Lecture 35:
Operator Overloading

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming |
May 26%, 2010



11.1 Introduction

This chapter shows how to enable C++’s operators to work
with objects—a process called operator overloading.

One example of an overloaded operator built into C++ IS
<<, which is used both as the stream insertion opera-tor and
as the bitwise left-shift operator..

C++ overloads the addition operator (+) and the subtraction
operator (-).

These operators perform differently, depending on their
context in integer, floating-point and pointer arithmetic.

C++ enables you to overload most operators—the compiler
generates the appropriate code based on the context.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



11.2 Fundamentals of Operator
Overloading

* The fundamental types can be used with C++’s
rich collection of operators.

 You can use operators with user-defined types
as well.

 Although C++ does not allow new operators to
be created, it does allow most existing
operators to be overloaded so that, when
they’re used with objects, they have meaning
appro-priate to those objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



Software Engineering Observation 11.1
Operator overloading contributes to C++5
extensibility—one of the language’s most appealing
attributes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



E Good Programming Practice 11.1
Use operator overloading when it makes a program
clearer than accomplishing the same operations with

function calls.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



Good Programming Practice 11.2

Overloaded operators should mimic the functionality of
their built-in counterparts—for example, the + operator
should be overloaded to perform addition, not subtrac-
tion. Avoid excessive or inconsistent use of operator over-

loading, as this can make a program cryptic and difficult
to read.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



11.2 Fundamentals of Operator
Overloading (cont.)

« An operator is overloaded by writing a non-
stat1c member function definition or Plobal
function definition as you normally would, except
that the function name now becomes the keyword
operator followed by the symbol for the
operator being overloaded.

— For example, the function name operator+ would
be used to overload the addition operator (+).

* When operators are overloaded as member
functions, they must be non-static, because
they must be called on an object of the class and
operate on that object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



11.2 Fundamentals of Operator
Overloading (cont.)

To use an operator on class objects, that operator must be
overloaded—with three ex-ceptions.

The assignment operator (=) may be used with every class to
perform memberwise assignment of the class’s data members.

— Dangerous for classes with pointer members; we’ll explicitly overload
the assignment operator for such classes.

The address (&) and comma (, ) operators may also be used with
objects of any class without overloading.
— The address operator re-turns a pointer to the object.

— The comma operator evaluates the expression to its left then the
expression to its right, and returns the value of the latter expression.

Operator overloading is not automatic—you must write op-era-
tor-overloading functions to perform the desired operations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



* Most of C++’s operators can be overloaded
(Fig. 11.1).

* Figure 11.2 shows the operators that cannot be
overloaded.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



newl]

%= A= &= |= << >> >>=

== = <= >= && || ++

—>* , -> [] @) new delete
delete[]

Fig. 11.1 | Operators that can be overloaded.

Operators that cannot be overloaded
. & M- ?:

Fig. 11.2 | Operators that cannot be overloaded.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10



11.8 Restrictions on Operator
Overloading (cont.)

The precedence of an operator cannot be changed by
overloading.

The associativity of an operator (i.e., whether the operator is
applied right-to-left or left-to-right) cannot be changed by
overloading.

It 1sn’t possible to change the “arity” of an operator (i.¢., the
number of operands an operator takes): Overloaded unary
operators remain unary operators; overloaded binary
operators remain binary operators.

C++’s only ternary operator (? :) cannot be overloaded.

Operators &, *, + and - all have both unary and binary

versions; these unary and binary versions can each be over-
loaded.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



Common Programming Error 1 1.1
Attempting to change the “arity” of an operator via op-
erator overloading is a compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



It 1sn’t possible to create new operators; only
exlisting operators can be overloaded.

 You could overload an existing operator to
perform exponentiation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13



Common Programming Error 11.2
Attempting to create new operators via operator over-
loading is a syntax error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



11.8 Restrictions on Operator
Overloading (cont.)

» The meaning of how an operator works on
fundamental types cannot be changed by
operator overloading.

