


• The fork() system call creates a "clone" of 
the calling process. 

• Identical in every respect except 
– the parent process is returned a non-zero value (namely, the 

process id of the child)

– the child process is returned zero. 

• The process id returned to the parent can 
be used by parent in a wait or kill system 
call. 

2



1. #include <unistd.h>

2. main(){

3.   pid_t pid;

4.   printf(“Just one process so far\n”);

5.   pid = fork();

6.   if (pid == 0) /* code for child */

7.      printf(“I’m the child\n”);

8.   else if (pid > 0) /* code for parent */

9.      printf(“The parent, child pid =%d\n”,

10.              pid);

11.   else /* error handling */

12.      printf(“Fork returned error code\n”);

13. }

3



fork()  is typically used in conjunction with exec (or variants) 

pid_t pid;

if ( ( pid = fork() ) == 0 ) {

/* child code: replace executable image */

execv( "/usr/games/tetris", "-easy" )

} else {

/* parent code: wait for child to terminate */

wait( &status )

}

4



A family of routines, execl, execv, ..., all eventually make a 
call to execve.

execve( program_name, arg1, arg2, ..., environment )

 text and data segments of current process replaced with 
those of program_name

 stack reinitialized with parameters

 open file table of current process remains intact

 the last argument can pass environment settings

 as in example, program_name is actually path name of 
executable file containing program

Note: unlike subroutine call, there is no return after this call.  
That is, the program calling exec is gone forever!

5



• exit( status ) - executed by a child process 
when it wants to terminate. Makes status (an 
integer) available to parent.

• wait( &status ) - suspends execution of 
process until some child process terminates
– status indicates reason for termination

– return value is process-id of terminated child

• waitpid (pid, &status, options)
– pid can specify a specific child

– Options can be to wait or to check and proceed

6



• Besides being able to terminate itself with exit, a process can be killed 
by another process using kill:

– kill( pid, sig ) - sends signal sig to process with process-id pid. One 
signal is SIGKILL (terminate the target process immediately).

• When a process terminates, all the resources it 
owns are reclaimed by the system:

– “process control block” reclaimed

– its memory is deallocated

– all open files closed and Open File Table reclaimed. 

• Note: a process can kill another process only if:

– it belongs to the same user

– super user 7



 when you type a command, the shell forks a clone of itself

 the child process makes an exec call, which causes it to stop 
executing the shell and start executing your command

 the parent process, still running the shell, waits for the child to 
terminate

8

fork wait

exitexec Required job

Parent shell

Child



• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

9



• Multitasking OS can do more than one thing 
concurrently by running more than a single process

• A process can do several things concurrently by 
running more than a single thread

• Each thread is a different stream of control that can 
execute its instructions independently.

• Ex: A program (e.g. Browser) may consist of the 
following threads:

 GUI thread

 I/O thread

 Computation thread

10



11

Remote

User
rlogin

Local

Applications

ri

ro li

lo



• There are basically 4 activities to be scheduled

– read(li), read(ri), write(lo), write(ro)

• read and write are blocking calls

• So before issuing any of these calls, the program 
needs to check readyness of devices, and interleave 
these four operations

– System calls such as FD_SET and select

• Bottomline: single-threaded code can be quite tricky 
and complex

12



incoming(int ri, lo){

int d=0;

char b[MAX];

int s;

while (!d) {

s=read(ri,b,MAX);

if (s<=0) d=1;

if (write(lo,b,s)<=0)

d=1;

}

}

13

outgoing(int li, ro){

int d=0;

char b[MAX];

int s;

while (!d) {

s=read(li,b,MAX);

if (s<=0) d=1;

if (write(ro,b,s)<=0)

d=1;

}

}



14

n/4n/4 n/4n/4

n/4n/4 n/4n/4

n/2n/2

n/2n/2

Sort on

4 parallel threads

Merge on

2 parallel threads

Sort on

2 parallel threads

Merge

Is there a speed-up ?



1. Superior programming model of parallel 

sequential activities with a shared store

2. Easier to create and destroy threads than 

processes.

3. Better CPU utilization (e.g. dispatcher 

thread continues to process requests 

while worker threads wait for I/O to finish)

4. Guidelines for allocation in multi-

processor systems
15



• A UNIX Process is 

– a running program with

– a bundle of resources (file descriptor table, address 

space)

• A thread has its own

– stack

– program counter (PC)

– All the other resources are shared by all threads of 

that process. These include:

 open files

 virtual address space

 child processes
16



• POSIX standard API for multi-threaded 

programming

• A thread can be created by pthread_create call

• pthread_create (&thread, 0, start, args)

17

ID of new thread is returned in this variable

used to define thread attributes (eg. Stack size)

0 means use default attributes

Name/address of the routine 

where new thread should begin executing

Arguments passed to start



typedef struct { int i, o } pair;

rlogind ( int ri, ro, li, lo) {

pthread_t in_th, out_th;

pair in={ri,lo}, out={li,ro};

pthread_create(&in_th,0, incoming, &in);

pthread_create(&out_th,0, outgoing, &out);

}

Note: 2 arguments are packed in a structure

18

Problem: If main thread terminates, memory for in and out structures 

may disappear, and spawned threads may access incorrect memory locations

If the process containing the main thread terminates, then all

threads are automatically terminated, leaving their jobs unfinished.



typedef struct { int i, o } pair;

rlogind ( int ri, ro, li, lo) {

pthread_t in_th, out_th;

pair in={ri,lo}, out={li,ro};

pthread_create(&in_th,0, incoming, &in);

pthread_create(&out_th,0, outgoing, &out);

pthread_join(in_th,0);

pthread_join(out_th,0);

