

MATRIX: MANY-TASK COMPUTING EXECUTION FABRIC

FOR EXTREME SCALES

BY

ANUPAM RAJENDRAN

DEPARTMENT OF COMPUTER SCIENCE

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science

in the Graduate College of the

Illinois Institute of Technology

Approved _________________________

Adviser

Chicago, Illinois

May 2013

 iii

ACKNOWLEDGEMENT

It gives me a great pleasure to thank all those people who have helped me and

contributed for the successful completion of this work.

First of all, I would like to thank my advisor Dr. Ioan Raicu for giving me the

opportunity to work under him on this project. The course I took under him triggered my

passion in the field of distributed systems. His constant support and encouragement

throughout my two years of graduate school has made my thesis possible. I also thank

him for his patience, expertise and allowing me to work independently which eased me

throughout my thesis.

I would like to thank my parents Mr. Rajendran and Mrs. Sowdhamini Rajendran

as well as my sister Mrs. Sheetal Balajee who have constantly supported me in boosting

my morale. I dedicate this work to them.

I would also to thank Dr. Lan and Dr. Sun for everything they taught me about

Distributed Systems through their invaluable courses that broadened my knowledge.

I want to thank Dr. Lan for being a member of the thesis examining committee.

I am also grateful to my lab members Tonglin Li, Ke Wang and Dongfang Zhao

for their advice, contributions and helping me patiently throughout my thesis. It has been

a pleasure working with them.

Finally, I would like to thank the Almighty for being on my side all the time and

showing me the right path.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT ... iii

LIST OF FIGURES ... v

LIST OF SYMBOLS ... vii

ABSTRACT ... viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Many-Task Computing .. 3

1.2 Challenges at Exascales .. 5

1.3 Contributions ... 7

1.4 Thesis Outline ... 7

2. BACKGROUND AND RELATED WORK 8

2.1 Clusters, Grids, and Supercomputers 8

2.2 Related Work .. 10

2.3 Adaptive Work Stealing Algorithm .. 12

2.4 SimMatrix ... 17

3. PROPOSED SOLUTION ... 18

3.1 Architecture ... 19

3.2 Design and Implementation .. 19

3.3 Types of Messages .. 20

3.4 Task Assignment .. 22

3.5 Execution Unit .. 24

3.6 Load Balancing ... 24

3.7 Monitoring ... 26

4. EVALUATION AND EXPERIMENTAL RESULTS 27

4.1 Experiment Environment, Metrics and Workloads 27

4.2 Studying the Adaptive Work Stealing Algorithm through

simulations .. 31

4.3 Evaluating the Adaptive Work Stealing Algorithm with

MATRIX ... 34

5. CONCLUSION AND FUTURE WORK ... 47

BIBLIOGRAPHY .. 49

 v

LIST OF FIGURES

Figure Page

1. Projected Performance of Top500, November 2012 .. 10

2. MATRIX components and communications among components 21

3. MATRIX architecture for both best case and worst case scheduling 23

4. Different Types of Workload used for evaluating functionality of MATRIX .. 29

5. Efficiencies of the number of tasks to steal with respect to the scale 31

6. Efficiencies of number of static neighbors with respect to the scale 32

7. Efficiencies of dynamic random neighbors with respect to the scale 33

8. Comparison of MATRIX with SimMatrix throughput of 100K sleep 0 tasks

across 256 to 4K-cores .. 34

9. Comparison of MATRIX with SimMatrix performance up to 1024 nodes (4 cores

per node) ... 35

10. Comparison of MATRIX with Falkon efficiency of 256K to 2M sleep tasks across

256 to 2K-cores ... 36

11. Average Efficiency comparison of MATRIX with Falkon 36

12. Scalability of Adaptive Work Stealing algorithm for sleep tasks (1s to 8s) on a

scale of 64 nodes up to 1024 nodes (4 cores per node) 37

13. Scalability of Adaptive Work Stealing algorithm for short tasks (64ms to 512ms)

up to 1024 nodes (4 cores per node) ... 38

14. Analysis of work stealing using different workload types via MATRIX 39

15. System Utilization for different types of workload .. 40

16. Evaluating Complex Random DAG at small scales ... 41

17. Visualization of load balancing for Bag of Tasks workload............................. 42

18. Comparison of work stealing algorithm performance for 1s and 32ms workload at

the beginning and the end of the experiment on 512 nodes 43

19. Number of messages per task for different types of workload 44

 vi

20. Breakdown of total number of messages per task into individual message types . 45

21. Building blocks for future parallel programming systems and distributed

applications ... 48

 vii

LIST OF SYMBOLS

Symbol Definition

 Complexity

 Number of nodes in the system

 kth neighbor to be chosen at random

Probability that a neighbor chosen already is chosen

again

 Expected number of times a neighbor is chosen

 Maximum dynamic number of neighbors

 viii

ABSTRACT

Scheduling large amount of jobs/tasks over large-scale distributed systems play a

significant role to achieve high system utilization and throughput. Today’s state-of-the-

art job management/scheduling systems have predominantly Master/Slaves architectures,

which have inherent limitations, such as scalability issues at extreme scales (e.g.

petascales and beyond) and single point failures. In designing the next-generation job

management system that addresses both of these limitations, we argue that we must

distribute the job scheduling and management; however, distributed job management

introduces new challenges, such as non-trivial load balancing.