— You cannot, for example, change the mean-ing of
how + adds two Integers.
 Operator overloading works only with objects
of user-defined types or with a mixture of an
object of a user-defined type and an object of a
fundamental type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



Software Engineering Observation 11.2

At least one argument of an operator function must be an
object or reference of a user-defined type. This prevents
you from changing how operators work on fundamental

ty €s.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



Common Programming Error 11.3
Attempting to modify how an operator works with 0b-
jects of fundamental types is a compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



11.8 Restrictions on Operator
Overloading (cont.)

« Overloading an assignment operator and an
addition operator to allow statements like
eObject2 = object2 + objectl;
* does not imply that the += operator is also
overloaded to allow statements such as
e Object2 += objectl;
 Such behavior can be achieved only by
explicitly overloading operator += for that
class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18



Common Programming Error 11.4

Assuming that overloading an operator such as + over-
loads related operators such as +- or that overloading —
overloads a related operator like 1= can lead to errors. Op-
erators can be overloaded only explicitly; there is no im-
plicit overloading.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



11.4 Operator Functions as Class
Members vs. Global Functions

» QOperator functions can be member functions or

global functions.
— Global functions are often made fr1iends for performance
reasons.
« Member functions use the th1is pointer implicitly to
obtain one of their class object arguments (the left

operand for binary operators).

« Arguments for both operands of a binary operator
must be explicitly listed in a global function call.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



11.4 Operator Functions as Class
Meimbers vs. Global Functions (cont.)

« When overloading (), [], -> or any of the
assignment operators, the operator overloading
function must be de-clared as a class member.

 For the other operators, the operator

overloading functions can be class members or
standalone functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



11.4 Operator Functions as Class
Members vs. Global Functions (cont.)

Whether an operator function is implemented as a member function or
as a global function, the operator is still used the same way in
expressions.

« When an operator function is implemented as a member function, the
leftmost (or only) operand must be an object (or a reference to an
object) of the operator’s class.

» If the left operand must be an object of a different class or a
fundamental type, this op-er-ator function must be im-plemented as a
global function (as we’ll do with << and >>).

« A global operator function can be made a friend of a class if that
function must access private or protected members of that class
directly.

» Operator member functions of a specific class are called only when the
left operand of a binary operator is specifically an object of that class,
or when the single operand of a unary operator is an object of that class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



11.4 Operator Functions as Class
Memlbers vs. Global Functions (cont.)

« The overloaded stream insertion operator (<<) iIs used in an
expression in which the left operand has type ostream &, as in
cout << classObject.

 To use the operator in this manner where the right operand Is an
object of a user-defined class, it must be overloaded as a global
function.

- Similarly, the overloaded stream extraction operator (>>) Is used
in an expression in which the left operand has type 1stream &,
asin cin>> classObject, and the right operand is an object
of a user-defined class, so It, too, must be a global function.

« Each of these overloaded operator functions may require access
to the private data members of the class object being output or
Input, so these overloaded operator functions can be made
friend functions of the class for performance reasons.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



. Performance Tip 11.1

1t’s possible to overload an operator as a global, non-
friend function, but such a function requiring access to
a class’s private or protected data would need to use
set or get functions provided in that class’s pub11ic in-
terface. The overhead of calling these functions could
cause poor performance, so these functions can be inlined
to improve performance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



11.4 Operator Functions as Class
Memlbers vs. Global Functions (cont.)

 You might choose a global function to
overload an operator to enable the operator to
be commutative, so an object of the class can
appear on the right side of a binary operator.

 The operator+ function, which deals with
an object of the class on the left, can still be a
member function.

 The global function simply swaps its
arguments and calls the member function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



11.9 Overloading Stream lnsertion and
Siream Exiraction Operators

« You can input and output fundamental-type data using the
stream extraction operator >> and the stream insertion
operator <<.

« The C++ class libraries overload these operators to process
each fundamental type, including pointers and C-style
char * strings.

* You can also overload these operators to perform input and
output for your own types.

« The program of Figs. 11.3-11.5 overloads these operators to
input and output PhoneNumber objects in the format

“(000) 000-0000.” The program assumes telephone
numbers are input correctly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



#define PHONENUMBER H

#include <string>
using namespace std;

4
5
6 #include <iostream>
7
8
9

10 class PhoneNumber

Il {

12 friend
13 friend
14 private:
15 string
16 string
17 string
18 }; // end
19

20 #endif

ostream &operator<<( ostream &, const PhoneNumber & );
istream &operator>>( istream &, PhoneNumber & );

areaCode; // 3-digit area code
exchange; // 3-digit exchange
Tine; // 4-digit Tine

class PhoneNumber

Fig. 11.3 | PhoneNumber class with overloaded stream insertion and stream
extraction operators as friend functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

27



4 #include <iomanip>

5 #include "PhoneNumber.h"
6 using namespace std;
7
8
9

// overloaded stream insertion operator; cannot be

// a member function if we would Tike to invoke it with
10 // cout << somePhoneNumber;
Il  ostream &operator<<( ostream &output, const PhoneNumber &number )
12 {

13 output << "(" << number.areaCode << ") "

