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ABSTRACT
HPC  applications  are  becoming  data-intensive  in  that
they  consume  large  amounts  of  data  and have  complex
data  dependencies.  Current  resource  managers  are  not
aware  of  data  location  (local  vs  remote  parallel  file
system) and the cost to move it. In this project, as the first
stage of implementing a data-aware scheduler  on top of
Slurm[2] resource manager with burst buffer architecture,
we have simulated the PVFS[12] parallel file system for a
IBM BG/P machine[22]. We have simulated the PVFS[12]
parallel  file  system  using  CODES[14]  and  ROSS[13]
parallel  discrete event simulators from Argonne National
Laboratory.  We  evaluate  the  performance  of  our
simulation for I/O operations with different dataset  sizes
and  for  metadata  operations.  We  also  compare  the
performance  of  our  simulation  with  FusionFS[11]  and
NFS[23] file systems. Finally, we measure the accuracy of
our  simulations  by  comparing  the  I/O  operation
throughput  with actual  deployment  of  GPFS[24]  and by
comparing metadata throughput with actual deployment of
PVFS. The file system simulation models implemented in
this  project  will  be  used  to  develop  simulation  of  burst
buffer  architecture  and  eventually  to  simulate  a  data
aware scheduler on top of  Slurm[2] resource manager.  

Categories and Subject Descriptors
D.4.8 [Performance]: Simulation

General Terms
Measurement, Performance, Design.

Keywords
HPC, data-intensive, PVFS, simulation, CODES, ROSS.

1. INTRODUCTION
Recent trend in HPC applications is that they are becoming
data-intensive that consume and produce large volumes of
data  and  have  complex  data  dependencies.  Examples  of
these  applications  are  VISTA(Astronomy)[26],  LIGO
(Astrophysics)[27],  BLAST(Bioinformatics)[28]  and
ATLAS(High  Energy  Physics)[29].  Current  resource
managers  are  ignorant  of data  location  (local  vs remote
parallel file systems like PVFS[12], Lustre[30] etc) and the
cost to move it. Accessing and retrieving large amounts of
data  is  currently  is  just  a  remarkable  side  effect  on
scheduling computations.

Burst  buffer  architecture  has  been  proposed  to  handle
bursty I/O patterns in HPC systems [1].  Burst buffers are
high-throughput, low-capacity storage devices that act as a
staging  area  or  a  write-behind  cache  for  HPC  storage
systems.  The  approach  we  follow  to  incorporate  burst
buffers is to place these buffers on I/O nodes that connect

to the external storage system and to manage these buffers
as part of the I/O forwarding services. If burst buffers are
sufficiently large and fast, they can absorb I/O bursts. [1].
Burst buffers will integrate at HPC I/O nodes and will be
managed by I/O forwarding software.  By aggregating and
absorbing  the  I/O  requests  into  the  burst  buffer  layer,
applications  can  overlap  computations  that  follow  I/O
bursts  while  asynchronously pushing  data  to  the  storage
for  persistence.  Without  the  burst  buffers,  applications
would block until all I/O requests are completed and would
allow  no  potential  for  optimization  or  overlapping
computation and I/O activity. 

