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ABSTRACT   

The major focus in the field of modeling & simulation for network centric environments has been on the physical layer 

while making simplifications for the human-in-the-loop. However, the human element has a big impact on the 

capabilities of network centric systems. Taking into account the socio-behavioral aspects of processes such as team 

building, group decision-making, etc. are critical to realistically modeling and analyzing system performance. Modeling 

socio-cultural processes is a challenge because of the complexity of the networks, dynamism in the physical and social 

layers, feedback loops and uncertainty in the modeling data. We propose an overarching framework to represent, model 

and analyze various socio-cultural processes within network centric environments. The key innovation in our 

methodology is to simultaneously model the dynamism in both the physical and social layers while providing functional 

mappings between them. We represent socio-cultural information such as friendships, professional relationships and 

temperament by leveraging the Culturally Infused Social Network (CISN) framework. The notion of intent is used to 

relate the underlying socio-cultural factors to observed behavior. We will model intent using Bayesian Knowledge Bases 

(BKBs), a probabilistic reasoning network, which can represent incomplete and uncertain socio-cultural information. We 

will leverage previous work on a network performance modeling framework called Network-Centric Operations 

Performance and Prediction (N-COPP) to incorporate dynamism in various aspects of the physical layer such as node 

mobility, transmission parameters, etc. We validate our framework by simulating a suitable scenario, incorporating 

relevant factors and providing analyses of the results. 

Keywords: Network centric environments, modeling and simulation, socio-cultural modeling, complex networks 

INTRODUCTION  

Recent military operations such as Operation Iraqi Freedom (OIF)
1
 have seen extensive use of information and 

communication systems for better situational awareness, better coordination, and faster response, bringing a little closer 

to fulfillment the promises of network centric environments. Network centric environments have enabled the military to 

reduce their reaction time and transformed modern military operations by devolving power to the edge and enabling 

local commanders to be more proactive in their support of mission goals. Each warfighter, who is or can be outfitted 

with advanced sensors and communications systems, is now a potential source of real time intelligence. This is necessary 

in an era where urban insurgency and unconventional warfare are the main threats faced by modern military forces. 

Although the effectiveness of networked forces has been studied, the emphasis has been on the technological aspects. 

Borrowing the terms of Network Centric Operations/Warfare (NCO/NCW)
2
, most of the performance analysis has been 

on the physical layer consisting of the information and communication systems. However, this is only part of the story. 

Wars are won by soldiers from different services, backgrounds and training, working towards common goals. The social 

relationships formed by soldiers within their immediate groups such as a squad or extended group such as a brigade are 

critical for the successful completion of missions. By supporting communications between a wider set of warfighters, 

unrestricted by traditional command hierarchies, network centric environments have a deep impact on the formation and 

evolution of these relationships. Cognizant of the importance of social relationships, the military has been interested in 

applying social metrics such as cohesion and analyzing their impact on overall performance
3
. Traditional modeling 

methods for network centric environments model either the network/physical domain while making simplifying 

assumptions about the social domain or vice versa. However, changes in the network layer can have profound effects on 

how individuals collaborate with each other and how they form social relationships. Similarly, changes in those social 

relationships can alter how individuals work together in a team and ultimately how they communicate with each other. 

For example, it is more likely for an analyst to reach out to another analyst whom he/she knows and trusts rather than to 

a stranger. In warlike conditions, due to the extreme conditions of the environment, the characteristics of the physical 

networks change rapidly. Sensor and weapons nodes move at various velocities leading to change in transmission 

Defense Transformation and Net-Centric Systems 2012, edited by Raja Suresh, Proc. of SPIE 
Vol. 8405, 84050A · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.921654

Proc. of SPIE Vol. 8405  84050A-1

Downloaded From: http://spiedigitallibrary.org/ on 11/18/2013 Terms of Use: http://spiedl.org/terms



 

 
 

 

strengths, packet drop rate, and latency of the links. Social domains also change as individuals are assigned to new teams 

or allocated new tasks that require collaborations with other individuals. This in turn leads to formation of new 

relationships in the social domain. It is clear that any framework that seeks to model social processes has to model the 

relevant details of both the physical and social layer and how they evolve over time. Socio-cultural factors relevant to the 

social process being modeled should be represented in a realistic manner within the framework. However, such 

information is usually subjective and incomplete. There is also a high level of uncertainty when modeling the impact of 

these factors on individual and group behavior. In summary, the main challenges of modeling social processes in 

network centric environments are: 1) representing the interactions between the social and physical layers, 2) modeling 

the dynamism in both the physical and social layers, 3) incorporating relevant socio-cultural factors, and 4) dealing with 

the inevitable uncertainty and incompleteness of socio-cultural information. 