This thesis proposes an adaptive work stealing technique to achieve distributed

load balancing at extreme scales, those found in todays’ petascale systems towards

tomorrow’s exascale systems. This thesis also presents the design, analysis and

implementation of a distributed execution fabric called MATRIX (MAny-Task

computing execution fabRIc at eXascales). MATRIX utilizes the adaptive work stealing

algorithm for distributed load balancing and distributed hash tables for managing task

metadata. MATRIX supports both high-performance computing (HPC) and many-task

computing (MTC) workloads. We have validated it using synthetic workloads up to 4K-

cores on a IBM BlueGene/P supercomputer. Results show that high efficiencies (e.g.

90%+) are possible with certain workloads. We study the performance of MATRIX in

depth, including understanding the network traffic generated by the work stealing

algorithm. Simulation results are presented up to 1M-node scales which show that work

stealing is a scalable and efficient load balancing approach for many-core architectures to

extreme-scale distributed systems.

1

CHAPTER 1

INTRODUCTION

The goal of job scheduling system is to efficiently manage the distributed

computing power of workstations, servers, and supercomputers in order to maximize job

throughput and system utilization. With the dramatically increase of the scales of today’s

distributed systems, it is urgent to develop efficient job schedulers. Predictions are that by

the end of this decade, we will have exascale system with millions of nodes and billions

of threads of execution [1]. Unfortunately, today’s schedulers have centralized

Master/Slaves architecture (e.g. Slurm [2], Condor [3][4], PBS [5], SGE [6]), where a

centralized server is in charge of the resource provisioning and job execution. This

architecture has worked well in grid computing scales and coarse granular workloads

[63], but it has poor scalability at the extreme scales of petascale systems with fine-

granular workloads [13][29].

One approach to mitigate the issues arising from centralized architectures is to

distribute the centralized job manager in either hierarchical or fully distributed

architectures. Although this addresses potential single point of failures, and increases the

overall performance of the scheduling system, issues can arise in load balancing work

across all schedulers and compute nodes.

Load balancing is the technique of distributing workloads evenly across

processors of a parallel machine, or across nodes of a supercomputer, so that no single

processor or computing node is overloaded. Although extensive research about load

balancing has been done with centralized or hierarchical methods, we believe that

distributed load balancing techniques are potential approaches to extreme scale. This

2

work adopts work stealing [7][8][9][10] to achieve distributed load balancing, where the

idle processors steal tasks from the heavily-loaded ones. There are several parameters

affecting the performance of work stealing, such as the number of tasks to steal, the

number of neighbors of a node from whom it can steal tasks, static/dynamic neighbors,

and the polling interval. We explore these parameters through a light-weight job

scheduling system simulator, SimMatrix [11]. We explore work stealing as an efficient

method for load balancing jobs/tasks across a variety of systems, from 1000-core many-

core processors with 2D/3D mesh interconnect, to a billion-core exascale system. We

also explore the performance of work stealing in a real system, MATRIX, at scales of

1K-nodes and 4K-cores.

This work is motivated by the Many-Task Computing (MTC) paradigm [12]

[13][58][62] which bridges the gap between High Performance Computing (HPC) and

High Throughput Computing (HTC). MTC was defined in 2008 to describe a class of

applications that did not fit easily into the categories of traditional HPC or HTC. Many

MTC applications are structured as graphs of discrete tasks, with explicit input and output

dependencies forming the graph edges. In many cases, the data dependencies will be files

that are written to and read from a file system shared between the compute resources;

however, MTC does not exclude applications in which tasks communicate in other

manners. MTC applications often demand a short time to solution, may be

communication intensive or data intensive [59]. Tasks may be small or large,

uniprocessor or multiprocessor, compute-intensive or data-intensive. The set of tasks may

be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled.

3

The aggregate number of tasks, quantity of computing, and volumes of data may be

extremely large.

For many applications, a graph of distinct tasks is a natural way to conceptualize

the computation. Structuring an application in this way also gives increased flexibility.