Before we simulate burst buffer architecture and measure
its  effect on scheduler  performance we need  to  simulate
existing parallel file system on a HPC machine. So, in this
project we simulate PVFS[12] file system on a IBM BG/P
architecture[22].  PVFS  is  a  open-source  parallel  file
system developed by Argonne National Lab and Clemson
University. In the PVFS architecture the compute nodes act
as clients and the I/O nodes act as servers. The application
resides on the client and triggers I/O requests to the PVFS
client  daemon  running  on  the  client.  The  PVFS  client
daemon  communicates  with  the  PVFS  server  daemon
running  on  the  servers  to  handle  I/O  operations  and
metadata operations.  The servers are again classified into
I/O  servers  which  handle  I/O  operations  and  metadata
servers  which  handle  metadata  operations.  Originally
PVFS  had  a  single  centralized  metadata  server  and
multiple distributed I/O servers.  PVFS2 has a distributed
metadata architecture. Each server can either function as a
I/O server or a metadata serevr or both. The server type is
configured  in  software.  PVFS  also  implements  a  file
striping  mechanism,  with  each  file divided into multiple
stripes  with  each  stripe  being  stored in  a  different  disk.
The  file  distribution  information  includes  both  the  file
location  and  location  of  the  disk  in  the  cluster.  The
location of the file is specified with three parameters, base
I/O node number, number of nodes and the stripe size. We
have  implemented  our  simulation  using  CODES(Co-
Design of Multilayer Exascale Storage Architectures)[14]
and ROSS(Rensselaer  Optimistic  Simulation  System)[13]
simulation frameworks from Argonne National Laboratory
and  Rensselaer  Polytechnic  Institute.  ROSS is  a  parallel
discrete  event  simulator  which  uses  time  warp
protocols[31] to simulate discrete events in parallel. ROSS
also allows reverse computations  to rollback changes for
timestamp mismatches. Because of this feature ROSS can
achieve very high performance as it can execute events in
parallel.  CODES is  built  on  top  of ROSS and  provides
various network models  for torus and dragonfly networks
and  supports  MPI  collective  communication  operations
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using the optimistic event scheduling capability of ROSS.
We  measure  the  performance of our  simulation  for  I/O
operations  and  metadata  operations.  We have  compared
our  simulation  with  FusionFS[11]  and  NFS[23]  file
systems through simulations. We  have also measured the
accuracy of our  simulations  by comparing  the  read  and
write throughput of our simulation with actual GPFS read
and  write  throughput  and  by  comparing  the  metadata
throughput of our simulation with metadata throughput of
actual PVFS[12] implementation[11].

The rest of the paper is organized as follows. In section 2,
we explain our proposed solution. In section 3, we present
the evaluation of our solution. In section 4, we present the
related work. In section 5 we present our future work and
conclude the paper.

2. PROPOSED SOLUTION
As a first  stage of implementing  a data  aware scheduler
using a burst buffer architecture [1] we simulate PVFS file
system[12] on a IBM BG/P[22] machine.  

The architecture  of our simulation  is as below shown in
Figure 1.

In CODES/ROSS the basic unit of simulation is a Logical
Processor (LP).  LPs are abstractions of simulated physical
processes. They act like real  processes in  the system and
are  synchronized  by  Time  Warp  protocol[31].  In  our
simulations we simulate each node as a LP and the arrows
which  indicates  communication  between  different  nodes
are simulated as events taking place between the LPs. 

Figure 1: PVFS simulation architecture.

Application resides on the compute node and triggers the
I/O  request  to  the  PVFS client  daemon  running  on  the
compute node. We model the client  node in  client  LP in
our simulation. The servers are modeled in the server LP
in our simulation. PVFS servers are of two types: metadata
servers which handle metadata of the files and I/O servers
which  handle  actual  application  data.  In  PVFS  the
metadata server and I/O server config is done in software.
A single I/O node can act  as either  a metadata  server or
I/O server or both. In our simulation we assume that every
I/O node is acting as both metadata server and I/O server.

We consider disk as an overhead for the operations done in
our  simulator  and  we will  take  up  modeling  disk  as  a
separate LP in our future work.

In  the  sections  2.1  to  2.4  we  describe  the  various
operations in PVFS[12].

   

2.1 File Create
The file create operation takes as shown in Figure 2 below.

The steps for file creation are:

1. Application  on compute node sends file_create()
request to pvfsd running on compute node.

2. pvfsd  running  on  compute  node  sends
create_metafile() request to pvfsmgr running on a
random metadata server, say metadata_server_i.

3. pvfsmgr  running  on  metadata_server_i  returns
metadata handle through return_metadata().

4. pvfsd  on  compute  node  sends  create_datafile()
requests to pvfsmgr on a set of IO servers.

5. Each  io  server  receiving  create_datafile()  sends
create_dir_entry() to the metadata_server_i.

6. metadata_server_i  sends  metadata  attributes  to
the io servers through set_meta_attr()

7. Each  io  server  returns  data  handle  to  pvfsd on
compute node through return_datahandle().

8. pvfsd informs application that file is created using
file_create_done().

Figure 2 : File Create.

2.2 File Open
The file open operation takes as shown below in Figure 3.

The steps for file open are as follows:

1. Application on compute node sends a file_open()
request to pvfsd on compute node.



2. pvfsd on compute node sends a lookup_request()
to all metadata servers.

3. The metadata server which has metadata for the
file,  say  metadata_server_i  returns  file  handle
through return_file_handle().