We propose a novel framework for realistic modeling of social processes in network centric environments by 

representing the relevant details and dynamism in the physical and social layers. We will represent the physical layer by 

leveraging our previous work in NCO/NCW performance modeling, where we developed the Network Centric 

Operations Performance and Prediction (N-COPP) framework
4,5

. N-COPP has a flexible component based architecture 

that can incorporate multiple network sub-models, analytical tools and optimization methods. Using well-defined 

functional mappings between the components, it provides a modeling backbone to create and connect various segments 

of a network model. Therefore, sub-networks representing different assets such as sensors networks and weapons 

systems can be modeled independently and incorporated into N-COPP using its mathematical representation and 

functional mapping. In this work, we will expand the N-COPP methodology by incorporating social networks as one of 

the network structures in our framework. Social Network Analysis (SNA)
6,7

 encompasses a broad range of techniques in 

computational social science to represent and analyze social processes. However, traditional SNA methods are limited in 

their utility as they do not truly represent the richness of available socio-cultural information. We will utilize Culturally 

Infused Social Networks (CISNs) to provide relevant cultural context in our models and generate more accurate analysis 

and explanations. CISN also provides the ability to deal with the inherent uncertainty and incompleteness of social 

information. With CISN, we will model the social layer in network centric systems, incorporate information from the 

physical layer and analyze social processes using various methods including classic SNA based algorithms. We will 

validate our framework by modeling group cohesion among warfighters during a real world scenario. We will also study 

how individual socio-cultural characteristics, group size, information sharing paradigms and events on the ground affect 

group cohesion. In the next section, we provide a brief background on some of the recent works in modeling and 

simulation of social aspects in network centric environment with a focus on military units. We will also provide a brief 

tutorial on the concept of group cohesion. This is followed by a detailed description of our new framework. The 

validation section describes the implementation details, experimental setup with details of a real world scenario and 

analysis of the results. 

BACKGROUND 

Researchers have used various modeling and simulation approached based on techniques such as multi-agent modeling
8
 

and complex adaptive
9
 systems to understand various issues in military networks such as collaboration between 

warfighters, impact of technology on situational awareness and decision making and overall system performance. We 

provide a brief description of previous work in modeling network centric environment, with focus on Network Centric 

Operations/Warfare (NCO/NCW). Most research efforts in network centric environments have focused on modeling the 

communication and sensor technology. Lu
10

 formulated a model for developing the network infrastructure to support 

NCO communications, but like many approaches, they leave out the human and social factors. The same is true for 

Walker et al
11

, which applies Social Network Analysis (SNA) techniques to analyze a standard NATO approach to 

NCO, but again focuses on the physical network and command hierarchy, and also does not address the human factor. 

Theories of social network analysis have been explored much longer than NCO, and while useful, cannot provide a 

complete solution for modeling or analyzing these systems. Wong-Jiru et al
12

 developed a multi-layer model of the NCO 

approach, with layers for people, applications, processes, a physical network, etc., to support a deeper graph-theoretical 

analysis of NCO components and networks. However, the modeling of the human factor was very simplified, as is the 

case with many SNA-centric approaches to analyzing or simulating NCO, and did not reflect in the analysis how 

uniquely human factors such as culture, friendship, and trust affect the actions of human agents in a complex military 

network. Schneider et al
13

 , building on work by Marinier et al
14

, present an approach for modeling human behavior and 

emotion, in the context of NCO, but do not attempt to combine this in a unified way with other aspects like the military 

hierarchy or network communications. Though challenging, the importance of modeling the human factor in NCO has 
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not gone unnoticed. West et al
15

 and Gharai et al
16

 describe the importance of including the human factor in a complete 

model of the NCO approach. As an integral part of any NCO system, and probably one of the most complex, the human 

agent must be accurately modeled in any realistic simulation, which requires a representation of human characteristics, 

relationships, and decision-making processes. In summary, current state of the art in modeling and simulation of network 

centric environments focus on certain aspects of the problem while making simplifications in the representation of 

technological and social factors. There is a need for a generic modeling framework for analyzing the various social 

processes in this domain that truly models the complexity of individual and group behaviors by incorporating all relevant 

factors in both the physical and social layers. 

Group cohesion in military units measures the dynamic social behavior among the military groups and is also one of the 

most widely studied social metrics. In order to measure the performance of a group, it is necessary to understand the 

social dynamics among the group members and Mullen et al
3
 shows that evaluating cohesion among groups is a good 

indicator for performance. Many definitions of cohesion are available and one of the earliest by Festinger
17

 broadly 

defines cohesion as “the resultant of all the forces acting on all the members to remain in the group”. On the other hand, 

Gross et al
18

 argues that cohesion should be measured as the resistance of the group against disruptive forces. In military 

contexts, cohesion can  be defined as “the bonding together  of  members of  an  organization/unit in such a  way as  to 

sustain  their  will  and  commitment  to  each other, their unit, and the mission”
19

