

• This chapter shows how to enable C++’s operators to work
with objects—a process called operator overloading.

• One example of an overloaded operator built into C++ is
<<, which is used both as the stream insertion opera-tor and
as the bitwise left-shift operator..

• C++ overloads the addition operator (+) and the subtraction
operator (-).

• These operators perform differently, depending on their
context in integer, floating-point and pointer arithmetic.

• C++ enables you to overload most operators—the compiler
generates the appropriate code based on the context.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• The fundamental types can be used with C++’s

rich collection of operators.

• You can use operators with user-defined types

as well.

• Although C++ does not allow new operators to

be created, it does allow most existing

operators to be overloaded so that, when

they’re used with objects, they have meaning

appro-priate to those objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

• An operator is overloaded by writing a non-
static member function definition or global
function definition as you normally would, except
that the function name now becomes the keyword
operator followed by the symbol for the
operator being overloaded.
– For example, the function name operator+ would

be used to overload the addition operator (+).

• When operators are overloaded as member
functions, they must be non-static, because
they must be called on an object of the class and
operate on that object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• To use an operator on class objects, that operator must be
overloaded—with three ex-ceptions.

• The assignment operator (=) may be used with every class to
perform memberwise assignment of the class’s data members.

– Dangerous for classes with pointer members; we’ll explicitly overload
the assignment operator for such classes.

• The address (&) and comma (,) operators may also be used with
objects of any class without overloading.

– The address operator re-turns a pointer to the object.

– The comma operator evaluates the expression to its left then the
expression to its right, and returns the value of the latter expression.

• Operator overloading is not automatic—you must write op-era-
tor-overloading functions to perform the desired operations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• Most of C++’s operators can be overloaded

(Fig. 11.1).

• Figure 11.2 shows the operators that cannot be

overloaded.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• The precedence of an operator cannot be changed by
overloading.

• The associativity of an operator (i.e., whether the operator is
applied right-to-left or left-to-right) cannot be changed by
overloading.

• It isn’t possible to change the ―arity‖ of an operator (i.e., the
number of operands an operator takes): Overloaded unary
operators remain unary operators; overloaded binary
operators remain binary operators.

• C++’s only ternary operator (?:) cannot be overloaded.

• Operators &, *, + and - all have both unary and binary
versions; these unary and binary versions can each be over-
loaded.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• It isn’t possible to create new operators; only

existing operators can be overloaded.

• You could overload an existing operator to

perform exponentiation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• The meaning of how an operator works on

fundamental types cannot be changed by

operator overloading.

– You cannot, for example, change the mean-ing of

how + adds two integers.

• Operator overloading works only with objects

of user-defined types or with a mixture of an

object of a user-defined type and an object of a

fundamental type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

• Overloading an assignment operator and an

addition operator to allow statements like
•object2 = object2 + object1;

• does not imply that the += operator is also

overloaded to allow statements such as
•object2 += object1;

• Such behavior can be achieved only by

explicitly overloading operator += for that

class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• Operator functions can be member functions or

global functions.

– Global functions are often made friends for performance

reasons.

• Member functions use the this pointer implicitly to

obtain one of their class object arguments (the left

operand for binary operators).

• Arguments for both operands of a binary operator

must be explicitly listed in a global function call.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

• When overloading (), [], -> or any of the

assignment operators, the operator overloading

function must be de-clared as a class member.

• For the other operators, the operator

overloading functions can be class members or

standalone functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Whether an operator function is implemented as a member function or
as a global function, the operator is still used the same way in
expressions.

• When an operator function is implemented as a member function, the
leftmost (or only) operand must be an object (or a reference to an
object) of the operator’s class.

• If the left operand must be an object of a different class or a
fundamental type, this op-er-ator function must be im-plemented as a
global function (as we’ll do with << and >>).

• A global operator function can be made a friend of a class if that
function must access private or protected members of that class
directly.