4. pvfsd on compute node sends request_datafile() to
all io servers which have the data handle for the
file.

5. Each io server returns the handle for the stripe it
is handling to pvfsd on compute node.

6. pvfsd  informs  the  application  that  the  file  has
been opened through file_open_done().

Figure 3: PVFS file open.

2.3 PVFS file read
In PVFS, file read operation takes place as shown below in
Figure 4.

Figure 4: PVFS file read.

The steps for file read as follows:

1.  Application  on compute node sends fread()  request  to
pvfsd on compute node.

2. pvfsd sends request_file() to each io server that has the
data handle for the file.

3. Each io server sends the stripe it is handling to the pvfsd
on compute node.

4.  pvfsd  informs  the  application  that  file  read  is  done
through fread_done().

2.4 PVFS File write
PVFS file write operation is done as shown in Figure 5. 

Figure 5: PVFS file write

The steps for file write as follows:

1. Application  on  compute  node  sends  fwrite()
request to pvfsd on compute node.

2. pvfsd sends write_request() to io server.

3. pvfsmgr on io server informs pvfsd that  write is
successfully completed through write_done()

4. pvfsd informs application that write is succesfully
completed through fwrite_done().

We have  developed  our  simulation  model  in  multiple
stages. In the first stage, We have developed and evaluated
a  hardcoded model  for PVFS file  system in  which  each
node  acts  as  both  server  and  client  .  From  the
CODES/ROSS  simulation  perspective  our  simulation
model  consists  of  only one  Logical  Processor  (LP).  We
assume all remote I/O operations as per the architecture of
PVFS. We assume a constant I/O overhead of 5% for each
operation  and  add  this  overhead  to  the  time  taken  to
complete each  operation.  We also take  this  value as  the
seed for random I/O noise and add the I/O noise for the
execution time. We  assume a constant metadata size of 32
bytes. We have measured the time taken to complete I/O
operations with different dataset sizes and different number
of  nodes.  From  this  value  we  calculate  the  aggregate
throughput.

In the second stage we have separated the client and server
nodes.  As  in  the  first  stage,  we assume all  remote  I/O
operations as per the architecture of PVFS. We assume a
constant  I/O overhead of 5% for each operation and add
this overhead to the time taken to complete each operation.
We also take this value as the seed for random I/O noise
and add the I/O noise for the execution time. We assume a
constant metadata size of 32 bytes. In our simulation, the



server  nodes  communicate  with  the  client  nodes  in  a
round-robin fashion. In the configuration file used by the
simulator we specify the data size to be transferred in each
iteration  through  a  variable  called  pvfs_file_size.  By
default this value is set to 64KB which is the default stripe
size  in  PVFS[32].  We repeat  this  workload  for  a  large
number  of iterations.  So, effectively we are  sending  one
stripe  in  each  round  of communication.  In  this  way we
have simulated PVFS file striping.  We have simulated an
event called request event in which we send a single stripe
in  each  iteration  from  client  to  server  and  repeat  this
workload  for  a   large  number  of iterations.  Hence,  this
event  simulates  file  write.  We have  simulated  another
event called ack event in which we send a single stripe in
each  iteration  from  server  to  client  and  repeat  this
workload  for  a  large  number  of  iterations.  Hence,  this
event  simulates  file  read.  Since,  both  request  and  ack
events happen in  the same round of communication,  file
read and write operations are simulated in a single round
of  communication.  We  have  another  variable  called
payload_size in  the configuration  file which  is set  to 32
bytes and this represents the file metadata.  We simulated
metadata  operations by sending  payload_size as the data
size in the simulator event and repeating this workload for
only one iteration. 

We  have  measured  the  time  taken  to  complete  I/O
operations  and  metadata  with  different  dataset  sizes and
different number of server nodes with the number of client
nodes fixed at 1024. From this we calculate the aggregate
throughput for I/O operations and metadata operations. We
have  also  compared  the  performance  of PVFS[12]  with
FusionFS[11] and NFS[23] file systems. We have evaluated
the performance of our simulation in terms of accuracy by
comparing  the  I/O  throughput  to  actual  GPFS[24]  read
and  write  throughput  from  FusionFS  paper[11]  and
comparing  the  metadata  performance  to  actual  PFVS
metadata performance from FusionFS paper[11].