. Even when a common definition for 

cohesion is agreed upon, formulating a method to measure cohesion remains a challenge. This is because many factors 

such as shared goals, motivations, interpersonal relationships, teamwork, etc. have to be taken into account in a realistic 

representation of cohesion. The most common classification divides cohesion measures into two types: task cohesion 

and social cohesion. MacCoun
20

 refers to task cohesion as “the shared commitment among members to achieving a goal 

that requires the collective efforts of the group” and social cohesion as “the nature and quality of the emotional bonds of 

friendship, liking, caring, and closeness among group members”. It can be concluded that a group with higher task 

cohesion will be more committed towards achieving a goal than a group with lower task cohesion. Similarly a group 

with high social cohesion will have team members who prefer to spend time with each other and share a higher 

emotional bond. MacCoun
20

 also suggests that task cohesion has a greater impact on performance than social cohesion. 

Social cohesion can also have unfavorable consequences. Greater social cohesion can lead to excessive socializing and 

groupthink, thereby affecting rational decision-making which is not desirable in a military situation. Janis
21

 suggests that 

a moderate level of social cohesion is desired for optimal performance. Some of the   factors that influence social and 

task cohesion in military units are: group membership, quality of leadership, and group size. 

MODELING FRAMEWORK 

In this paper, we propose a computational framework to model and analyze social processes in network centric 

environments by simultaneously representing the physical and social layers. We will leverage previous modeling, 

specifically in modeling the NCO/NCW network layer using the Network Centric Operations Performance and 

Prediction (N-COPP) framework
22

 and modeling the social layer using Culturally Infused Social Networks (CISN)
23

.  

The key idea behind the framework is that social processes have two components: social interaction and socio-cultural 

factors. Interaction is facilitated by actual physical meetings and communication technologies. However, two individuals 

who interact frequently may not form a social relationship if they are from different strata of society, have different 

values or follow different social norms. In short, commonality of the socio-cultural makeup of the interacting individuals 

or groups has an impact on the formation of social ties or spread of influence.  In keeping with this central principle our 

framework, shown in Figure 1, models social interaction in terms of the interaction and ideology networks. Since the 

physical layer facilitates communication between individuals in network centric systems, the various network structures 

of the physical layers are used to construct the overall interaction network. The ideology network connects individuals 

based on the similarities in their personalities and beliefs. Culturally Infused Social Network (CISN) is generated by 

combining the interaction and ideology networks. In the following sections we describe in detail the components of our 

framework that deal with modeling the physical layer, modeling the social layer and analyzing the social process. 

Modeling the Physical Layer  

Modeling the physical layer aspects of network centric systems, especially in NCO/NCW, presents many challenges. 

They are complex networks consisting of multiple sub-networks, each potentially using different technologies and 

operating under different standards. The nodes may have different functionalities and divergent mobility characteristics, 

and operate under varying conditions. Moreover, they operate within rapidly changing and extreme environments. 

Reliability and performance of the underlying communication, information, and decision systems are critical to 

Proc. of SPIE Vol. 8405  84050A-3

Downloaded From: http://spiedigitallibrary.org/ on 11/18/2013 Terms of Use: http://spiedl.org/terms



a.

0

 

 
 

 

successful completion of missions. The N-COPP framework was designed to meet the performance modeling challenges 

of heterogeneity, dynamism, and complexity of the physical layer in a network centric environment. N-COPP has a 

component-based architecture with the following components: 1) Network Representation Component (NRC): embodies 

the graphical representations in the form       , of the various networks and sub-networks in the system, where V and 

E represent the nodes and edges, respectively. The graph nodes represent the entities such as sensors, weapon systems, 

fusion nodes, etc. The edges represent the connection properties between the nodes such as link speed, bandwidth and 

connectivity. The graph representations in NRC are used by other components for analysis and prediction. 2) 

Performance Measures Component (PMC): contains functional mappings to represent future states of the representations 

in NRC. The functional mappings can be implemented using prediction algorithms or simulations. NRC+PMC 

components model the dynamic state of the physical layer.   3) Performance Tools Suite Component (PTSC): contains 

algorithms and methodologies for analyzing the network characteristics and performance. 4) Sub-component Interaction 

Component (SIC): contains methodologies for quantitatively assessing the network and providing suggestions to 

optimize network performance. The flexible architecture of N-COPP, where each component deals with a specific aspect 

of network modeling and analysis, is crucial for plug-n-play property. More details on the framework and how it has 

been applied can be found in Santos et al
4,5

. 