14 << number.exchange << "-" << number.line;
15 return output; // enables cout << a << b << c;
16 } // end function operator<<

17

Fig. 11.4 | Overloaded stream insertion and stream extraction operators for class
PhoneNumber. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

28



// overloaded stream extraction operator; cannot be

// a member function if we would like to invoke it with
// cin >> somePhoneNumber;
21 istream &operator>>( istream &input, PhoneNumber &number )

22 {

23 input.ignore(); // skip (

24 input >> setw( 3 ) >> number.areaCode; // input area code
25 input.ignore( 2 ); // skip ) and space

26 input >> setw( 3 ) >> number.exchange; // input exchange
27 input.ignore(); // skip dash (-)

28 input >> setw( 4 ) >> number.line; // input line

29 return input; // enables cin >> a >> b >> c;

30 ! // end function operators>>

Fig. 11.4 | Overloaded stream insertion and stream extraction operators for class
PhoneNumber. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



23

#include <iostream>
#include "PhoneNumber.h"
using namespace std;

int main()

{
PhoneNumber phone; //

cout << "Enter phone number in the form (123) 456-7890:" << endl;

create object phone

// cin >> phone invokes operator>> by implicitly issuing
// the global function call operator>>( cin, phone )

cin >> phone;

cout << "The phone number entered was: ";

m

// cout << phone invokes operator<< by implicitly issuing
// the global function call operator<<( cout, phone )

cout << phone << endl;
} // end main

Fig. 11.5 | Overloaded stream insertion and stream extraction operators. (Part | of

2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

30



Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212

Fig. 11.5 | Overloaded stream insertion and stream extraction operators. (Part 2 of
2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



11.8 Overloading Stream lnsertion and
Stream Exiraction Operaiors (cont.)

« The stream extraction operator function operator>>
(Fig. 11.4, lines 21-30) takes 1stream refer-ence 1nput and
PhoneNumber reference number as argu-ments and returns an
1stream reference.

« Operator function operator>> inputs phone numbers of the
form
« (800) 555-1212

» When the compiler sees the expression
e cin >> phone

* It generates the global function call
e« operator>>( cin, phone );

« When this call executes, reference parameter 1nput becomes an
alias for c1n and reference parameter number becomes an alias
for phone.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



11.9 Overloading Streain Insertion and
Sitream Exiraction Operators (cont.)

 The operator function reads as strings the
three parts of the telephone number.

 Stream manipulator setw limits the number
of characters read into each string.

» The parentheses, space and dash characters are
skipped by calling 1 stream member function
1gnore, which discards the specified number
of characters In the input stream (one character
by default).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



11.9 Overloading Stream lnsertion and
Stream Exiraction Operaiors (cont.)

« Function operator>> returns 1stream
reference 1nput (i.e., c1n).

 This enables input operations on
PhoneNumber objects to be cascaded with
input operations on other PhoneNumber
objects or on objects of other data types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



11.9 Overloading Stream lnsertion and
Stream Exiraction Operators (cont.)

» The stream Insertion operator function takes an ostream
reference (tc))utput) and a const PhoneNumber refer-
ence (humber) as arguments and returns an os-tream
reference.

* Function operator<x< displays objects of type
PhoneNumber.

» When the compiler sees the expression
e cout << phone

It generates the global function call
e« operator<<( cout, phone );

» Function operator<< displays the parts of the telephone
number as strings, because they’re stored as sString
objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



, Error-Prevention Tip 11.1
' Returning a reference from an overloaded « or »> opera-
tor function is typically successful because cout, cin
and most stream objects are global, or at least long-lived.
Returning a reference to an automatic variable or other
temporary object is dangerous—this can create “dan-
gling references” to nonexisting objects.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36




11.8 Overloading Streaim Insertion and
Streaim Exiraction Operaiors (cont.)

* The functions operator>> and
operator<< are declared in
PhoneNumber as global, friend functions

— global functions because the object of class
PhoneNumber is the operator’s right operand.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



Software Engineering Observation 11.3

New input/output capabilities for user-defined types are
added to C++ without modifying standard input/outpus
library classes. This is another example of C++s
extensibility.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



11.12 Overloading ++ and =<

 The prefix and postfix versions of the increment and
decrement operators can all be overloaded.

« To overload the increment operator to allow both
prefix and postfix increment usage, each overloaded
operator function must have a distinct signature, so
that the compiler will be able to determine which
version of ++ Is intended.

» The prefix versions are overloaded exactly as any
other prefix unary operator would be.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

39



11.12 Overloading ++ and == (cont.)

Suppose, for example, that we want to add 1 to the day in Date
object d1.