2.5 Implementation Details
We have implemented our code in C. The total project code
is  around  550  lines  of  C  code.  The  CODES/ROSS
framework consists of around 45K lines  of C/C++ code.
We have used version  0.40 for codes-base and  codes-net
libraries of CODES simulator and for  the commit hash of
ROSS is  44b7b9a which is the latest version of ROSS at
the  time  of  release  of  CODES  0.40.  The  code  for  the
project is available at https://github.com/sdivanji/pvfs_sim/

3. EVALUATION
3.1 Testbed
We have run our simulations on a single machine with a
AMD 4-core, 64-bit processor and 8GB of DDR3L RAM.
We have used MPICH2[25] version 3.04 from ANL as our
MPI library. We have run all experiments in the sequential
mode  of  ROSS  as  we  have  not  implemented  reverse
computations in  our code. Since,  our simulations  do not

take  a  lot  of time  to run,  the  effort  needed to code the
reverse  computation  is  very high  when  compared  to  its
benefits. 

3.2 Metrics
We have evaluated the performance of our simulations in
terms of Throughput(MB/s) and execution time(s) for read
and  write  operations  and  Throughput(Number  of
operations  per  second)  for  metadata  operations.  We also
compare  the  performance  of  PVFS[12]  with  respect  to
FusionFS[11] and NFS[23] in terms of Throughout(MB/s)
and  execution  time(s)  for read  and  write  operations.  We
compare the performance of PVFS[12] with FusionFS[11]
for metadata operations in terms of Throughput(Number of
operations per second). We have measured the accuracy of
our simulation  by comparing  read and write throughputs
with actual GPFS read and write throughput of GPFS[24]
file system in terms of MB/s and by comparing metadata
throughput with PVFS[12] metadata throughput with data
obtained from FusionFS BigData 2014 paper[11].

3.3 Experiments
3.3.1 Throughput
We first evaluate the performance of our first stage model
in  terms  of throughput  and  execution  time for  read  and
write operations. We vary the number of nodes from 8 to
64  and  the  dataset  size  from  64MB  to  1GB  which  is
equally  divided  among  all  nodes.  We use  a  3D  torus
network model for these experiments.

Figure 6: Execution time for different datset sizes and
different number of nodes.

From  the  graphs  we  can  see  that  at  lower  file  sizes,
execution  time  increases  and  throughput  decreases  with
increase  in  the  no.  of  nodes  because  the  overhead  of
network communications is large  when compared to file
size.  However,  for  larger  file  sizes  the  cost  of  network
communication  gets  amortized  and  we  see  improved
performance with increase in the number of nodes.

Next  we evaluate  the  performance  of  our  second  stage
model. We measure the performance in terms of execution
time and throughput for read and write operations. We fix
the  number  of clients  at  1024  and  vary  the  number  of
servers from 8 to 64. For each client we vary the file size
from  64MB  to1GB.  So,  in  total  our  system  will  have
dataset size  varying  from 64GB to  1TB.  We have  used
simplenet network model available in CODES as the torus
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network model does not scale for more than 8 servers and
32 clients. The results are as shown in Figure 8 and Figure
9.

Figure  7:  Throughput for  different  dataset  sizes  and
different number of nodes.

Figure 8: Execution time for 1024 clients with different
number of servers and different dataset sizes.

From the graphs we can see that at larger dataset sizes the
cost of remote communication is small enough that it gets
amortized and we get a linear scalability with the increase
in the number of servers.

From the graphs we can see that at larger dataset sizes the
cost of remote communication is small enough that it gets
amortized and we get a linear scalability with the increase
in the number of servers.

From  these  experiments  we can  conclude  that  PVFS is
more  suited  to  handle  larger  dataset  sizes  as  it  scales
almost  linearly  at  larger  dataset  sizes.From  these
experiments we can conclude that PVFS is more suited to
handle  larger  dataset  sizes as it  scales almost linearly at
larger dataset sizes.

3.3.2 Ideal Stripe Size
Next we evaluate the performance in terms of throughput
by varying the stripe size. We keep the number of servers
fixed at 64, number of clients fixed at 1024 and the dataset
size in  the  file system at  64GB. We vary the  stripe  size
from 1KB to 1MB and measure the throughput  for each
stripe size. The results are as shown below in Figure 10.

