjunction of resilience and risk is common, as illus-
trated by the plethora of studies in numerous areas of
research [49]–[54]. The extant approach to incorporating risk
into social resilience has been focused on evaluating risk of
outcomes when considering resilience of systems to possible
events. For instance, Coaffee [50] applies risk analysis to the
concerns of environmental resilience, evaluating the different
possible disruptions environmental change might cause, and
then assesses the resilience of possible solutions to the iden-
tified risks. Another example of risk and resilience, closer in
subject matter to this project, is found in [54]. Masten [54]
is concerned with social resilience, admittedly in a smaller
context, that of the military family. Here, the focus is on
using risk analysis to identify perceived risks, for the analyst
to evaluate the resilience of military families to those risks.

In contrast, we incorporate risk analysis as one of the tools
the actors within the Somali scenario use to evaluate their
situation and decide on beliefs to hold and actions to take.
Risk theory is applied to evaluate likely actions taken within
the scenario in the simulation. In this way, the theories of
perceived risk and risk amplification are especially relevant to
the fluctuation of the social acceptability of piracy and fishing.
Perceived risk [43] describes subjective evaluation of risk.
Risk amplification [44] describes how subjective risk responds
when new information arrives.

b) Application to resilience: Both social norm and risk
theories play roles in our resilience framework. When deter-
mining the relevance of resilience factors to the overall
resilience of the community, many issues come into play.
There are the pressures from the community or society in gen-
eral to conform to certain accepted behaviors. These pressures
are well represented through the application of social norm
theories.

On the other hand, actions and behaviors are also frequently
governed by cost and benefit analysis, which is where the risk
theories are utilized. In each time step, we apply at least one
theory to explain the community’s behavior and determine

TABLE VI

MASKING FACTORS AND WEIGHTS IN R3

which resilience target variables apply to the community’s
overall resilience. Social norms and risk theory may interact
with one another. Consequently, one must at times balance
two contradictory theories for certain time steps. For instance,
in the time step where the tsunami occurred, social norms
dictate that the community members remain fishermen and
reject piracy. On the other hand, risk theory takes into account
the threat to fishermen’s livelihood due to the destruction
of their fishing boats. In order to survive, they may thus
be willing to take higher risks than before, namely, through
piracy. In short, when a particular theory dominates a time
step, it is chosen to explain behaviors; otherwise, a set of
relevant interacting theories are used.

c) Masking factors and dynamic weights: A composite
resilience function depends on model factors, interactions
among factors, and events or external influences. Events in
a time step Ti influence factors and their interactions. Even
more, events’ impacts can also evolve across time steps.
Certain events may also require multiple theories to explain
their specific influences in the model.

In the fused scenario, we consider both fishing and piracy
factors. In addition, due to factor interactions, some factors
become increasingly important while others fade out, which
is captured by factor masking and dynamic weights calcu-
lated from pertinent posterior probabilities within the model.
Table VI provides a complete breakdown of the social theories,
masking, and weights used for each time step, where a “−”
indicates this variable was not utilized for calculation of the
resilience values during this time step due to social theories
indicating that it does not have an impact on the system’s
resilience. On the other hand, any other values indicate the
dynamic weight used for that variable in that time step.

For example, in T0, we apply the descriptive norms
theory [45]. Initially fishing was the major career in this com-
munity, indicating the majority followed this norm in career
choice. Therefore, the negative attitude toward piracy was
obvious, and nobody would consider piracy-related activity.
Only the availability of a boat and fishing equipment are
constraints, because fish are plentiful.
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TABLE VII

RESILIENCE OF FISHING (R1), PIRACY (R2), AND COMPOSITE (R3)

In T1 and T2, we apply the social norm of conditional coop-
eration [55]. Before the Somali government collapsed, both the
local and international fishing industry cooperated by fishing
in separate areas, which fulfilled the public good requirement.
However, the foreign fishing industry began fishing illegally
once the Somali government collapsed. Since the foreigners
no longer maintained the public good, Somali fishermen
reacted by collecting fees from commercial fishing vessels,
at first stopping short of hijacking and ransoming ships. They
believed their reaction was fulfilling social justice rather than
piracy, so the acceptability of piracy is not considered.