When the compiler sees the preincrementing expression ++d1,
the compiler generates the member-function call
e« dl.operator++(Q)

The prototype for this operator function would be

e« Date &operator++();
If the prefix increment operator is implemented as a global
function, then, when the compiler sees the expression ++d1, the
compiler generates the function call

e operator++( dl1 )
The prototype for this operator function would be declared in the
Date class as

« Date &operator++( Date & );

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



11.12 Overloading ++ and == (cont.)

Overloading the postfix increment operator presents a challenge,
because the compiler must be able to distinguish between the
signatures of the overloaded prefix and postfix increment
operator functions.

The convention that has been adopted in C++ is that, when the
compiler sees the postlncrementmﬂ expression d1++, it
generates the member-function ca

e dl.operator++( 0 )

The prototype for this function is
e Date operator++( int )

The argument O is strictly a “dummy value” that enables the
compiler to distinguish between the prefix and postfix increment
operator functions.

The same syntax Is used to differentiate between the prefix and
postfix decrement operator functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41



11.12 Overloading ++ and == (cont.)

If the postfix increment is implemented as a global function,
then, when the compiler sees the expression d1++, the compiler
generates the function call

e operator++( d1, 0 )

The prototype for this function would be
e Date operator++( Date &, int );

Once again, the O argument is used by the compiler to distinguish
between the prefix and postfix increment operators implemented
as global functions.

The postfix increment operator returns Date objects by value,
whereas the prefix increment operator returns Date objects by
reference, because the postfix increment operator typically
returns a temporary object that contains the original value of the
object before the increment occurred.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



A

2

SOR
3
22

Performance Tip 11.2
The extra object that is created by the postfix increment

(or decrement) operator can result in a significant perfor-
mance problem—especially when the operator is used in
a loop. For this reason, you should use the postfix incre-
ment (or decrement) operator only when the logic of the
program requires postincrementing (or postdecrement-

ing).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43



11.13 Case Study: A bate Class

* The program of Figs. 11.9-11.11 demonstrates
a Date class, which uses overloaded prefix
and postfix increment operators to add 1 to the
day In a Date object, while causing
appropriate increments to the month and year
If necessary.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



23

#define DATE H

#include <iostream>
using namespace std;

class Date
{

friend ostream &operator<<( ostream &, const Date & );
public:

Date( int m = 1, int d = 1, int y = 1900 ); // default constructor

void setDate( int, int, int ); // set month, day, year

Date &operator++(); // prefix increment operator

Date operator++( int ); // postfix increment operator

const Date &operator+=( int ); // add days, modify object

static bool leapYear( int ); // is date in a leap year?

bool endOfMonth( int ) const; // is date at the end of month?
private:

int month;

int day;

int year;

Fig. 11.9 | Date class definition with overloaded increment operators. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

45



27 }; // end class Date
28
29 #endif

Fig. 11.9 | Date class definition with overloaded increment operators. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



4 #include <string>
5 #include "Date.h”
6 using namespace std;
7
8 // initialize static member; one classwide copy
9 const int Date::days[] =
10 {o0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
Il
12 // Date constructor
13 Date::Date( int m, int d, int y )
14 {
15 setDate( m, d, y );
16 } // end Date constructor
17
I8 // set month, day and year
19 void Date::setDate( int mm, int dd, int yy )
20 {
21 month = ( mm >= 1 & mm <= 12 ) ? mm : 1;
22 year = ( yy >= 1900 && yy <= 2100 ) ? yy : 1900;
23
Fig. 11.10 | Date class member- and friend-function definitions. (Part I of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

47



27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

else
day = ( dd >= 1 & & dd <= days[ month ] ) ? dd : 1;
} // end function setDate

// overloaded prefix increment operator
Date &Date::operator++()
{
helpIncrement(); // increment date
return *this; // reference return to create an lvalue
} // end function operator++

// overloaded postfix increment operator; note that the
// dummy integer parameter does not have a parameter name
Date Date::operator++( int )
{
Date temp = *this; // hold current state of object
helpIncrement();

// return unincremented, saved, temporary object
return temp; // value return; not a reference return
} // end function operator++

Fig. 11.10 | Date class member- and friend-function definitions. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

48



51
52
33
34
35
56
37
58
59
60
61
62
63
64
65
66
67

{

for ( int i = 0; i < additionalDays; i++ )
helpIncrement();

return *this; // enables cascading
} // end function operator+=

// if the year is a leap year, return true; otherwise, return false
bool Date::leapYear( int testYear )
{
if ( testYear % 400 == 0 ||
( testYear % 100 != 0 && testYear % 4 == 0 ) )
return true; // a leap year
else
return false; // not a Teap year
} // end function leapYear