• Operator member functions of a specific class are called only when the
left operand of a binary operator is specifically an object of that class,
or when the single operand of a unary operator is an object of that class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• The overloaded stream insertion operator (<<) is used in an
expression in which the left operand has type ostream &, as in
cout << classObject.

• To use the operator in this manner where the right operand is an
object of a user-defined class, it must be overloaded as a global
function.

• Similarly, the overloaded stream extraction operator (>>) is used
in an expression in which the left operand has type istream &,
as in cin >> classObject, and the right operand is an object
of a user-defined class, so it, too, must be a global function.

• Each of these overloaded operator functions may require access
to the private data members of the class object being output or
input, so these overloaded operator functions can be made
friend functions of the class for performance reasons.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• You might choose a global function to

overload an operator to enable the operator to

be commutative, so an object of the class can

appear on the right side of a binary operator.

• The operator+ function, which deals with

an object of the class on the left, can still be a

member function.

• The global function simply swaps its

arguments and calls the member function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• You can input and output fundamental-type data using the
stream extraction operator >> and the stream insertion
operator <<.

• The C++ class libraries overload these operators to process
each fundamental type, including pointers and C-style
char * strings.

• You can also overload these operators to perform input and
output for your own types.

• The program of Figs. 11.3–11.5 overloads these operators to
input and output PhoneNumber objects in the format
―(000) 000-0000.‖ The program assumes telephone
numbers are input correctly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• The stream extraction operator function operator>>
(Fig. 11.4, lines 21–30) takes istream refer-ence input and
PhoneNumber reference number as argu-ments and returns an
istream reference.

• Operator function operator>> inputs phone numbers of the
form

• (800) 555-1212

• When the compiler sees the expression
• cin >> phone

• it generates the global function call
• operator>>(cin, phone);

• When this call executes, reference parameter input becomes an
alias for cin and reference parameter number becomes an alias
for phone.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

• The operator function reads as strings the

three parts of the telephone number.

• Stream manipulator setw limits the number

of characters read into each string.

• The parentheses, space and dash characters are

skipped by calling istream member function

ignore, which discards the specified number

of characters in the input stream (one character

by default).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

• Function operator>> returns istream
reference input (i.e., cin).

• This enables input operations on

PhoneNumber objects to be cascaded with

input operations on other PhoneNumber
objects or on objects of other data types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

• The stream insertion operator function takes an ostream
reference (output) and a const PhoneNumber refer-
ence (number) as arguments and returns an os-tream
reference.

• Function operator<< displays objects of type
PhoneNumber.

• When the compiler sees the expression
• cout << phone

it generates the global function call
• operator<<(cout, phone);

• Function operator<< displays the parts of the telephone
number as strings, because they’re stored as string
objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

• The functions operator>> and

operator<< are declared in

PhoneNumber as global, friend functions

– global functions because the object of class

PhoneNumber is the operator’s right operand.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

• The prefix and postfix versions of the increment and

decrement operators can all be overloaded.

• To overload the increment operator to allow both

prefix and postfix increment usage, each overloaded

operator function must have a distinct signature, so

that the compiler will be able to determine which

version of ++ is intended.

• The prefix versions are overloaded exactly as any

other prefix unary operator would be.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

• Suppose, for example, that we want to add 1 to the day in Date
object d1.

• When the compiler sees the preincrementing expression ++d1,
the compiler generates the member-function call

• d1.operator++()

• The prototype for this operator function would be
• Date &operator++();

• If the prefix increment operator is implemented as a global
function, then, when the compiler sees the expression ++d1, the
compiler generates the function call

• operator++(d1)

• The prototype for this operator function would be declared in the
Date class as

• Date &operator++(Date &);

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

• Overloading the postfix increment operator presents a challenge,
because the compiler must be able to distinguish between the
signatures of the overloaded prefix and postfix increment
operator functions.