 

Figure 1. Framework for Modeling Social Processes in Network Centric Environments 

Modeling the Social Layer 

In order to capture the socio-behavioral aspects of processes in network centric environments, we leverage the Culturally 

Infused Social Networks (CISN)
22,23

 , shown in Figure 2, and extend traditional social networks formed in network 

centric environments by incorporating cultural factors. CISN is a generic modeling framework that provides a cultural 

context that is lacking in traditional approaches to social network analysis. Culture is key to understanding individual 

and group behavior. However, modeling culture is a challenge due to the inherent uncertainty and subjectivity of social 

information. Moreover, connecting underlying cultural factors to emergent behavior of individuals and groups is 

difficult. In real world scenarios, the social systems are typically multi-scale, and behaviors at various scales have to be 

included in the model. The notion of intent
24

, which models individual, group or organizational behavior as a set of 

beliefs, goals and actions, is used to tie underlying cultural factors to complex behavior. Intent is represented using a 
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probabilistic network framework called Bayesian Knowledge Bases (BKBs)
25

. A BKB (example is given in Figure 3) is 

a directed graph consisting of two types of nodes: I-nodes (boxes) and S-nodes (circles), which represent probabilistic if-

then rules. Each I-node represents a single instantiation of a random variable (rv).  Each S-node is connected to a single 

I-node. Zero or more I-nodes may be connected to an S-node. The S-node denotes the conditional probability value for 

the rule that connects the incoming I-nodes to the outgoing I-nodes. The behavior rules formed with socio-cultural 

information using the intent model are represented in BKBs. The intent model represents an entity’s behavior in terms of 

the following variables: 

a) Beliefs: include the information and perceptions that the entity has towards the environment and other entities. 

b) Goals: are the desired end-states that the entity would like to achieve.  

c) Actions: are the available options that the entities towards achieving the goals 

d) Axioms: consist of self-referential perceptions of the entity. 

The intent model also explicitly represents the causal chain between the beliefs, goals, actions and axioms, and help to 

provide explanations for observable behavior. The intent model is implemented using BKBs to explicitly represent the 

uncertainty and incompleteness of information using conditional probability measures while supporting reasoning 

algorithms that can be used to provide analysis. The intent model also specifies rules for interconnecting the I-nodes 

representing the beliefs, goals, actions and axioms. Axioms I-nodes can have beliefs as inputs and serve as inputs to 

other axioms and goals. Beliefs and goals may form inputs to actions. Actions can also lead to other actions. In addition 

to axioms, beliefs also form inputs to goals. Goals can lead to other goals. In Figure 3, the I-nodes representing beliefs, 

goals and actions are tagged with the strings (B), (G) and (A) respectively. Various strands of socio-cultural information, 

in the form of entity intent, are represented by BKBs in the form of cultural fragments. Cultural fragments relevant to an 

entity can be fused together using the Bayesian fusion algorithm
26

, to form a single large BKB. This is critical for 

modeling dynamism as fragments, representing real time changes, can be added during a simulation.  

By inferencing the intent of each group member, we are able to detect the similarities and differences between 

individuals with respect to personal likes and dislikes.  An ideology network is built to capture such intent proximity 

inside a group of people, each represented by a node.  A weighted link between two nodes indicates the similarity of two 

people’s intent and ideology, where the weight is calculated based on the probability that they will pursue similar goals 

or actions. It is expected that people with similar ideologies will be more likely to collaborate, given the opportunity.  

Thus, ideology can be used to assess the desire or potential for collaboration. The effectiveness of communication 

between people is restricted by the potential for physical interaction. If two like-minded people never have the chance to 

talk to one another, their ideological similarities will make little difference to the probability that they will collaborate. 

Thus, in order to reflect the complexity in social influence, it is crucial to combine the ideology network and physical 

network.  The CISN computational framework has been used for modeling such complex simulations due to its 

component-based architecture. CISN leverages a probabilistic reasoning framework to represent various socio-cultural 

factors and relationships with inherent uncertainty and incompleteness. Different components of the framework deal 

with various aspects of social systems, including physical interactions, social influences, and perceptions.  The CISN in 

this work consists of two components: the ideology network and the physical network, and the weight w for edge e in 

CISN is calculated as:      
   where    and    are the weights of the corresponding edges in the ideology network 

and physical network respectively. r is a constant indicating the strength of influence of the physical network when 

calculating the edge weights for the CISN. 
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Figure 2. Culturally Infused Social Network Analysis23 

Analysis 

The generated CISN can be analyzed using various techniques including traditional social network analysis. The 

analytical component of the framework implements these analysis algorithms. The CISNs generated for real world 

military networks are typically very large ranging from tens of thousands to hundreds of thousands of nodes. The 

networks may also be very dense. Due to the dynamic nature of the underlying physical and social layers, the structure 

and characteristics may change rapidly. These factors can raise substantially the time required to provide analysis. 

