Project Ideas
Brainstorming

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 595
Hot Topics in Distributed Systems: Data-Intensive Computing
September 13, 2010



Developing a research proposal

dentify a problem
Review approaches to the problem
Propose a novel approach to the problem

Define, design, prototype an implementation to
evaluate your approach
— Could be a real system, simulation and/or theoretical

Write a technical report
Present your results
Write a workshop/conference paper (optional)




Disitribuied Operating Sysiems

Distributed Operating Systems
Achieve a unified OS across machine boundaries

The opposite of virtualization, which creates
multiple virtual OS instances on one machine

Choose an OS to modify

— CPU scheduler =» load balancing
— Memory manager =» shared memory
— File system =» leverage shared/parallel file systems

Choose a virtual machine to modify (e.g. Java)
Evaluate workloads for performance and scalability

3



Virtualization Impact for Daia-
intensive Computing

* Virtualization has overheads

« Quantify these overheads for a variety of
workloads
— Computational intensive
— Memory intensive
— Storage intensive
— Network intensive
— Across different virtualization technologies
— Across different hardware

« Survey the latest research in addressing
shortcomings of virtualization



Daia aware scheduling on erasure
codes based distribuied file sysiems

 Distributed file systems use replication to ensure
reliability of data

* Replication
— Pros: Easy to implement, increases data locality and perf

— Cons: Expensive and inefficient, in terms of network
bandwidth and disk space

» Erasure codes:
— Pros: Efficient in disk space usage

— Cons: Harder to implement, expensive computationally,
decreases locality

 Investigate replacing replication with erasure codes



Distributed Job Management

Goal:

— Maximize data locality in applications data access
patterns

Approach:
— Move application to data

Potential problems:
— Load balancing

Potential solutions:
— Move data to application sometimes

Involves data-aware scheduling algorithms and
analysis



Automatic parallelism discovery

* Most code is inherently sequential in nature =»
this was OK while we doubled processor speeds
according to Moore’s Law

« Multi-core and manycore architectures are
making sequential codes inefficient

 How to parallelize existing codes without
burdening the programmer



HPC and Scientiiic Application
on Manycore Architectures

100~1000 cores per GPU

Does cluster computing programming approaches apply
to GPUs?

How can GPUs be generalized for HPC use?
Does MapReduce map well to GPUs?

What architecture support is needed?

— Cores should have L1/L2 caches, and GPU memory should be a
L3 cache for the host memory =» Nvidia Fermi might be a step in
the right direction

— Allow cores to execute independent kernels
— No enforcement of coherency across cores
— Allow core-to-core communication



Daia-lntensive File Sysiems

* Implement a distributed file system
— Use of FUSE for a general POSIX interface

— Use structured distributed hash tables for distributed meta-
data management
» Can scale logarithmically with system size
« Can create network topology aware overlays

 Relaxed data access semantic to increase scalabllity
— eventual consistency on data modifications
— write-once read-many data access patterns

« Evaluation scalability and performance
— Compare to NFS, GPFS, PVFES, Lustre, HDFS



Data Staging in
Data-Intensive Computing

Most compute nodes are in 1 or 3 states
— Input, compute, output
Blocking I/O can yield low processor utilization

There Is a need for transparent mechanisms to
overlap I/O with computations

Project involves working and possibly modifying
with HPC and MTC middleware (e.g. MPI, Swift,

Falkon)

10



Virtual Replicas in HPC Sysiems

High failure rate in modern HPC systems
— Large number of components
— Use of off-the-shelf unreliable components

Failure rates dynamically varies based on
— System architecture and Workload

Replication for fault detection (possible
tolerance)

Independent virtual machines as replicas
Instead of stand-alone nodes



PVFS

* Modify the open source PVFS to achieve
Improvements In various areas:
— Fault tolerance
— High availability
— Metadata performance
— Scalabllity

 Compare PVFS to GPFS and Lustre for
various workloads

12



Cloud Computiing

* Explore Cloud Computing to construct
turn-key clusters with various software

stacks

« Compare cloud performance with grids
and clusters

» Explore variable pricing schemes,
utilization models, etc

13



* Explore the use of FUSE to implement
various file systems functionality not being
met by existing file systems

14



* Modify the OS scheduler to be aware of
threads and cache locality

15



Questions