• The convention that has been adopted in C++ is that, when the
compiler sees the postincrementing expression d1++, it
generates the member-function call

• d1.operator++(0)

• The prototype for this function is
• Date operator++(int)

• The argument 0 is strictly a ―dummy value‖ that enables the
compiler to distinguish between the prefix and postfix increment
operator functions.

• The same syntax is used to differentiate between the prefix and
postfix decrement operator functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

• If the postfix increment is implemented as a global function,
then, when the compiler sees the expression d1++, the compiler
generates the function call

• operator++(d1, 0)

• The prototype for this function would be
• Date operator++(Date &, int);

• Once again, the 0 argument is used by the compiler to distinguish
between the prefix and postfix increment operators implemented
as global functions.

• The postfix increment operator returns Date objects by value,
whereas the prefix increment operator returns Date objects by
reference, because the postfix increment operator typically
returns a temporary object that contains the original value of the
object before the increment occurred.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

• The program of Figs. 11.9–11.11 demonstrates

a Date class, which uses overloaded prefix

and postfix increment operators to add 1 to the

day in a Date object, while causing

appropriate increments to the month and year

if necessary.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

• Function templates and class templates enable you to specify,
with a single code segment, an entire range of related
(overloaded) functions—called function-template
specializations—or an entire range of related classes—called
class-template specializations.

• This technique is called generic programming.

• Note the distinction between templates and template
specializations:
– Function templates and class templates are like stencils out of which we

trace shapes.

– Function-template specializations and class-template specializations are
like the separate trac-ings that all have the same shape, but could, for
example, be drawn in different colors.

• In this chapter, we present a function template and a class tem-
plate.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

• Overloaded functions normally perform similar or identical

operations on different types of data.

• If the operations are identical for each type, they can be

expressed more com-pactly and conveniently using function

templates.

• Initially, you write a single function-template definition.

• Based on the argument types provided explicitly or inferred

from calls to this function, the compiler generates separate

source-code functions (i.e., function-template

specializations) to handle each function call appropriately.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58

• All function-template definitions begin with keyword template
followed by a list of template parameters to the function template
enclosed in angle brackets (< and >); each template parameter that
represents a type must be preceded by either of the interchangeable
keywords class or typename, as in

• template<typename T>

– Or
• template<class ElementType>

– Or
• template<typename BorderType, typename FillType>

• The type template parameters of a function-template definition are used
to specify the types of the arguments to the function, to specify the
return type of the function and to declare variables within the function.

• Keywords typename and class used to specify function-template
parameters actually mean ―any fundamental type or user-defined type.‖

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60

• Let’s examine function template

printArray in Fig. 14.1, lines 7–14.

• Function template printArray declares

(line 7) a single template parameter T (T can

be any valid identifier) for the type of the array

to be printed by function print-Array; T is

referred to as a type template parameter, or

type parameter.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64

• When the compiler detects a printArray function invocation in the
client program (e.g., lines 29, 34 and 39), the compiler uses its overload
resolution capabilities to find a definition of function printArray
that best matches the function call.

• In this case, the only printArray function with the appropriate
number of parameters is the printArray function template (lines 7–
14).

• Consider the function call at line 29.

• The compiler compares the type of printArray’s first argument
(int * at line 29) to the printArray function template’s first
parameter (const T * const at line 8) and deduces that replacing the
type parameter T with int would make the argument consistent with
the parameter.

• Then, the compiler substitutes int for T throughout the template
definition and compiles a printArray specialization that can display
an array of int values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65

• The function-template specialization for type int is
• void printArray(const int * const array, int count)
{

for (int i = 0; i < count; i++)
cout << array[i] << " ";

cout << endl;
} // end function printArray

• As with function parameters, the names of template parameters must be
unique inside a template definition.

• Template parameter names need not be unique across different function
templates.

• Figure 14.1 demonstrates function template printArray.

• It’s important to note that if T (line 7) represents a user-defined type
(which it does not in Fig. 14.1), there must be an overloaded stream
insertion operator for that type; otherwise, the first stream insertion
operator in line 11 will not compile.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 67

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

• Function templates and overloading are intimately
related.