Parallel and distributed algorithms help to deal with large, dense and dynamic graphs by providing analysis in a time-

bounded manner. The Anytime-Anywhere framework by Santos et al
6,7,27

 provides a reliable parallel and distributed 

architecture to implement graph analysis algorithms for social networks. Anytime algorithms are interruptible algorithms 

that generate initial estimations quickly, and then results of increasing quality over time. Anywhere algorithms provide 

the ability to deal with changes in the networks by reusing previous results to generate the new results, saving time and 

resources. The Anytime-Anywhere framework has been validated by designing algorithms to calculate shortest paths
6
, 

centrality
7
 and maximum cliques

27
 with various network size s and types of dynamism. In this paper, we will leverage 

some of this previous work to validate our framework, measure group cohesion by identifying k-cliques, and study the 

changes in group cohesion in a network centric system due to a changing environment.  Parallel and distributed 

algorithms for analyzing social processes in network centric environments will be a focus of future work. 

VALIDATION 

Cohesion is one of the social metrics that is both relevant to the performance of a network centric environment and is 

affected by changes in the physical and social layers. We will validate our framework by using it to model changes in 

cohesion in a real world scenario and provide explanations for the changes. Cohesion within a group can change based 

on the support for a proposed plan of action within its members. Actions based on consensus will improve group 

cohesion. In military units, where the consensus process is rare or absent and soldiers are expected to follow orders, true 

support for the commander’s plan of action is harder to gauge. We will use the notion of intent, described in an earlier 

section, to take the underlying beliefs, motivations and goals and determine  plausible actions of each individual soldier, 

and determine how aligned his/her intent is with that of the commander.  A soldier’s decision-making process, which is a 

part of his/her intent, is dependent on the available information. We will simulate two intelligence sources in the 

scenario that provide either concurrent or contradictory information to the soldier and analyze its effect on cohesion.  In 

order to do this, the scenario should be detailed with information about the events, makeup of the military units and 

relevant socio-cultural characteristics of the individuals. In this section we will describe the scenario, the implementation 

details of the framework, and the details of the cohesion metric.  
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Figure 3. Example of BKB 

Scenario 

We used open source information about unit tactics, communication equipment and training manuals to gather 

information about suitable unit operations that can be used to construct the scenario. Since NCO/NCW is relatively new, 

case studies and analyses of tactics adopted by networked forces are scarce. We focused on recent military engagements 

such as Operation Iraqi Freedom (OIF), where NCO/NCW techniques were employed.  The events in our scenario were 

generated using related case studies
1
 which describe actual battle field events where units from infantry, armored and 

artillery units had to work in unison against Iraqi forces. The case studies helped to build a fictional set of events with 

the goal being to analyze how the soldier’s state of mind changes over time and how that in turn affects group cohesion. 

We will demonstrate that our framework is capable of capturing group cohesion using soldiers’ intent, and provide 

explanatory analysis. We also assign relevant socio-cultural traits to soldiers. This will help to generate a diverse 

population and capture interesting group behaviors. Table 1 lists the actions and events relevant to the scenario where the 

objective of the blue forces to capture a bridge over a river Euphrates and proceed towards the capital of red forces. The 

soldiers in the blue force have access to two intelligence resources/units, labeled Intel A and Intel B. We will consider 

two sub-scenario where the information they provide are the same or different. As explained earlier we seek to 

demonstrate how the intent of the soldiers changes with the events in the scenario and how aligned their intents are to 

what actually happens.  The soldier’s view is affected by information coming in from the intelligence units. His/her view 

is also shaped by personal experiences and training. We are more interested in those events or concerns which have the 

potential of creating divisions in the unit and reduce confidence in the commander. Such concerns/events include 

presence of overwhelming opposition forces, possibility of chemical weapons, losing contact with certain components of 

the unit, etc. 

Table 1 Description of Time Steps in Scenario 

Time 

Step 

Event Sub-scenario 1.1 (intelligence 

units give same info) 

Sub-scenario 1.2 (intelligence units 

give contradictory info) 

1. Blue forces are getting ready 

to engage the red forces 

defending the bridge. 

Intelligence indicates weak red 

forces on the west side of the 

bridge.  

Intel A: Weak forces on the west side 

of the bridge. 

Intel B: Strong forces on the west side 

of the bridge. 

Outcome: Blue forces move forward and engage the weaker red forces.  

2. Blue forces move forward 

and engage red forces 

Reports of WMD being 

deployed by red forces to stop 

blue forces  

Intel A: WMD being deployed by red 

forces  

Intel B: No reports of WMD 
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Outcome: Red forces engaged. No WMD found. Blue forces are getting ready to cross bridge. 

3. Blue forces move to capture 

bridge 

Intelligence units provide 

reports on explosives on bridge 

which may result in heavy 

casualties. 

Intel A: Explosives on bridge 

Intel B:  No explosives on bridge 

Outcome: Explosives found on the bridge. Some of the explosives could not be defused in time leading to 

casualties. 

4.  More fighting Intelligence unit provide info 

that casualty rate is increasing.  

Intel A: Casualty rate is increasing 

Intel B: Casualty rate not very high 

Outcome: Casualty rate is indeed high. 