Figure 9:  Throughput for  1024  clients  with  different
number of servers and different dataset sizes.

Figure 10: Throughput for different stripe sizes.

From the graph we can see that at very low stripe sizes, the
throughput  is  low. This  is  because to  perform  read  and
write operations we need many cycles of communication
between clients and servers. The overhead of this reduces
the throughput. The throughput improves with increase in
stripe  sizes  till  64KB as  the  clients  need  to  make  less
number of requests to the servers. However after 64KB the
throughput  keeps on  dropping  as  we increase  the  stripe
size. This is because the packet size of the client and server
networks  is  very  less  compared  to  the  stripe  size.  The
client  network  has  a  packet  size of 8KB and  the  server
network has a packet size of 2KB. So, at higher stripe sizes



each stripe consists of larger  number of packets and this
packetization  overhead  reduces the  throughput  at  higher
stripe sizes. 

From this experiment we conclude that 64KB is the ideal
stripe  size.  The  real  PVFS  2.0  deployments  also  have
64KB as the ideal stripe size[32]. Our simulations confirm
this.

3.3.3 Metadata
We  measure  the  metadata  performance  of  our  PVFS
simulation in terms of operations per second. To simulate
the  metadata  operations  we send  very small  amount  of
traffic  (32  bytes)  through  our  models   and  measure  the
number of operations per second. We keep the number of
clients fixed at 1024 and vary the number of servers from 1
to 64. The results are as shown below in Figure 11.

From the figure we can see that the metadata performance
saturates  at  32  servers.  This  is  because  the  data  being
transferred  is  so  small  that  the  overhead  of  adding
additional nodes saturates the performance.

3.3.4 Throughput Comparison
We compare  the  performance  of  different  file  systems
namely  FusionFS[11]  ,  PVFS  and  NFS[23].  These  file
systems  represent  different  types  of  file  systems  with
FusionFS for  distributed  file  systems,  PVFS for  parallel
file systems and NFS for centralized file systems. So, this
experiment  also gives us insight  into the performance of
different file system architectures.

We compare the performance of the file systems in terms
of throughput for I/O operations for different file systems.
For FusionFS we measure the throughput  at 1024 nodes,
for PVFS we meausre the throughput  for 64 servers and
1024 clients and for NFS we measure the throughput with
1 server and 1024 clients.  We vary the dataset size from
64GB to 1TB. The results are as shown below in Figure
12.

Figure  11:  Metadata  performance  with  different
number of servers.

The Y-axis is plotted in a logarithmic scale to better show
the difference in performance.

From  the  graph  we can  see  that  FusionFS  outperforms
PVFS and NFS at all scales. This is because FusionFS has

a fully distributed architecture with each node capable of
running the client and server proesses. Thus, there is a 1:1
mapping  between  clients  and  servers.  Also,  FusionFS
enables write locality. So, FusionFS performs much better
than PVFS and NFS.

PVFS  follows  a  parallel  architecture  with  number  of
servers  an  order  of magnitude  less  than  the  number  of
clients. Also, all writes are remote in PVFS. NFS, on the
other  hand  has  a  centralized  architecture  with  a  single
centralized server. Hence, NFS doesn't scale very well and
though PVFS outperforms  NFS its performance is much
less when compared to FusionFS.

Figure  12:  Comparison  between  PVFS,  NFS  and
FusionFS for I/O throughput.

3.3.5 Metadata Comparison
We also compare the metadata performance of PVFS with
FusionFS in terms of number of operations per second. We
simulate PVFS metadata performance by sending very less
amount of traffic(32 bytes) through our models. We keep a
1-1  mapping  between  clients  and  servers  and  vary  the
number of nodes from 1 to 64 for both PVFS and FusionFS
so that  we keep similarity in  the  workloads to compare.
For FusionFS we use the data from FusionFS paper[11].

The results are as shown below in Figure 13.

 Figure 13: Metadata performance comparison between
FusionFs and PVFS.

The  Y-axis  is  in  logarithmic  scale  to  better  show  the
difference in performance. 



From  the  graph  we can  see  that  FusionFS  outperforms
PVFS at all scales. This is because FusionFS implements
metadata optimization operations like update->append[11]
which are highly effective. On the other hand, in PVFS no
metadata optimization operations are implemented. Thus,
this experiment shows that only increasing the number of
metadata servers does not necessarily improve the ability
to handle higher concurrency.