As a final example, in T6 and T7, we applied three
theories: descriptive norms, perceived risk, and risk ampli-
fication. Based on risk amplification, news of successful
hijackings convinced the community that piracy was easy and
safe. Descriptive norms regarding piracy changed in favor of
it, since many community members had joined. Accordingly,
a perception that many worked for piracy reversed the attitude
toward piracy as well. Suddenly, all piracy-related factors
seemed attractive to the local community. This resulted in the
fishing-related variables becoming largely irrelevant, and so
were masked out.

C. Results and Analysis

In this section, we provide results and analysis for
the resilience of the community from the perspectives of
fishing (R1) and piracy (R2) as a source of income, verify-
ing that our individual computations for fishing and piracy
resilience track well with the events in the scenario. We then
review the resilience of the community as a whole (R3),
considering both fishing and piracy, and discuss the merits
of our findings.

1) Fishing Resilience R1: For the fishing resilience R1,
the results are listed in Table VII. The first column denotes
each time step ranging from T0 to T11. The second major
column represents the number of target variables that are inside
the resilience bounds, with three subcolumns with values for
R1, R2, and R3. Likewise, the third major column provides
our numerical calculation of resilience, again divided into R1,
R2, and R3 subcolumns. Keep in mind that we apply different

formulas to compute a time step’s value if it is resilient, versus
one that is nonresilient, so we cannot directly compare the
value of a resilient time step with that of a nonresilient one.
Here, only in the time steps with all three target variables in
bounds or within the threshold values is fishing considered
resilient.

Overall, the fishing resilience measurements follow what
would be expected from the scenario. Early on, specifically T0,
fishing is found to be resilient. The T0 resilience value is the
weighted sum of the three target variables’ squared distance to
their corresponding bounds. This is a measure of how much
total tolerance to perturbation this community has at that time.

In later time steps, however, the onset of various difficulties
has pushed the community out of resilience, and the associated
resilience measurement is an indicator of the minimum effort
required to return this community to a resilient state. We see
that fishing remains nonresilient for an extended period, from
T1 until T7, to begin with because of hardships such as the
tsunami and illegal activities resulting from the fall of the
Somali government, and later due to the vibrancy of piracy
detracting from efforts at a traditional fishing livelihood.

One notable exception occurs in T4, where the nonresilience
value of 0.0299 is significantly closer to the resilience bounds
than the surrounding time steps because the ICU has come
into power, and it enforces law and order on shore, while
forbidding piracy. Under more stable political rule, the fishing
community finds it easier to recover from the natural disaster
and to compete with the illegal fishing in their waters.

From T8 to the end of the simulation in T11, we see a steady
increase in the resilience of fishing, as increasing antipiracy
actions at the national and international levels take effect.
By the end of T11, the resilience of fishing has recovered to
around 90 percent of the baseline resilience. However, we do
observe a drop in the resilience distance of the 〈fish supply
is sufficient = Yes〉 target alone, due to the gradual return
of illegal fishing vessels from other countries. This is not as
severe as before, so the fishing community remains resilient.

2) Piracy Resilience R2: For piracy resilience R2, again
consult Table VII. The R2 columns have the same meaning
as for R1, except that they refer to different target variables.
As we would expect, piracy starts out in a nonresilient state,
and remains so through T5. In general, though, there is a
softening of attitude toward piracy as fishing becomes more
difficult, with the exception of T4, when the ICU penalizes
piracy with death. The resilience value of 0.2191, indicating
the required force to reach resilience for piracy, is much larger
than the surrounding time steps, for few people are willing to
risk their lives due to this harsh penalty.

For both T6 and T7, all three targets finally fall into
the resilience bounds, yielding similar resilience values of
0.1863 and 0.1829 for piracy. This community is now quite
resilient regarding piracy, because they can earn vast sums of
money with little cost, as there is very little resistance against
them. The pirates are also very generous toward local citizens,
so they have earned support from the populace, receiving
benefits such as food and shelter for hostages.