5 Blue forces push forward. Intelligence unit provides info 

that blue forces are running low 

on ammunition and supplies 

Intel A: Low on ammunition and 

supplies 

Intel B: Enough  ammunition and 

supplies to sustain the attack 

Outcome: Units running low on ammunition and supplies.  

6.  Blue forces enter enemy 

stronghold. 

Intelligence unit provide info 

that large red forces are lying in 

wait for ambush 

Intel A: Red forces lying in wait for 

ambush 

Intel B: No red forces in area 

Outcome: Strong red forces in the area 

 

Implementation 

In order to validate the framework with the scenario described in the previous section, we will use open source 

information and synthetic data to populate the social and physical layer sub-models in the framework. We will now 

describe in detail the creation of the interaction and ideology networks for military units of various sizes and show how 

CISNs are generated. We will also describe how social science literature was used to design the group cohesion metric 

that we use to analyze the scenario. 

Generation of Simulated Military Unit 

Since there is limited data available on the makeup of real world units, we attempted to generate a simulated military 

unit that would be representative of a real one with regards to both the hierarchical structure, and the socio-cultural 

characteristics of individual soldiers (e.g. age, experience level, marital status, risk aversion, etc.). The structure of the 

unit is in keeping with US military hierarchy, starting with a brigade-level unit. This is composed of companies, and the 

hierarchy continues with platoons and squads. Each unit has a commander, staff members, and the appropriate 

subordinate units. We study cohesion for various group sizes by varying the number of platoons generated within the 

brigade. As the soldiers in various positions within the hierarchy are generated, their personality traits are also created. 

We used a random generator to introduce an element of randomness to the process, but certain things like age, time in 

service, marriage status, etc., are generated within constraints based on the position that soldier is in.  

Physical Layer  

Due to the lack of real-world data on interactions between soldiers in network centric environments, we generated the 

data using a detailed simulation of the communication links.  For the sake of reproducibility, we used an off-the shelf 

Omnet++
1
 4.1b discrete event simulator along with the MiXiM

2
 wireless framework. We generated a communication 

network that followed the command hierarchy generated in the previous section. We chose random initial locations for 

each non-leaf node within a 500x500 unit square and the leaf nodes were then randomly placed within a 50x50 unit 

square, centered on their parent node. The nodes communicate with each other by sending data packets. Each packet is 

generated with a destination node (which may not be connected directly to it) and then sent over a random connection 

until it reaches the destination or gets dropped. The strength of the communication link varies according to the distance 

between the nodes and the velocity of the nodes. A packet that is transmitted across a link, gets dropped when the signal 

strength drops below a certain threshold. On an average, n mod 8 packets (where n is the number of nodes) get 

transmitted at a time in the simulation, so as to achieve a relatively uniform distribution of packets for any size network.  

                                                 
1 http://www.omnetpp.org/ 
2 http://mixim.sourceforge.net/ 
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The communication network is simulated and interaction network generated for each step of the scenario. The weights of 

the edges in the resultant ideology are measured in terms of the data sent across the edges and are calculated using the 

formula:
  

     
 where    is the total number of packets successfully transmitted and    is the total number of packets 

dropped. If no packets were ever sent along an edge, then the edge gets a weight of 0. 

Social Layer 

However, merely modeling communications in the field is not sufficient for modeling cohesion. We need to take into 

account the individual characteristics that soldiers possess as these have a great impact on their decision-making and 

performance in the battlefield. Incorporating the cultural information along with the communication network helps to 

give a better understanding of the intent of the soldiers in the network. Bayesian Knowledge Bases (BKBs) are used to 

represent this information in the form of cultural fragments. For the simulation, we built two types of fragments: a) 

Persistent Fragments: represent the cultural traits of the soldiers and remain constant throughout the simulation.  In our 

simulation we used three persistent fragments representing information about experience, risk aversion, and marital 

status. An example of a persistent fragment representing a highly risk-averse soldier is given in Figure 4(a), and  b) Event 

Fragments: represent the dynamic information about an event and information obtained from Intel A and Intel B. These 

fragments change during each time step in the scenario. An example of an event fragment providing information from 

Intel A is given in Figure 4(b). 

Although each soldier in the simulation gets information from both Intel A and Intel B, each also has a higher initial trust 

in only one of the intelligence sources. In the simulation, each soldier is initially modeled by fusing all the relevant 

individual persistent fragments. In order to generate a diverse population, persistent fragments are fused with a random 

reliability value. For each time step of the scenario, new information provided by both of the intelligence units (which 

can be either correct or wrong) is added by fusing corresponding event fragments to the soldiers’ BKB. Depending on 

the turnout of each event and how accurate the intelligence units are in relaying information, the trust that the soldier has 

in the intelligence unit will change. The target random variable (rv) used for generating the ideology network in this 

simulation is “(A) attack”. For every time step, the ideology network representing how similar the soldiers are in their 

inclination to attack is generated. The corresponding CISNs are generated by combining the ideology network with the 

physical network. 