Fig. 11.10 | Date class member- and friend-function definitions. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

49



71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

if ( month == 2 && TleapYear( year ) )

return testDay == 29; // last day of Feb. in Teap year
else

return testDay == days[ month ];
} // end function endOfMonth

// function to help increment the date
void Date::helpIncrement()

{

// day is not end of month
if ( !endOfMonth( day ) )
day++; // increment day
else
if ( month < 12 ) // day is end of month and month < 12
{
month++; // increment month
day = 1; // first day of new month

} // end if
else // last day of year
{

Fig. 11.10 | Date class member- and friend-function definitions. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

50



94 } // end else

95 1} // end function helpIncrement

96

97 // overloaded output operator

98 ostream &operator<<( ostream &output, const Date &d )

99 {

100 static string monthName[ 13 ] = { "", "January", "February",

101 "March", "April", "May", "June", "July", "August",

102 "September"”, "October", "November"™, "December" };

103 output << monthName[ d.month ] << ' ' << d.day << ", " << d.year;
104 return output; // enables cascading

105 } // end function operator<<

Fig. 11.10 | Date class member- and friend-function definitions. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

51



4 #include "Date.h" // Date class definition

5 using namespace std;

6

7 1int mainQ)

8 {

9 Date dl; // defaults to January 1, 1900

10 Date d2( 12, 27, 1992 ); // December 27, 1992

11 Date d3( 0, 99, 8045 ); // invalid date

12

13 cout << "dl is " << dl << "\nd2 is " << d2 << "\nd3 is " << d3;
14 cout << "\n\nd2 += 7 is " << ( d2 += 7 );

15

16 d3.setDate( 2, 28, 1992 );

17 cout << "\n\n d3 is " << d3;

18 cout << "\n++d3 is " << ++d3 << " (leap year allows 29th)";
19

20 Date d4( 7, 13, 2002 );

21

22 cout << "\n\nTesting the prefix increment operator:\n"

23 << " d4 is " << d4 << endl;

Fig. I'1.11 | Date class test program. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

52



cout << "++d4 s " << ++d4 << endl;

cout << " d4 is " << d4;
27 cout << "\n\nTesting the postfix increment operator:\n"
28 << " d4 s " << d4 << endl;
29 cout << "d4++ is " << d4++ << endl;
30 cout << " d4 is " << d4 << endl;

31 } // end main

Fig. 11.11 | Date class test program. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53



dl
d2
d3

d2

++
Te

++

Te

is January 1, 1900
is December 27, 1992

is January 1, 1900

+= 7

d3 is
d3 is

sting
d4 1is
d4 1is
d4 1is

sting
d4 is

d4++ is

d4 1is

is January 3, 1993

February 28, 1992
February 29, 1992 (leap year allows 29th)

the prefix increment operator:
July 13, 2002
July 14, 2002
July 14, 2002

the postfix increment operator:
July 14, 2002
July 14, 2002
July 15, 2002

Fig. 11.11 | Date class test program. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

54



14,1 Templates Introduction

Function templates and class templates enable you to specify,
with a single code segment, an entire range of related
(overloaded) functions—called function-template
specializations—or an entire range of related classes—called
class-template specializations.

This technique is called generic programming.

Note the distinction between templates and template
specializations:

— Function templates and class templates are like stencils out of which we
trace shapes.

— Function-template specializations and class-template specializations are
like the separate trac-ings that all have the same shape, but could, for
example, be drawn in different colors.

In this chapter, we present a function template and a class tem-
plate.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55



Software Engineering Observation 14.1

Most C++ compilers require the complete definition of a
template to appear in the client source-code file that uses
the template. For this reason and for reusability,
templates are often defined in header files, which are
then #1nc luded into the appropriate client source-code
files. For class templates, this means that the member

functions are also defined in the header file.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

56



14.2 Function Templates

Overloaded functions normally perform similar or identical
operations on different types of data.

If the operations are identical for each type, they can be
expressed more com-pactly and conveniently using function
templates.

Initially, you write a single function-template definition.

Based on the argument types provided explicitly or inferred
from calls to this function, the compiler generates separate
source-code functions (i.e., function-template
specializations) to handle each function call appropriately.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57



Error-Prevention Tip 14.1

/' Function templates, like macros, enable software reuse.
Unlike macros, function templates help eliminate many
types of errors through the scrutiny of full C++ type
checking.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58



14,2 Function Templaies (cont.)