In T8 and onward, piracy falls further away from resilience,
as both domestic and international efforts to combat piracy
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have increasing success. The resilience value in the final time
step is slightly lower than the previous step, because the target
〈attitude toward piracy=Yes〉 is closer to its bound in this last
time step than in the previous one. This is because most pirates
have returned to a fishing career, and the hostility toward
piracy has reduced slightly.

3) Composite Resilience R3: For the community’s com-
bined resilience value R3 in Table VII, the analysis is different
than in the previous ones, since we apply masking and
dynamic weights on the target variables in each time step. The
key point to this is that the composite measure is not simply
a union of the separate resilience calculations. This is most
clearly illustrated with T5, which is not resilient in either of
the individual resilience measurements, yet is resilient when
the two livelihoods are considered together. The resilience is
a result of considering the net effect of a struggling fishing
industry and a growing piracy strategy which, in effect, allow
the community to survive, despite neither livelihood being
effective enough alone. Of course, subtler indications of the
composite resilience calculation can be found in other time
steps, such as the stronger overall measures of resilience in
T6 and T7 when compared to R2, where fishing contributes
positively to R3, despite it not being resilient when considered
alone in R1.

By producing an overall resilience measure for a domain
in this manner, we endeavor to forge a reliable method for
composing a single umbrella resilience function from a variety
of specialized approaches. Our functions for fishing resilience,
R1, and piracy resilience, R2, were indeed specialized, and our
method for composing them into a single resilience function,
R3, is a successful demonstration of the value of our general
framework for measuring social resilience.

VI. CONCLUSION

Capturing, measuring, and modeling social resilience
remain challenging endeavors. Beyond the general idea of
determining how much stress or distortion a physical sys-
tem can take before breaking, social resilience adds many
challenging factors, including multidomain factors, multiple
hypotheses on what social factors apply, the interactions
between sometimes unobservable factors, incomplete social
data, transformational adaptability of social entities, and the
dynamism of multiple actors. Given a complex social scenario,
rather than trying to identify a single resilience function that
defines the strength of the social group, we instead proposed
that multiple resilience functions may be defined, with each
one focused on a specific hypothesis about its resilience.
A composite resilience function may then be constructed
through the judicious application of select social theories.
By producing an overarching framework for tying resilience
functions together through the application of social theories,
we broaden the applicability of our resilience framework to
larger and more complex situations.

To demonstrate this concept, we modeled a fishing com-
munity in Somalia during the rise and fall of the Somali
pirates. This scenario is rich in economic, ecological, political,
and military influences, thus providing the complexity and
multiple resilience considerations we required for validating

our thesis. By defining a resilience function for fishing, and
another for piracy, we were able to observe the periods
when fishing was vibrant, when piracy was vibrant, and
when both struggled. More importantly, we constructed a
composite resilience function, which leveraged aspects of both
fishing and piracy, to indicate how the community managed to
survive this exceptionally difficult period in their history. This
composite function relied on social norm and risk theories to
define the relevance of factors at each step in the dynamic
timeline. The composite function not only identified when
the community was resilient due to either fishing or piracy,
it revealed resilience for the overall community where both
fishing and piracy were struggling. More importantly, the com-
posite resilience function demonstrated a capability to bridge
the gap between different measures of resilience, and inte-
grate them into a single framework to reflect the complex
interplay between sometimes opposing, sometimes synergistic
functions.

This proof of concept has yielded several areas where addi-
tional research may be explored. Certainly, as other scenarios
are explored in future work, the selection of pertinent social
theories to employ will likely vary, thus validating the expec-
tation that the overall framework can exploit the rich variety
of social theories found in the literature. Another possible
extension is including dynamic (rather than static) thresholds.
The inclusion of social networks, to provide not only further
complexity and realism to the simulation, but also to bring the
abundant social network tools to bear, is an additional option.
The resilience functions presented in this paper could also
be extended. While certainly versatile and well-understood,
the L2 norm may be limited in its applicability to complex
resilience landscapes. Ultimately, we aim to find a measure to
remove the discontinuity between the resilient and nonresilient
measurements, and thus allow for direct comparisons between
them. Finally, as with many complex simulations, as the num-
ber of variables increase, the computation time significantly
increases. We will explore new computational approaches,
including parallel methodologies, for reducing computational
load while maintaining accuracy.
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