  

(a) (b) 

Figure 4. Examples of Cultural Fragments a) Persistent Fragment b) Event Fragment 

Measuring Cohesion 

The CISN framework captures the essence of the physical and social layers in the network centric system and allows for 

the application of graph theoretic methods to analyze the dynamic social behaviors occurring both inter-group and intra-

group. In this paper, we focus on group cohesion. We measure this through maximum clique enumeration in the CISN 

network and evaluate how cohesion changes as the situation evolves over time. We first build a power graph based on 

the original graph by calculating an all-pair shortest-path matrix for the original, then removing entries greater than a 

threshold k. Thus, nodes in this power graph are only connected if the distance between them in the original graph is no 
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greater than k. We then calculate the maximal cliques of the power graph, which are equivalent to the k-cliques of the 

original graph. The algorithm for shortest-path calculation is based on the Distance Vector Routing (DVR) algorithm 
28

. 

Its formula is as follows:                             where         is the shortest path distance from X to Y 

via X’s direct neighbor Z,        is the distance between X and Z, and      is taken over all of Z’s direct neighbors. 

The algorithm for maximal clique enumeration is based on Zhang’s algorithm
29

, which calculates cliques in increasing 

order of clique size, starting with each connected pair of nodes (2-cliques). If the algorithm is able to find a neighbor 

common to all the nodes in the current clique of size n, it is added to form a clique of size n+1. The process is repeated 

for the addition of each common neighbor until there are no more possible nodes to add, and the maximal clique is 

generated. After completing stage n, all maximal cliques up to size n have been calculated and can be used for further 

analysis.  

We will leverage previous work
30,31

 in social science that used the proportion of mutual pairs to the total number of 

possible pairs in a group as an indicator of group cohesion. A larger proportion suggests a higher level of social 

identification within the group. Similar statements can be found in Reffay et al
32

 that if every member of a group belongs 

to at least one clique, and every clique has a large number of members, then the group is considered very cohesive. We 

designed a metric to dynamically measure the group cohesiveness based on the maximum cliques generated from the 

CISN. Given a set of maximum cliques               , the overall group cohesion is calculated as below:  

Algorithm 1 

Set cohesion = 0; 

for node   , i = 1: n 

                           
     

end 

         
        

  
 

return cohesion  

 

The cohesion ranges from [0,1], where 0 indicates that every node is isolated from all others, and 1 is achieved when all 

nodes are connected to each other.  The underlying idea is that the more overlap we find between cliques, the higher 

cohesion we should expect.   

Experimental Setup 

The primary goal in this section is to validate the ability of our framework to combine the characteristics of the physical 

and social layers and provide analysis of the dynamic social processes in network centric systems. The social dynamics 

between the warfighters in the systems are affected by unfolding events, situational awareness provided by intelligence 

units and individual behavioral characteristics. Our framework allows for realistically representing these different factors 

and analyzing the emergent group dynamics. The experimental validation consists of two sub-scenarios 1.1 and 1.2, 

which were simulated on two types of physical layers, termed physical-A and physical-B. In physical-A, the nodes 

communicate with their immediate neighbors in the command hierarchy. This represents the traditional way of looking 

at interactions that are guided strictly by the command structure in the military units. On the other hand, physical-B has 

nodes that can communicate with each other irrespective of their position in the hierarchy. This represents the modern 

NCO paradigm where nodes use communication and information technology to collaborate leading to quicker and more 

effective operations. For each network size, we generated the CISNs with physical-A and physical-B for each event in 

sub-scenarios 1.1 and 1.2. Since the interactions in the physical network are probabilistic in nature, we ran each 

simulation three times and took the average of the generated cohesion values. 

We will utilize the scenario to validate some key facts about group cohesion. It is known that as the group size increases 

the general liking of the members towards the group decreases
33

. Therefore group cohesion generally decreases with 

group size. In the first experiment, we will test this hypothesis by analyzing the change in cohesion in a CISN with sizes 

ranging from 127 to 727 nodes. For brevity, we will provide results of the CISN generated with physical-A. Next we 

look at the role of information and its effect on cohesion. As stated earlier in the context of task cohesion
20

, cohesion 

should increase when group members support a particular course of action or are in agreement on a particular strategy.  

However, an individual’s decisions are based on, among other things, the information that is presented to him. In order 

to test the importance of information on group cohesion, we analyze the change in cohesion for sub-scenario 1.1 and 
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sub-scenario 1.2. Recall that in sub-scenario 1.1 all nodes get the same Intel information which is always correct whereas 

in sub-scenario 1.2 the information provided by Intel A and Intel B are different, and some nodes trust Intel A more than 

Intel B and other nodes trust Intel B more than Intel A. For the final set of results, we will compare the cohesion values 

for the CISN generated with physical-A and physical-B layers. Since physical-B supports wider interaction, it is 

expected to have higher cohesion values. We provide detailed analysis and explanations of the results in the next section. 