For example, it allows tasks to be run on multiple different supercomputers

simultaneously; it simplifies failure recovery and allows the application to continue when

nodes fail, if tasks write their results to persistent storage as they finish; and it permits the

application to be tested and run on varying numbers of nodes without any rewriting or

modification. Examples of MTC systems are various workflow systems (e.g. Swift

[14][61][64], Nimrod [15], Pegasus [16], DAGMan [17], BPEL [18], Taverna [19],

Triana [20], Kepler [21], CoG Karajan [22], Dryad [23]). Other examples of MTC are

MapReduce systems (e.g. Google’s MapReduce [24], Yahoo’s Hadoop [25],

Sector/Sphere [26]), and distributed run-time systems such as Charm++ [27], ParalleX

[28]. Finally, light-weight task scheduling systems also fit in this category for enabling

MTC applications (e.g. Falkon [29] , Condor GlideIns [4] , Coaster [30], Sparrow [31]).

The rest of the chapter explains the Many-Task Computing (MTC) paradigm and

also discusses the different challenges at exascale computing followed by the

contributions to this thesis and its outline.

1.1 Many-Task Computing

Many-Task Computing (MTC) was introduced by Raicu et al. [12][13] in 2008 to

describe a class of applications that did not fit easily into the categories of traditional

high-performance computing (HPC) or high-throughput computing (HTC). Many MTC

applications are structured as graphs of discrete tasks, with explicit input and output

4

dependencies forming the graph edges. In many cases, the data dependencies will be files

that are written to and read from a file system shared between the compute resources;

however, MTC does not exclude applications in which tasks communicate in other

manners.

MTC applications often demand a short time to solution, may be communication

intensive or data intensive, and may comprise of a large number of short tasks. Tasks

may be small or large, uniprocessor or multiprocessor, compute-intensive or data-

intensive. The set of tasks may be static or dynamic, homogeneous or heterogeneous,

loosely coupled or tightly coupled. The aggregate number of tasks, quantity of

computing, and volumes of data may be extremely large. For many applications, a graph

of distinct tasks is a natural way to conceptualize the computation. Structuring an

application in this way also gives increased flexibility. For example, it allows tasks to be

run on multiple different supercomputers simultaneously; it simplifies failure recovery

and allows the application to continue when nodes fail, if tasks write their results to

persistent storage as they finish; and it permits the application to be tested and run on

varying numbers of nodes without any rewriting or modification.

The hardware of current and future large-scale HPC systems, with their high

degree of parallelism and support for intensive communication, is well suited for

achieving low turnaround times with large, intensive MTC applications. Hardware and

software for MTC must be engineered to support the additional communication and I/O,

must minimize task dispatch overheads, queue management, and support resource

management at finer granularity (e.g. at the core level, or node level, as opposed to the

partition level). The MTC paradigm has been defined and built with the scalability of

5

tomorrow’s systems as a priority and can address many of the HPC shortcomings at

extreme scales.

1.2 Challenges at Exascales

The era of many-core and exascale computing will bring new fundamental

challenges in how we build computing systems and their hardware, how we manage

them, and how we program them. The techniques that have been designed decades ago

will have to be dramatically changed to support the coming wave of extreme-scale

general purpose parallel computing. The four most significant challenges of exscale

computing are: Energy and Power; Memory and Storage; Concurrency and Locality;

Resiliency. Any one of these challenges, if left unaddressed, could halt progress towards

exascale computing.

The Energy and Power challenge is the most pervasive of the four, which refers

to the ability to keep the power consumption at a reasonable level, so that the cost to

power of a system does not dominate the cost of ownership. The DARPA Exascale report

[42] defined probably the single most important metric, namely the energy per flop.

Given the energy consumption of current state-of-the-art technologies which uses

12.7MW of power, the increase in performance by 100X (to reach exascales), and the

upper cap of 20MW of power for a single supercomputer, we can conclude that we need

to reduce the energy per flop by 50X to 100X to make exascale computing viable.

The Memory and Storage challenge refers to optimizing and minimizing data

movement through the memory hierarchy (e.g. persistent storage, solid state memory,

volatile memory, caches, and registers). Exascales will bring unique challenges to the

memory hierarchy never seen before in supercomputing, such as a significant increase in

6

concurrency at both the node level (number of cores is increasing at a faster rate than the

memory subsystem performance), and at the infrastructure level (number of cores is

increasing at a faster rate than persistent storage performance). The memory hierarchy

will change with new technologies (e.g. non-volatile memory), implying that

programming models and optimizations must adapt. Optimizing exascale systems for

data locality will be critical to the realization of future extreme scale systems.

The Concurrency and Locality challenge refers to how we will harness the many

magnitude orders of increased parallelism fueled by the many-core computing era, and

minimize the data movements among billions of threads of execution. The largest

supercomputers have increased in parallelism at an alarming rate. Many have said that the

“free ride” software had for many decades, has finally come to a halt, and a new age is

upon us which paints a bleak picture unless revolutionary progress is made in the entire

computing stack.