• The function-template specializations gener-ated
from a function template all have the same name, so
the compiler uses overloading resolution to invoke
the proper function.

• A function template may be overloaded in several
ways.

– We can provide other function templates that specify the
same function name but different function parameters.

– We can provide nontemplate func-tions with the same
function name but different function arguments.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 70

• It’s possible to understand the concept of a ―stack‖ (a data

structure into which we insert items at the top and retrieve

those items in last-in, first-out order) independent of the

type of the items be-ing placed in the stack.

• However, to instantiate a stack, a data type must be

specified.

• Wonderful opportunity for software reusability.

• We need the means for describing the notion of a stack

generically and instanti-ating classes that are type-specific

versions of this generic stack class.

• C++ provides this capability through class templates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 71

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 72

• Class templates are called parameterized types,

because they require one or more type

parameters to specify how to customize a

―generic class‖ template to form a class-

template specialization.

– Each time an additional class-template

specialization is needed, you use a concise, simple

notation, and the compiler writes the source code

for the specialization you require.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 73

• Note the Stack class-template definition in Fig. 14.2.

• It looks like a conventional class definition, except that it’s
preceded by the header (line 6)

• template< typename T >

• to specify a class-template definition with type parameter T
which acts as a placeholder for the type of the Stack class to be
created.

• The type of element to be stored on this Stack is men-tioned
generically as T throughout the Stack class header and
member-function definitions.

• Due to the way this class template is designed, there are two
constraints for nonfundamental data types used with this Stack
– they must have a default constructor

– their assignment operators must properly copy objects into the Stack

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 74

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 75

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 76

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 77

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 78

• The member-function definitions of a class template are function
templates.

• The member-function definitions that appear outside the class
template definition each begin with the header

• template< typename T >

• Thus, each definition resembles a conventional function
definition, except that the Stack element type always is listed
generically as type parameter T.

• The binary scope resolution operator is used with the class-
template name to tie each member-function definition to the class
template’s scope.

• When doubleStack is instantiated as type
Stack<double>, the Stack constructor function-template
specialization uses new to create an array of elements of type
double to represent the stack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 79

• Now, let’s consider the driver (Fig. 14.3) that exercises the
Stack class template.

• The driver begins by instantiating object doubleStack of
size 5.

• This object is declared to be of class Stack< double >
(pronounced ―Stack of double‖).

• The compiler associates type double with type parameter
T in the class template to produce the source code for a
Stack class of type double.

• Although templates offer software-reusability benefits,
remember that mul-tiple class-template specializations are
instantiated in a program (at compile time), even though the
template is written only once.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 80

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 81

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 82

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 83

• Line 30 instantiates integer stack intStack
with the declaration

•Stack< int > intStack;

• Because no size is specified, the size defaults

to 10 as specified in the default constructor

(Fig. 14.2, line 10).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 84

• Notice that the code in function main of Fig. 14.3 is almost identical
for both the double-Stack manipulations in lines 9–28 and the
intStack manipulations in lines 30–47.

• This presents another opportunity to use a function template.

• Figure 14.4 defines function template testStack (lines 10–34) to
perform the same tasks as main in Fig. 14.3—push a series of values
onto a Stack< T > and pop the values off a Stack< T >.

• Function template testStack uses template parameter T (specified
at line 10) to represent the data type stored in the Stack< T >.

• The function template takes four arguments (lines 12–15)—a reference
to an object of type Stack< T >, a value of type T that will be the first
value pushed onto the Stack< T >, a value of type T used to
increment the values pushed onto the Stack< T > and a string
that represents the name of the Stack< T > object for output purposes.

• The output of Fig. 14.4 precisely matches the output of Fig. 14.3.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 85

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 86

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 87

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 88

89©1992-2010 by Pearson Education, Inc. All Rights Reserved.