Results and Analysis 

 

 

 
Figure 5. Changes in Cohesion in Sub-scenario 1.1 simulated with Physical-A 

 

 
Figure 6. Changes in Cohesion in Sub-scenario 1.2 simulated with Physical-A 

Figure 5 and Figure 6 shows the cohesion values for sub-scenarios 1.1 and 1.2 respectively, when simulated with 

physical-A. From the results, it is clear that the average cohesion of the group in both sub-scenarios decreases when the 

size of the group grows. This is due to the fact that larger group can result in feelings of isolation, which makes the 

group more likely to be divided into isolated parts. This is also consistent with existing literature on cohesion
3
. 

Additionally, when the size is greater than 327, the cohesion does not decline much. This finding indicates that intra-

group cohesion becomes less sensitive to the size of group when the size is larger than a threshold. When we compare 

the cohesion patterns in Figure 5 and Figure 6, we see that there is a subtle but clear increase in cohesion in sub-scenario 

1.2 while the cohesion in sub-scenario 1.1 fluctuates around an average value. In sub-scenario 1.2, each node has a 

higher trust in either Intel A or Intel B. Depending on the outcome of each time step and how accurate the information 

was, each node upgrades or degrades its trust in the intelligence sources. Since Intel A is always correct and Intel B is 
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always wrong, all the nodes gradually trust Intel A more than Intel B. Since information has an impact on the node’s 

motivation to fight, which is the primary decision variable in our scenario, the group cohesion will increase as all nodes 

come to trust the same source of information. 

Next, we compare the cohesion values for network centric systems simulated using different physical layers: physical-A 

and physical-B as shown in Figure 7 and Figure 8, respectively. Since physical-B improves information sharing and 

encourages communication between nodes in the network centric environment, it is natural to believe that the cohesion 

would be enhanced. We compare the cohesion between physical-A and physical-B under both scenarios and see that the 

cohesion is always higher in physical-B. This supports our hypothesis. Next, we make a closer analysis by looking at the 

change in cohesion as the scenario progresses. Again, referring to Figure 7 and Figure 8, physical-B shows a more 

fluctuant cohesion trend than physical-A. One possible explanation is that physical-B enhances the connection bond 

between soldiers in the group such that any disagreement or conflicting opinion caused by the influence of new events is 

spread more quickly and more broadly which may increase the probability of undermining group cooperation. In fact, it 

is difficult not to be aware of ideological differences in an efficient information sharing system. 

CONCLUSION 

Technological progress in sensor, communications and information technologies has provided warfighters the ability to 

collaborate and share information in real time. This allows for individuals from various units to work in tandem to 

achieve self-synchronization and respond quickly to emerging threats. Social relationships between warfighters have 

always been critical for successful completion of mission goals. Traditionally, relationships developed between soldiers 

within the immediate squad and with individuals in the parent organization. In network centric environments, there are 

more opportunities for soldiers to collaborate with individuals who are at best acquaintances. The relationships are 

initiated and fostered remotely through telecommunication channels and are often formed in the heat of the battle. In 

such circumstances it has become important to model and analyze the evolution of social processes involved in team 

formation, trust formation, etc. In this paper, we introduced a novel framework for modeling social processes in network 

centric environments that incorporates relevant factors and dynamism in both physical and social layers. Our framework 

maps the complexity of both these layers into Culturally Infused Social Networks (CISNs) which allows for the adoption 

of SNA tools for analyses. We validate our framework by modeling the evolution of group cohesion of military units of 

various sizes and show how cohesion is influenced by group size, individual socio-cultural characteristics, situational 

information, and communication characteristics.   

Social networks for real world network centric environments typically range from the tens of thousands to hundreds of 

thousands. In order to analyze such large networks, we will look into parallel and distributed methods such as anytime-

anywhere social network analysis framework
6,7

 to provide time-bounded analysis of the social processes. We will design 

algorithms that will deal with dynamism in a computationally efficient manner. Further work in cohesion will involve 

using future conditions in the physical and social layers to predict future values of the cohesion metric. 

 
Figure 7. Comparisons of Cohesion in Sub-scenario 1.1 with Different Physical layers (727 Nodes) 

0 

0.005 

0.01 

0.015 

1 2 3 4 5 6 

C
o

h
e

si
o

n
 

Time Steps 

Sub-scenario 1.1 with 727 Nodes 

Physical-A 

Physical-B 

Proc. of SPIE Vol. 8405  84050A-12

Downloaded From: http://spiedigitallibrary.org/ on 11/18/2013 Terms of Use: http://spiedl.org/terms



 

 
 

 

 

Figure 8. Comparisons of Cohesion in Sub-scenario 1.2 with Different Physical layers (727 Nodes) 
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