The Resilience challenge refers to the capability of making both the infrastructure

(hardware) and applications fault tolerant in face of a decreasing mean-time-to-failure

(MTTF). In order to achieve exascales, revolutionary advancements must be made in the

programming paradigm. A more abstract and modern programming paradigm could

allow parallelism to be harnessed with greater ease, as well as making applications fault

tolerant diminishing the effects of the decreasing system MTTF.

The MTC paradigm can address four of the five major challenges of exascale

computing, namely concurrency, resilience, memory and storage, and heterogeneity.

7

1.3 Contributions

 The main contributions of this thesis are as follows:

1. Design and implement MATRIX (a distributed execution fabric for MTC

workloads at extreme scales) to support distributed task scheduling and

management through an adaptive work stealing algorithm

2. Evaluate the functionality of MATRIX using different workload types such

as Bag of Tasks, Fan-In DAG, Fan-Out DAG, Pipeline DAG and Complex

Random DAG

3. Performance evaluation of MATRIX, including analyzing the behavior of

the load balancing algorithm and network traffic involved at scales of 64

nodes up to 1024 nodes for synthetic workloads of fine to medium

granularity (from 64ms to 8 seconds per task)

4. Validate and compare the performance of MATRIX with SimMatrix (a

simulator implementing the work stealing algorithm), and with Falkon (a

light weight task execution framework that supports both a centralized and

hierarchical architecture)

1.4 Thesis Outline

The thesis is organized in several chapters as follows: Chapter 2 describes the

background information and related work about job scheduling systems, load balancing,

and work stealing. In Chapter 3 we present the design and implementation of the adaptive

work stealing algorithm in a real system MATRIX. We show the evaluation and

8

experimental results in Chapter 4. Conclusions are drawn and future work is envisioned

in Chapter 5.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter covers essential background information on the topics of clusters,

grids, supercomputers, high throughput computing and high performance computing.

This chapter also discusses related work in two main areas: 1) job scheduling, and 2)

distributed load balancing. Then we present the adaptive work stealing algorithm and

give a brief overview of the simulator SimMatrix.

2.1 Clusters, Grids, and Supercomputers

A computer cluster is a collection of computers, connected together by some

networking fabric, and is composed of commodity processors, network interconnects, and

operating systems. Clusters are usually aimed to improve performance and availability

over that of a single computer; furthermore, clusters are typically more cost-effective

than a single computer of comparable speed or availability. Middleware such as MPI

allows cluster computing to be portable to a wide variety of cluster architectures,

operating systems, and networking offering high performance computing over

commodity hardware. [32] High throughput computing [33] has also seen good success

on clusters, as the needed computations are more loosely coupled and most scientists can

be satisfied by commodity CPUs and memory, essentially making high efficiency not

playing a major role.

Grids tend to be composed of multiple clusters, and are typically loosely coupled,

heterogeneous, and geographically dispersed. The term “the Grid” was coined in the mid-

9

1990s to denote a proposed distributed computing infrastructure for advanced science and

engineering [34]. Foster et al. describes the definition of Grid Computing to be about

large scale resource sharing, innovative applications, and high performance computing. It

is meant to offer flexible, secure, coordinated resource sharing among dynamic

collections of individuals, institutions, and resources, namely virtual organizations. Some

examples of grids are TeraGrid [35], Open Science Grid (OSG) [36], and Enabling Grids

for E-sciencE (EGEE) [37]. Some of the major grid middleware are the Globus Toolkit

[38] and Unicore [39]. Grids have also been used for both HPC and HTC, just as clusters

have; HPC is more challenging for grids as resources can be geographically distributed

which can increases latency significantly between nodes, but it can still be done

effectively with careful tuning for some HPC applications.

A supercomputer is a highly-tuned computer clusters using commodity processors

combined with custom network interconnects and typically customized operating system.

The term supercomputer is rather fluid, as today's supercomputer usually ends up being

an ordinary computer within a decade. Figure 1 shows the Top500 [40] trends in the

fastest supercomputers for the past fifteen years, and projecting out for the next decade.

We have currently surpassed the petaflop/s rating, and it is predicted that we will

surpass an exaflop/s within the next decade. Much of the predicted increase computing

power comes from the prediction of increasing the number of cores per processor (see

Figure 1), which is expected to be in the hundreds to thousands within a decade [41].

Until recently, supercomputers have been strictly HPC systems, but more recently they

have gained support for HTC as well.

