


• Identify a problem

• Review approaches to the problem

• Propose a novel approach to the problem

• Define, design, prototype an implementation to 

evaluate your approach

– Could be a real system, simulation and/or theoretical

• Write a technical report

• Present your results

• Write a workshop/conference paper (optional)

2



• Distributed Operating Systems

• Achieve a unified OS across machine boundaries

• The opposite of virtualization, which creates 

multiple virtual OS instances on one machine

• Choose an OS to modify

– CPU scheduler  load balancing

– Memory manager  shared memory

– File system  leverage shared/parallel file systems

• Choose a virtual machine to modify (e.g. Java)

• Evaluate workloads for performance and scalability
3



• Virtualization has overheads

• Quantify these overheads for a variety of 

workloads

– Computational intensive

– Memory intensive

– Storage intensive

– Network intensive

– Across different virtualization technologies

– Across different hardware

• Survey the latest research in addressing 

shortcomings of virtualization
4



• Distributed file systems use replication to ensure 

reliability of data

• Replication 

– Pros: Easy to implement, increases data locality and perf

– Cons: Expensive and inefficient, in terms of network 

bandwidth and disk space

• Erasure codes:

– Pros: Efficient in disk space usage

– Cons: Harder to implement, expensive computationally, 

decreases locality

• Investigate replacing replication with erasure codes
5



• Goal: 

– Maximize data locality in applications data access 

patterns

• Approach: 

– Move application to data

• Potential problems: 

– Load balancing

• Potential solutions:

– Move data to application sometimes

• Involves data-aware scheduling algorithms and 

analysis 6



• Most code is inherently sequential in nature 

this was OK while we doubled processor speeds 

according to Moore’s Law

• Multi-core and manycore architectures are 

making sequential codes inefficient

• How to parallelize existing codes without 

burdening the programmer

7



• 100~1000 cores per GPU

• Does cluster computing programming approaches apply 

to GPUs? 

• How can GPUs be generalized for HPC use?

• Does MapReduce map well to GPUs?

• What architecture support is needed?

– Cores should have L1/L2 caches, and GPU memory should be a 

L3 cache for the host memory  Nvidia Fermi might be a step in 

the right direction

– Allow cores to execute independent kernels

– No enforcement of coherency across cores

– Allow core-to-core communication

8



• Implement a distributed file system

– Use of FUSE for a general POSIX interface 

– Use structured distributed hash tables for distributed meta-

data management

• Can scale logarithmically with system size

• Can create network topology aware overlays

• Relaxed data access semantic to increase scalability 

– eventual consistency on data modifications

– write-once read-many data access patterns

• Evaluation scalability and performance

– Compare to NFS, GPFS, PVFS, Lustre, HDFS
9



• Most compute nodes are in 1 or 3 states

– Input, compute, output

• Blocking I/O can yield low processor utilization

• There is a need for transparent mechanisms to 

overlap I/O with computations

• Project involves working and possibly modifying 

with HPC and MTC middleware (e.g. MPI, Swift, 

Falkon)

10



• High failure rate in modern HPC systems

– Large number of components

– Use of off-the-shelf unreliable components

• Failure rates dynamically varies based on

– System architecture and Workload

• Replication for fault detection (possible 

tolerance)

• Independent virtual machines as replicas 

instead of stand-alone nodes



• Modify the open source PVFS to achieve 

improvements in various areas:

– Fault tolerance

– High availability

– Metadata performance

– Scalability

• Compare PVFS to GPFS and Lustre for 

various workloads

12



• Explore Cloud Computing to construct 

turn-key clusters with various software 

stacks

• Compare cloud performance with grids 

and clusters

• Explore variable pricing schemes, 

utilization models, etc

13



• Explore the use of FUSE to implement 

various file systems functionality not being 

met by existing file systems

14



• Modify the OS scheduler to be aware of 

threads and cache locality

15



16