3.3.6 Throughput Accuracy
We  measure the accuracy of our simulations by comparing
throughput  for  read  and  write  operations  and  metadata
performance  with  actual  parallel  file  system
implementations.  We compare read and  write throughput
of our simulation  with GPFS[24] deployed on IBM Blue
Gene[22].  We fix the number  of servers at  128 and vary
the number of clients from 1 to 1024. The results are as
shown below in Figure 14 and 15.

Figure 14: Comparison of read throughput with GPFS .

Figure 15: Comparison of write throughput with GPFS

From these experiments we can see that at lower scales our
simulation  matches  closely with  actual  deployments.  At
higher scales there is a difference between our results and
actual deployments. We attribute this difference to the fact
that  we were  not  able  to  use  torus  network  models  at
higher  scales  as  we ran  out  of memory and  had  to  use
simplified network models at larger scales.

3.3.7 Metadata Accuracy
We have  compared  the  accuracy  of  our  simulation  for
metadata  performance  by  comparing  the  number  of
operations per  second obtained from our simulation with
actual PVFS deployment. We keep a 1-1 mapping between
clients and servers and vary the number of nodes from 1 to
64. The results are as shown in Figure 16.

From  the  graph  we  see  that  at  higher  scales  the
performance of our simulations resemble closely with that
of  the  actual  deployment.  At  lower  scales  there  is  a
difference in  performance because, in  our simulations we
add random I/O noise and  this  creates  a  few stragglers.
The  effect  of the  stragglers  is  more  prominent  at  lower
scales and brings down the performance of our simulation.

Figure 16: Comparison of metadata performance with
actual PVFS implementation.

3.3.8 Effect of adding more clients
We  have  measured  the  effect  of  adding  more  clients
keeping  the  number  of  servers  constant.  We keep  the
number of servers fixed at 8 and vary the number of clients
from 1 to 32 and measure the I/O throughput. The results
are as shown below in Figure 17.

Figure  17:  Different  number  of  clients  with  servers
fixed at 8.

From the graph we can see that when the number of clients
is  less  than  the  number  of  servers,  some  servers  are



underutilized and throughput is low. We can also see that
when the clients and servers are in a 1:1 mapping we get
the best performance. At scale of 16 clients 50% of nodes
in become stragglers and this brings down the performance
when  compared  to  24  clients  scale  which  has  less  than
25% of nodes as stragglers.

4. Related Work
As  part  of  studies  going  on  exascale  design,  there  is
significant  interest  in  understanding  how parallel  system
software  such  as  MPI/MPI-IO  and  the  associated
supercomputing  applications  will  scale  on  future
architectures.  For  example,  Perumalla’s  µπ  system  [33]
will allow MPI programs to be transparently executed on
top  of  the  MPI  modeling  layer  and  simulate  the  MPI
messages. µπ has executed  MPI jobs with over 27 million
tasks which was executed on 216,000 Cray XT5 cores.[33]
A number of universities and national  labs have together
developed  the  Structural  Simulation  Toolkit  (SST)  [34].
SST includes a collection of hardware component models
including  processors,  memory  and  network  at  different
accuracy.  These  models  use  parallel  component-based
discrete event simulation based on MPI. The users are able
to  leverage  multi-scale  nature  of  SST  by  trading  off
between  accuracy,  complexity,  and  time  to  solution.
BigSim  [35]  focuses  on  the  model  and  prediction  of
sequential  execution  blocks  of  large  scale  parallel
applications.  The  model  is  trace-driven  and  it  uses  the
scalable trace gained from machine learning for predicting
overall  performance.  While  our  simulator  accurately
captures the large-scale parallel file system characteristics,
these  systems  are  more  focused  on  providing  accurate,
large-scale  computational  performance  models.
Researchers have also developed a number of parallel file
system  simulators.  The  IMPIOUS  simulator  [36]  was
developed  for  fast  evaluation  of  parallel  file  system
designs. It simulates PVFS, PanFS, and Ceph file systems
based  on  user-provided  file  system  specifications,
including data placement strategies, replication strategies,
locking disciplines,  and caching  strategies.  The HECIOS
simulator  [37]  is  an  OMNeT++  simulator  for  PVFS.
HECIOS was used to evaluate scalable metadata operations
and file data caching strategies for PVFS. PFSsim [38] is
an OMNeT++ PVFS simulator that  allows researchers  to
explore I/O scheduling algorithm design.  PVFS and ext3
file systems have been simulated using colored Petri nets
[39]. This simulation method yielded low simulation error,
with  less than  10% error  reported for some simulations.
The  focus  of  CODES  sets  it  apart  from  these  related
simulation  tools.  One  of  the  goals  of  CODES  is  to
accurately  and  quickly  simulate  large-scale  storage
systems. To date, CODES has been used to simulate up to
131,072  application  processes,  9512  PVFS  file  system
clients,  and  123  PVFS  file  servers  [19].  The  existing
simulators  limited  their  simulations  to  smaller  parallel
systems (up to 10,000 application processes and up to 100
file servers).