« All function-template definitions begin with keyword template
followed by a list of template parameters to the function template
enclosed in angle brackets (< and >); each template parameter that

represents a type must be preceded by either of the interchangeable
keywords class or typename, as in

o« template<typename T>
- or
« template<class ElementType>
- or
« template<typename BorderType, typename FillType>
« The type template parameters of a function-template definition are used
to specify the types of the arguments to the function, to specify the
return type of the function and to declare variables within the function.

« Keywords typename and class used to specify function-template
parameters actually mean “any fundamental type or user-defined type.”

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59



Common Programming Error 14.1

Not placing keyword class or keyword typename be-
fore each type template parameter of a function template
IS 4 Syntax error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60



14.2 Funetion Templaies (cont.)

* Let’s examine function template
printArray in Fig. 14.1, lines 7-14.

 Function template printArray declares
(line 7) a single template parameter T (T can
be any valid identifier) for the type of the array
to be printed by function print-Array; Tis
referred to as a type template parameter, or
type parameter.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61



using namespace std;

// function template printArray definition
template< typename T >
void printArray( const T * const array, int count )

{

for ( int i = 0; i < count; i++ )

cout << array[ i ] << ;

cout << endl;
} // end function template printArray

int main()

{

5; // size of array a
7; // size of array b
6; // size of array c

const int aCount
const int bCount
const int cCount

Fig. 14.1 | Function-template specializations of function template printArray.
(Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

62



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

cout << "Array a contains:" << endl;

// call integer function-template specialization
printArray( a, aCount );

cout << "Array b contains:" << endl;
// call double function-template specialization
printArray( b, bCount );

T

cout << "Array c contains:" << endl;

// call character function-template specialization
printArray( c, cCount );

} // end main

Fig. 14.1 | Function-template specializations of function template printArray.
(Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

63



Array a contains:

12345

Array b contains:

1.1 2.2 3.3 4.4 5.56.6 7.7
Array c contains:
HELLDO

Fig. 14.1 | Function-template specializations of function template printArray.
(Part 3 0f 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64



14.2 Funetion Templaies (cont.)

When the compiler detects a printArray function invocation in the
client program (e.g., lines 29, 34 and 39), the compiler uses its overload
resolution capabilities to find a definition of function printArray
that best matches the function call.

In this case, the only printArray function with the appropriate
number of parameters is the printArray function template (lines 7—
14).

Consider the function call at line 29.

The compiler compares the type of printArray’s first argument
(Int * at line 29) to the printArray function template’s first
parameter (const T * const at line 8) and deduces that replacing the
type parameter T with 1nt would make the argument consistent with
the parameter.

Then, the compiler substitutes 1nt for T throughout the template
definition and compiles a printArray specialization that can display
an array of 1nt values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65



14.2 Funection Templates (cont.)

The function-template specialization for type 1nt is
e void printArray( const int * const array, int count )

for ( int 1 = 0; 1 < count; i++ )
cout << array[ 1 ] << " ";

cout << endl;
} // end function printArray
As with function parameters, the names of template parameters must be
unique inside a template definition.

Template parameter names need not be unique across different function
templates.

Figure 14.1 demonstrates function template printArray.

It’s important to note that if T (line 7) represents a user-defined type
(which it does not in Fig. 14.1), there must be an overloaded stream
Insertion operator for that type; otherwise, the first stream insertion

operator in line 11 will not compile.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66



Common Programming Error 14.2

If a template is invoked with a user-defined type, and if
that template uses functions or operators (e.g., -, + <=)
with objects of that class type, then those functions and
operators must be overloaded for the user-defined type.

Forgetting to overload such operators causes compilation
errors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 67



- Performance Tip 14.1

-

Although templates offer software-reusability benefits, re-
member that multiple function-template specializations
and class-template specializations are instantiated in a
program (at compile time), despite the fact that the tem-
plates are written only once. These copies can consume
considerable memory. This is not normally an issue,
though, because the code generated by the template is the
same size as the code you'd have written to produce the

separate overloaded functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68



14,3 Overloading Funciion Templates

 Function templates and overloading are intimately
related.

 The function-template specializations gener-ated
from a function template all have the same name, so
the compiler uses overloading resolution to invoke
the proper function.

A function template may be overloaded in several
ways.

— We can provide other function templates that specify the
same function name but different function parameters.

— We can provide nontemplate func-tions with the same
function name but different function arguments.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69



Common Programming Error 14.3

A compilation error occurs if no matching function defi-
nition can be found for a particular function call or if
there are multiple matches that the compiler considers
ambiguous.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 70



14.4 Class Templaies

It’s possible to understand the concept of a “stack™ (a data
structure into which we insert items at the top and retrieve
those items in last-in, first-out order) independent of the
type of the items be-ing placed in the stack.