}

19



• A thread can terminate 

1. by executing pthread_exit, or 

2. By returning from the initial routine (the one 

specified at the time of creation)

• Termination of a thread unblocks any 

other thread that’s waiting using 

pthread_join

• Termination of a process terminates all its 

threads
20



#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

pthread_t threads[NUM_THREADS];

int main(void) {

for(int ii = 0; ii < NUM_THREADS; ii+=1) {

(void) pthread_create(&threads[ii], NULL, threadFunc, (void *) ii);

}

for(int ii = 0; ii < NUM_THREADS; ii+=1) {

pthread_join(threads[ii],NULL); // blocks until thread ii has exited

}

return 0;

}

void *threadFunc(void *id) {

printf(“Hi from thread %d!\n”,(int) id);

pthread_exit(NULL);

}

To compile against the PThread library, use gcc’s -lpthread flag!
21



• PThreads aren’t the only game in town

• OpenMP can automatically parallelize 

loops and do other cool, less-manual stuff!

#define N 100000

int main(int argc, char *argv[]){  

int i, a[N];  

#pragma omp parallel for

for (i=0;i<N;i++)      

a[i]= 2*i;  

return 0;

}

22



• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

23



• If task can be completely decoupled into 

independent sub-tasks, cooperation required is 

minimal

– Starting and stopping communication

• Trouble when they need to share data!

• Race conditions:

• We need to force some serialization

– Synchronization constructs do that!

Thread B

Thread A

time -->

readX incX writeX

readX incX writeX

time -->

readX incX writeX

readX incX writeXThread B

Thread A

Scenario 2Scenario 1

24



• A lock (mutual exclusion, mutex) guards a 

critical section in code so that only one thread at 

a time runs its corresponding section

– acquire a lock before entering crit. section

– releases the lock when exiting crit. section

– Threads share locks, one per section to synchronize

• If a thread tries to acquire an in-use lock, that 

thread is put to sleep

– When the lock is released, the thread wakes up with 

the lock! (blocking call)

25



pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int x;
threadA() {

int temp = foo(x);

pthread_mutex_lock(&lock);

x = bar(x) + temp;

pthread_mutex_unlock(&lock);

// continue…

}

threadB() {

int temp = foo(9000);

pthread_mutex_lock(&lock);

baz(x) + bar(x);

x *= temp;

pthread_mutex_unlock(&lock);

// continue…

}
Thread B

Thread A readX

… acquireLock readX

acquireLock => SLEEP…

readX writeX releaseLock …

WAKE w/ LOCK… releaseLock

•But locks don’t solve everything…

• Problem: potential deadlock!

time -->

threadA() {

pthread_mutex_lock(&lock1);

pthread_mutex_lock(&lock2);

}

threadB() {

pthread_mutex_lock(&lock2);

pthread_mutex_lock(&lock1);

} 26



• A condition variable (CV) is an object that threads can 

sleep on and be woken from

– Wait or sleep on a CV

– Signal a thread sleeping on a CV to wake

– Broadcast all threads sleeping on a CV to wake

– I like to think of them as thread pillows…

• Always associated with a lock!

– Acquire a lock before touching a CV

– Sleeping on a CV releases the lock in the thread’s sleep

– If a thread wakes from a CV it will have the lock

• Multiple CVs often share the same lock

27



• Motivation and definitions

• Processes

• Threads

• Synchronization constructs

• Speedup issues

– Overhead

– Caches

– Amdahl’s Law

28



• More threads does not always mean 
better!
– I only have two cores…
– Threads can spend too much time 

synchronizing (e.g. waiting on locks and 
condition variables)

• Synchronization is a form of overhead
– Also communication and creation/deletion 

overhead

29



• Caches are often one of the largest 

considerations in performance

• For multicore, common to have independent L1 

caches and shared L2 caches

• Can drive domain

decomposition design

30



• Applications can almost never be completely parallelized; some serial code remains

• s is serial fraction of program, P is # of processors

• Amdahl’s law:

Speedup(P) = Time(1) / Time(P)

≤ 1 / ( s + ((1-s) / P) ), and as P  ∞

≤ 1/s

• Even if the parallel portion of your application speeds up perfectly, your performance may 
be limited by the sequential portion

Parallel portion

Time

Serial portion

Number of Processors
1 2 3 4 5

31



• Super-linear speedup is possible

• Multicore is hard for architecture people, 

but pretty easy for software

• Multicore made it possible for Google to 

search the web

32



• Super-linear speedup is possible

True: more cores means simply more cache accessible 

(e.g. L1), so some problems may see super-linear 

speedup

• Multicore is hard for architecture people, but pretty easy 

for software

False: parallel processors put the burden of concurrency 

largely on the SW side 

• Multicore made it possible for Google to search the web

False: web search and other Google problems have 

huge amounts of data. The performance bottleneck 

becomes RAM amounts and speeds! (CPU-RAM gap) 

33



• Threads can be awake and ready/running on a 
core or asleep for sync. (or blocking I/O)

• Use PThreads to thread C code and use your 
multicore processors to their full extent!
– pthread_create(), pthread_join(), pthread_exit()

– pthread_mutex_t, pthread_mutex_lock(), 
pthread_mutex_unlock()

– pthread_cond_t, pthread_cond_wait(), pthread_cond_signal(), 
pthread_cond_broadcast()

• Domain decomposition is a common technique 
for multithreading programs

• Watch out for
– Synchronization overhead
– Cache issues (for sharing data, decomposing)
– Amdahl’s Law and algorithm parallelizability

34



35