Research  has  also been  done in  simulating  PVFS using
older versions of CODES and ROSS. Ning Liu et al [19]
and Bo Feng at al [20] have developed simulation models

to simulate PVFS[12] file system on a IBM Blue Gene[22]
machine.  The  difference  in  our  work  is  that  these
simulations use their  own simplified network models. We
build  our  simulations  on  top  of   latest  version  of
CODES[14] which is built on top of ROSS and provides
realistic network models like Torus, Dragonfly etc.

5. Conclusion and Future Work
In this paper we present a simulation of PVFS[12] parallel
file  system using  CODES[14]/ROSS[13]  simulator  from
ANL. We measure the performance of our simulation  in
terms  of  throughput  in  MB/s  for  I/O  operations  and
number of operations per second for metadata operations.
We  compare  the  performance  of  PVFS[12]  with
FusionFS[11] and NFS[23] file systems for I/O operations
throughput and with FusionFS[11] file system for metadata
operations through simulations.  We measure the accuracy
of our simulation by comparing it with real deployment of
GPFS[24] file system for read and write operations and by
comparing with real  deployment of PVFS[12] file system
for metadata operations. This work will act as a first stage
in the implementation of a data aware scheduling system
which will be built  on top of slurm[2]  resource manager
and will use burst buffer architecture[1].

In future we plan to run the simulations with torus network
models on large scale  on a  cluster  to get  more  accurate
results. We plan to separate disk into a separate LP so that
network  latency of remote  disks  is  also considered.  The
next step in this project is to simulate burst buffer models
and  measure  the  effect  of  adding  burst  buffers  on
performance.  Once,  this  is  done  we  will  simulate  data
aware scheduling on top of slurm[2] resource manager.
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Appendix
A. Contributions:
Sughosh Divanji(sdivanji@hawk.iit.edu):

1. Background study.

2. Develop  first  stage  model  in  which  client  and
server is on the same node.

3. Develop second stage model in which clients and
servers are separated.

4. Debug the issues that were seen in development.

5. Evaluation of the simulation for  I/O Throughput,
Metadata  Throughput,  Comparison  with
FusionFS  and  NFS  simulation  and  comparison
with actual GPFS and PVFS deployments.

Raghav Kapoor (rkapoor7@hawk.iit.edu)

1. Background study.

2. Try to run Darshan workloads on the simulation.

3.  Try to fix scaling issues by running torus network
models  on  Fusion(fusion.cs.iit.edu)  and
Jarvis(jarvis.cs.iit.edu).

4. Debug the issues that were seen in development.

B. Challenges
The challenges that we faced in this project are:

1. We started  with  an  assumption  that  file  system
models and storage system models already existed

in  the simulator.  However, this  turned  out to be
incorrect.  So, we had to change the scope of the
project  from  modeling  burst  buffers  and  data-
aware  scheduling  to  developing  a  parallel  file
system model from scratch.

2. CODES/ROSS  is  a  project  still  under  active
development.  So,  the  developers  have  not
documented the APIs. Because of this we had to
read the source code to understand the simulator.
This made the learning curve a lot steeper.

3. Because  CODES/ROSS  is  a  project  under
development,  there  are  bugs  that  exist  in  the
simulator.  Whenever,  we  found  bugs  we  were
blocked till they were fixed. We had to work with
developers  from  ANL  to  report  the  bugs  and
provide them testcases to reproduce the bugs and
get them fixed so that we could make progress on
our work.
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