However, to instantiate a stack, a data type must be
specified.
Wonderful opportunity for software reusability.

We need the means for describing the notion of a stack
generically and instanti-ating classes that are type-specific
versions of this generic stack class.

C++ provides this capability through class templates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 71



Software Engineering Observation 14.2
Class templates encourage software reusability by
enabling type-specific versions of generic classes to be
instantiated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 72



14.4 Class Templates (cont.)

 Class templates are called parameterized types,
because they require one or more type
parameters to specify how to customize a
“generic class” template to form a class-
template specialization.
— Each time an additional class-template
specialization is needed, you use a concise, simple

notation, and the compiler writes the source code
for the specialization you require.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 73



14.4 Class Templates (cont.)

Note the Stack class-template definition in Fig. 14.2.

It looks like a conventional class definition, except that it’s
preceded by the header (line 6)

e template< typename T >

to specify a class-template definition with type parameter T
which acts as a placeholder for the type of the Stack class to be
created.

The type of element to be stored on this Stack is men-tioned
generically as T throughout the Stack class header and
member-function definitions.

Due to the way this class template is designed, there are two
constraints for nonfundamental data types used with this Stack
— they must have a default constructor
— their assignment operators must properly copy objects into the Stack

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 74



#define STACK H

4
5
6 template< typename T >
7 class Stack

8

9

{
public:
10 Stack( int = 10 ); // default constructor (Stack size 10)
Il
12 // destructor
13 ~Stack()
14 {
15 delete [] stackPtr; // deallocate internal space for Stack
16 } // end ~Stack destructor
17
18 bool push( const T & ); // push an element onto the Stack
19 bool pop( T & ); // pop an element off the Stack
20

Fig. 14.2 | Class template Stack. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

75



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

return top == -1;
} // end function isEmpty

// determine whether Stack is full
bool isFull() const
{
return top == size - 1;
} // end function isFull

private:

int size; // # of elements in the Stack

int top; // Tlocation of the top element (-1 means empty)

T *stackPtr; // pointer to internal representation of the Stack
}; // end class template Stack

Fig. 14.2 | Class template Stack. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

76



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

template< typename T >
Stack< T >::Stack( int s )
: size( s >07?7s :10), // validate size
top( -1 ), // Stack initially empty
stackPtr( new T[ size ] ) // allocate memory for elements

{
// empty body
} // end Stack constructor template

// push element onto Stack;

// if successful, return true; otherwise, return false
template< typename T >

bool Stack< T >::push( const T &pushValue )

{
if C isFullQ) )
{
stackPtr[ ++top ] = pushValue; // place item on Stack
return true; // push successful
} // end if

return false; // push unsuccessful
} // end function template push

Fig. 14.2 | Class template Stack. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

77



66
67
68
69
70
71
72
73
74
75
76
7

template< typename T >
bool Stack< T >::pop( T &popValue )

if ( lisEmpty() )
stackPtr[ top-- 1; // remove item from Stack

return true; // pop successful
Y // end if

popValue

return false; // pop unsuccessful
} // end function template pop

Fig. 14.2 | Class template Stack. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



14.4 Class Templates (cont.)

The member-function definitions of a class template are function
templates.

The member-function definitions that appear outside the class
template definition each begin with the header
e template< typename T >

Thus, each definition resembles a conventional function
definition, except that the Stack element type always is listed
generically as type parameter T.

The binary scope resolution operator is used with the class-
template name to tie each member-function definition to the class
template’s scope.

When doub1leStack is instantiated as type

Stack<double>, the Stack constructor function-template

specialization uses new to create an array of elements of type
oub 1 e to represent the stack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 79



14.4 Class Templates (cont.)

Now, let’s consider the driver (Fig. 14.3) that exercises the
Stack class template.

The driver begins by instantiating object doub1eStack of
Size 5.

This object is declared to be of class Stack< double >
(pronounced “Stack of double”).

The compiler associates type doub 1e with type parameter
T In the class template to produce the source code for a
Stack class of type doube.