10

Figure 1. Projected Performance of Top500, November 2012

2.2 Related Work

The job schedulers could be centralized, where a single dispatcher manages the

job submission, and job execution state updates; or hierarchical, where several

dispatchers are organized in a tree-based topology; or distributed, where each computing

node maintains its own job execution framework. The University of Wisconsin developed

one of the earliest job schedulers, Condor [3], to harness the unused CPU cycles on

workstations for long-running batch jobs. Slurm [2] is a resource manager designed for

Linux clusters of all sizes. It allocates exclusive and/or non-exclusive access to resources

to users for some duration of time so they can perform work, and provides a framework

for starting, executing, and monitoring work on a set of allocated nodes. Portable Batch

System (PBS) [5] was originally developed at NASA Ames to address the needs of HPC,

which is a highly configurable product that manages batch and inter-active jobs, and adds

11

the ability to signal, rerun and alter jobs. LSF Batch [43] is the load-sharing and batch-

queuing component of a set of workload management tools from Platform Computing of

Toronto. All these systems target as the HPC or HTC applications, and lack the

granularity of scheduling jobs at node/core level, making them hard to be applied to the

MTC applications. What’s more, the centralized dispatcher in these systems suffers

scalability and reliability issues. In 2007, a light-weight task execution framework, called

Falkon [29] was developed. Falkon also has a centralized architecture, and although it

scaled and performed magnitude orders better than the state of the art, its centralized

architecture will not even scale to petascale systems [13]. A hierarchical implementation

of Falkon was shown to scale to a petascale system in [13], the approach taken by Falkon

suffered from poor load balancing under failures or unpredictable task execution times.

Although distributed load balancing at extreme scales is likely a more scalable

and resilient solution, there are many challenges that must be addressed (e.g. utilization,

partitioning). Fully distributed strategies have been proposed, including neighborhood

averaging scheme (ACWN) [44][45][46][47]. In [47], several distributed and hierarchical

load balancing strategies are studied, such as Sender/Receiver Initiated Diffusion

(SID/RID), Gradient Model (GM) and a Hierarchical Balancing Method (HBM). Other

hierarchical strategies are explored in [46]. Charm++ [27] supports centralized,

hierarchical and distributed load balancing. In [27], the authors present an automatic

dynamic hierarchical load balancing method for Charm++, which scales up to 16K-cores

on a Sun Constellation supercomputer for a synthetic benchmark.

Work stealing has been used at small scales successfully in parallel languages

such as Cilk [48], to load balance threads on shared memory parallel machines [8][9][10].

12

Theoretical work has proved that a work-stealing scheduler can achieve execution space,

time, and communication bounds all within a constant factor of optimal [8][9]. However,

the scalability of work stealing has not been well explored on modern large-scale

systems. In particular, concerns exist that the randomized nature of work stealing can

lead to long idle times and poor scalability on large-scale clusters [10]. The largest

studies to date of work stealing have been at thousands of cores scales, showing good to

excellent efficiency depending on the workloads [10].

2.3 Adaptive Work Stealing Algorithm

We present the adaptive work stealing algorithm, which applies dynamic multiple

random neighbor selection and adaptive poll interval techniques. These adaptive natures

of the work stealing algorithm are critical to achieve good scalability and efficiency.

2.3.1 Dynamic Multi-Random Neighbor Selection. In work stealing, the

selection of neighbors from which an idle node could steal tasks could be static or

dynamic/random. In dynamic case, traditional work stealing randomly selects one

neighbor to steal tasks [10]. Choosing a single neighbor to steal could yield poor

performance at extreme scales. We propose a multiple random neighbor selection

strategy, which randomly selects several neighbors instead of one, and chooses the most

heavily loaded neighbor to steal tasks. We identify the optimal number of neighbors for

both static and dynamic selection. The multiple-random neighbor selection algorithm is

given in Algorithm 1.

13

Algorithm 1. Dynamic Multi-Random Neighbor Selection for Work Stealing

DYN-MUL-SEL(num_neigh, num_nodes)

1. let selected[num_nodes] be boolean array initialized false except the node itself

2. let neigh[num_neigh] be array of neighbors

3. for i = 1 to num_neigh

4. index = random () % num_nodes

5. while selected[index] do

6. index = random() % num_nodes

7. end while

8. selected[index] = true

9. neigh[i] = node[index]

10. end for

11. return neigh

When a node is idle, it randomly selects several neighbors from its membership

list to communicate for stealing work. The time complexity of Algorithm 1 is Ө(n),

where n is the number of neighbors. The proof is as follows:

Let be the kth neighbor to be chosen, be the number of nodes in the system.

The possibility that one neighbor that has already be chosen is chosen again is:

 .

So, Let be the number of times for selecting the kth neighbor, the actual number of

times is: ()
 (). ()

 - (-)

So, the expected number of choosing for selecting the kth neighbor:

 ∑ ()
 ()

∞

 (1)

14

Let’s say for an exascale system, , as we could see later, the maximum

dynamic number of neighbors √ , so the maximum

 . So, for , after ,

 ()
 - (-) (

)

 (-

) - (2)

which is negligible. So, we just need to consider and ,

 (

)

 (

) (

)

 (

) (3)

So, the time complexity to choose n neighbors is: Ө(n).

2.3.2 Adaptive Poll Interval. When a node fails to steal tasks from the selected

neighbors because all selected neighbors have no more tasks, or fails to steal tasks when

the most heavily loaded neighbor told that it had tasks, but which had already been

executed at the time when actual stealing happens, the node waits for a period of time and

then it does stealing again. We call this wait time the poll interval.

We implement an adaptive poll interval policy in order to achieve reasonable

performance while still keeping the work stealing algorithm responsive. Without this

policy, we observed that under idle conditions, many nodes would poll neighbors to do

work stealing, which would ultimately fail and would lead to more work stealing requests.

If the polling interval was set large enough to limit the number of work steal events, work

stealing would not respond quickly to change conditions, and lead to poor load balancing.

Therefore, we change the poll interval of a node dynamically by doubling it each time

when work stealing fails; and setting the poll interval back to the default small value

whenever the node steals some tasks successfully. This technique is similar to the

15

exponential back-off approach in the TCP networking protocol [49]. We set the default

poll interval to be small value (e.g. 1 ms). The specification of the adaptive work stealing

algorithm is given in Algorithm 2. Whenever a node has no tasks in its task waiting

queue, it signals the adaptive work stealing algorithm, which first randomly selects

several neighbors using the Algorithm 1, and then selects the most heavily loaded

neighbor to steal tasks. If work stealing fails, the node would double the poll interval and

wait for that period of time, after which the node tries to do work stealing again. This

procedure continues until the node finally successfully steals tasks from a neighbor, and

at which point, it sets the poll interval back to the initial small value (e.g. 1 sec).

At the beginning, just one node (id = 0) has tasks, all the other nodes signal work

stealing. Let’s say we have m nodes, and each one talks to n neighbors, so within logn (m)

steps, ideally the tasks should be distributed across all the nodes. At the very end, if there

are just a few tasks left in the system, the work stealing doesn’t help much, instead it

would introduce more communication overhead. One way to solve this problem is to set

an upper bound of the poll interval. After reaching the upper bound, the node would stop

doing work stealing.

Algorithm 2. Adaptive Work Stealing Algorithm

ADA-WORK-STEALING(num_neigh, num_nodes)

1. Neigh = DYN-MUL-SEL (num_neigh, num_nodes)

2. most_load_node = Neigh[0]

3. for i = 1 to num_neigh

4. if most_load_node. load < Neigh[i]. load then

16

5. most_load_node = Neigh[i]

6. end if

7. end for

8. if most_load_node.load = 0 then

9. sleep (poll_interval)

10. poll_interval = poll_interval * 2

11. ADA-WORK-STEALING(num_neigh, num_nodes)

12. else

13. steal tasks from most_load_node

14. if num_task_steal = 0 then

15. sleep (poll_interval)

16. poll_interval = poll_interval * 2

17. ADA-WORK-STEALING(num_neigh, num_nodes)

18. else

19. poll_interval = 1

20. return

21. end if

22. end if

17

2.4 SimMatrix

SimMatrix is a scalable discrete event simulator for MTC execution fabric, which

enables the exploring of work stealing at exascales. The design, implementation and

resource requirements are presented in [11]. SimMatrix simulates the exact behavior as

mentioned in the implementation of MATRIX above except that it does not support task

dependency. So it can simulate only the Bag of Tasks type workloads, and also has just

one ready queue and the other two are not required. SimMatrix supports both centralized

(best case scenario) and distributed scheduling (worst case scenario). Whenever a worker

node has no tasks in the ready queue, it triggers work stealing for load balancing.

The work [57] presents the investigation of adaptive work stealing algorithm at

exascale levels through simulations. Through the SimMatrix simulator, a wide range of

parameters important to understanding work stealing is explored at up to exascale levels,

such as number of tasks to steal number of neighbors of a node, and static/dynamic

neighbors. Experiment results show that adaptive work stealing configured with optimal

parameters could scale up to 1 million nodes and 1 billion cores, while achieving 85%+

efficiency running on real MTC workload traces obtained from a 17-month period on a

petascale supercomputer. It provides evidence that work stealing is a scalable method to

achieve distributed load balancing, even at exascales with millions of nodes and billions

of cores. Some of the results are presented in the evaluation section for comparing

MATRIX with SimMatrix. MATRIX is validated against Falkon and the simulator

SimMatrix and the results show 90% efficiency for synthetic workloads. However, more

work is needed to scale up the prototype many orders of magnitude needed to help

validate and prove the simulation results of SimMatrix.