Although templates offer software-reusability benefits,
remember that mul-tiple class-template specializations are
Instantiated in a program (at compile time), even though the
template is written only once.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 80



4 #include "Stack.h™ // Stack class template definition
5 using namespace std;

6

7 1int mainQ)

8 {

9 Stack< double > doubleStack( 5 ); // size 5

10 doubTle doubleValue = 1.1;

11

12 cout << "Pushing elements onto doubleStack\n";

13

14 // push 5 doubles onto doubleStack

15 while ( doubleStack.push( doubleValue ) )

16 {

17 cout << doubleValue << ' ';

18 doubleValue += 1.1;

19 } // end while

20

21 cout << "\nStack is full. Cannot push " << doubleValue
22 << "\n\nPopping elements from doubleStack\n";
23

Fig. 14.3 | Class template Stack test program. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

81



doubleStack.pop( doubleValue )

27

28 cout << "\nStack 1is empty. Cannot pop\n";

29

30 Stack< int > intStack; // default size 10

31 int intValue = 1;

32 cout << "\nPushing elements onto intStack\n";
33

34 // push 10 integers onto intStack

35 while ( intStack.push( intValue ) )

36 {

37 cout << intValue++ << ' ';

38 } // end while

39

40 cout << "\nStack is full. Cannot push " << intValue
41 << "\n\nPopping elements from intStack\n";
42

43 // pop elements from intStack

44 while ( intStack.pop( intValue ) )

45 cout << intValue << ' ';

46

47 cout << "\nStack is empty. Cannot pop" << endl;

48 1} // end main

Fig. 14.3 | Class template Stack test program. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 82



Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Stack 1is full. Cannot push 6.6

Popping elements from doubleStack
5.54.4 3.3 2.2 1.1
Stack 1is empty. Cannot pop

Pushing elements onto intStack
12345678910
Stack is full. Cannot push 11

Popping elements from intStack
109 87 6 54321
Stack is empty. Cannot pop

Fig. 14.3 | Class template Stack test program. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 83



14,4 Class Templaies (cont.)

« Line 30 instantiates integer stack TntStack

with the declaration
e Stack< 1nt > 1ntStack;

» Because no size is specified, the size defaults
to 10 as specified in the default constructor
(Fig. 14.2, line 10).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

84



14.4 Class Templates (cont.)

Notice that the code in function main of Fig. 14.3 is almost identical
for both the doub 1e-Stack manipulations in lines 9-28 and the
1ntStack manipulations in lines 30-47.

This presents another opportunity to use a function template.

Figure 14.4 defines function template testStack (lines 10-34) to
perform the same tasks as main in Fig. 14.3—push a series of values
onto a Stack< T > and pop the values off a Stack< T >.

Function template testStack uses template parameter T (specified
at line 10) to represent the data type stored in the Stack< T >.

The function template takes four arguments (lines 12-15)—a reference
to an object of type Stack< T >, a value of type T that will be the first
value pushed onto the Stack< T >, a value of type T used to
increment the values pushed onto the Stack< T >anda string
that represents the name of the Stack< T > object for output purposes.

The output of Fig. 14.4 precisely matches the output of Fig. 14.3.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 85



4 #include <iostream>

5 #include <string>

6 #include "Stack.h" // Stack class template definition
7 using namespace std;

8

9

// function template to manipulate Stack< T >
10 template< typename T >
Il void testStack(

12 Stack< T > &theStack, // reference to Stack< T >

13 T value, // initial value to push

14 T increment, // increment for subsequent values

15 const string stackName ) // name of the Stack< T > object
16 {

17 cout << "\nPushing elements onto " << stackName << '\n';
18

19 // push element onto Stack

20 while ( theStack.push( value ) )

21 {

22 cout << value << ' ';

23 value += increment;

24 } // end while

Fig. 14.4 | Passing a Stack template object to a function template. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

86



cout << "\nStack 1is full. Cannot push " << value
<< "\n\nPopping elements from " << stackName << '\n';

28

29 // pop elements from Stack

30 while ( theStack.pop( value ) )

31 cout << value << " ';

32

33 cout << "\nStack 1is empty. Cannot pop" << endl;

34 1} // end function template testStack

35

36 int main(Q)

37 {

38 Stack< double > doubleStack( 5 ); // size 5

39 Stack< int > intStack; // default size 10

40

41 testStack( doubleStack, 1.1, 1.1, "doubleStack™ );
42 testStack( intStack, 1, 1, "intStack” );

43 1} // end main
Fig. 14.4 | Passing a Stack template object to a function template. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

87



Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Stack 1is full. Cannot push 6.6

Popping elements from doubleStack
5.54.4 3.3 2.2 1.1
Stack 1is empty. Cannot pop

Pushing elements onto intStack
12345678910
Stack is full. Cannot push 11

Popping elements from intStack
109 87 6 54321
Stack is empty. Cannot pop

Fig. 14.4 | Passing a Stack template object to a function template. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 88



Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

89