18

CHAPTER 3

DESIGN AND IMPLEMENTATION OF MATRIX

This work investigates the usability of work stealing towards exascale levels of

parallelism. There are several parameters which could affect the performance of work

stealing to achieve load balancing, such as steal tasks from global space or just some

neighbors, how to select neighbors, how many number of neighbors a node could have,

how many tasks to steal, and the length of waiting time after which a node signals work

stealing again, if the node fails to steal tasks from others. Previous work done using

SimMatrix [11] investigated the search for an ideal set of parameters (e.g. worker’s

connectivity, number of tasks to steal, static/dynamic neighbors) needed to make work

stealing a viable and efficient distributed load balancing mechanism. Through

simulations, it was concluded that work stealing with the right parameters, would work

well at exascale levels of millions of nodes, billions of cores, and hundreds of billions of

tasks. This work seeks to validate the work stealing algorithm by implementing it, using

the optimal parameters suggested in previous works, in a real system called MATRIX, a

distributed execution fabric for MTC workloads at exascales.

MATRIX is a distributed many-Task computing execution framework, which

utilizes the adaptive work stealing algorithm to achieve distributed load balancing.

MATRIX uses ZHT (a distributed zero hop key-value store) [50] for job metadata

management, to submit tasks and monitor the task execution progress. We have a

functional prototype implemented in C/C++, and have scaled this prototype on a BG/P

supercomputer up to 1024-nodes (4K-cores) with good results.

19

3.1 Architecture

The components of MATRIX and the communication signals among all the

components are shown in Figure 2. For the purpose of evaluation, there are two kinds of

components, the client and the compute node. The client is just a benchmarking tool that

issues request to generate a set of tasks to be executed on a cluster of nodes. The

benchmarking tool has a task dispatcher for which allows the client to submit workload to

the compute nodes. A compute node can also be referred as worker node and can be used

interchangeably. Each compute node has a task execution unit along with a NoSQL data

store for managing the metadata of every task. The task execution unit is the core

component of MATRIX and the data store is possible through ZHT.

3.2 Design and Implementation

The current version of MATRIX supports synthetic workloads. Essentially, it can

be a set of “sleep” tasks. MATRIX also supports task dependency. This means the order

of execution among the tasks in the workload can be specified as a part of task

description and MATRIX would execute the tasks in the right order. For example the

workload can be a Directed Acyclic Graph (DAG) [54] where each node in the DAG is a

task and the edges among the nodes specify the dependency. This can be easily translated

to give the order of execution among tasks similar to topological sort. The system is

tested for different types of workloads such as Bag of Tasks, Fan-In DAG, Fan-Out Dag,

Pipeline DAG and a complex random DAG. These different DAGs are shown in Figure 4.

Initially at the time of booting, each compute node records its identity and

location information to a membership list which can be read by all other compute nodes

20

and the client. This membership list ensures that there is an N-N communication possible

among the compute nodes.

Upon request from the client, the task dispatcher initializes the workload of given

type and submits the workload to the one or more compute nodes. With the help of ZHT,

the task dispatcher could submit tasks to one arbitrary node, or to all the nodes in a

balanced distribution. The compute nodes execute the tasks in the given order. In the

background all compute nodes distribute the workload among themselves until the load

gets balanced using the adaptive work stealing algorithm. The client periodically

monitors the status of workload until all the tasks present in the workload gets executed

by the compute nodes.

ZHT records the instantaneous information of every task and this information is

distributed across all the compute nodes. Every time when a task is moved from one

compute node to other due to work stealing, this information is updated instantly. Thus

task migration can be considered as an atomic process that involves updating ZHT

followed by the actual movement of task from one compute node to other. So the client

can look up the status information of any task by performing a “lookup” operation on

ZHT.

3.3 Types of Messages

There are different kinds of messages caused by the work stealing algorithm as

shown in Figure 2.

ZHT Insert: The metadata of tasks such as task-id, task-description, task

submission time etc. are inserted into ZHT before submitting the actual tasks for

execution.

21

MATRIX Insert: After the metadata of all tasks is stored in ZHT, then the

workload can be submitted to the queue of execution unit to execute the workload.

ZHT Lookup: This provides an interface to retrieve the existing information from

ZHT. For instance, it can be used by the execution unit to check for a given task, if all the

dependency conditions are met so that the task is ready to be executed or to get the task

description when the task is about to be executed.

Figure 2. MATRIX components and communications among components

ZHT Update: If any part of metadata of the task existing in ZHT needs to

modified, then this API can be used to update the given field. For instance after a task has

finished its execution, the execution unit can signal all the children tasks that were

waiting for this task to finish its execution. This is also useful, to update the current node

information of a task, when it is migrating to a different compute node due to work

stealing.

22

Load Information: Idle nodes can poll a subset of compute nodes for knowing the

load on all those nodes.

Work Stealing: After getting the load information of neighboring nodes, the idle

node can pick the node with maximum load and send a request to steal tasks from that

node. Then the chosen node will send some of its load to the requested node.

Client Monitoring: The client periodically monitors the system utilization and the

rates of completion of task execution.

If the system is configured to run only Bag of Tasks that have no dependency

criteria, then no ZHT operations are involved. The only operations to be performed are

MATRIX Insert, Load Information, Work Stealing and Client Monitoring. This is

because for running of Bag of Tasks, the system can be optimized for executing the

workload by storing only the essential information directly in the MATRIX queue and

hence cutting down all ZHT operations. This difference can be seen in the results show in

the evaluation section.

3.4 Task Assignment

Broadly, MATRIX supports two types of task assignment: best case and worst

case assignment. The architectures are shown in Figure 3. For simplicity, the ids of all

nodes are represented as consecutive integer numbers ranging from 0 to the number of

nodes N-1.

In the best case situation (Figure 3 left part), the dispatcher initializes the tasks

and submit them one by one to the compute nodes in round-robin fashion. This is

possible due to the hashing mechanism in ZHT that maps each task to a compute node

based on the task-id. This is the best case situation in terms of system utilization because

23

the hashing function of ZHT does most of the load balancing. Another way to realize this

situation is to have as many dispatchers as compute nodes and divide the total tasks

among the dispatchers so that there is 1:1 mapping between a task dispatcher and a

compute node. Then let each task dispatcher submit the tasks to corresponding compute

node. Here work stealing is useful only at the end of the experiment, when there are very

few tasks left to be executed, and they are concentrated at only few compute nodes.

Figure 3. MATRIX architecture for both best case and worst case scheduling

In the worst case situation (Figure 3 right part) there is only one dispatcher which

initializes all tasks into a single package and submits the package to a single arbitrary

compute node. This is the worst case situation in terms of system utilization because the

entire load is on a single compute node. Thus work stealing thread runs from the start to

ensure that all the tasks get quickly distributed among all compute nodes evenly to reduce

the time for completing the execution of a workload. Thus it generates considerable

network traffic for initial load balancing when compared to the best case situation. Then

throughout the experiment the network traffic caused by work stealing reduces as the

24

system has converged with evenly distribution of workload. It increases again at the end

of experiment similar to the best case situation when there are very few tasks left to be

executed which might be concentrated at only few compute nodes and needs to be

balanced evenly among all other compute nodes.

The system can also be configured for tuning the number of dispatchers. It can be

equal to square root, or logarithm-base-2 of number of compute nodes. The best case and

worst case situation can thus be treated as special cases. The greater the number of

dispatchers the faster the load gets distributed evenly among the workers.

3.5 Execution Unit

The worker running on every compute node maintains three different queues: a

wait queue, a ready queue and a complete queue. The wait queue is used to hold all the

incoming tasks. The tasks remain in the wait queue as long as they have dependency

conditions than needs to be satisfied. Once they are satisfied, the tasks can be moved

from wait queue to the ready queue. Once in ready queue, the execution unit can then

execute them one by one in the FIFO way. After completing task execution, the task is

then moved to the complete queue. For each task in the complete queue, the execution

unit is responsible for sending the ZHT update messages to all children tasks of that

particular task to satisfy the dependency requirements.

3.6 Load Balancing

Anytime when a node has no waiting tasks, it will ask the load information of all

the neighbors in turn, and try to steal tasks from the heaviest loaded neighbor. When a

node receives a load information request, it will send its load information to the neighbor.

If a node receives work stealing request, it then checks its queue, if which is not empty, it

25

will send some tasks (e.g. half of the tasks) to the neighbor, or it will send information to

signal a steal failure. When a node fails to steal tasks, it will wait some time, referred to

as the poll interval, and then try again. The execution unit can be configured to perform

work stealing for any queue.

Each compute node has the knowledge of every other nodes, and can choose to

have a subset of neighbors to for work stealing. The amount of neighbors is same for

every worker and is configured at the time of initialization. The number of neighbors

from which to steal and the number of tasks to steal were set as concluded in the paper

[57]. It concluded that the optimal parameters for the MTC workloads and adaptive work

stealing are to steal half the number of tasks from their neighbors, and to use the square

root number of dynamic random neighbors. These parameters are tunable though and are

set during initialization time.

One modification in the implementation of the work stealing algorithm mentioned

in previous section is in the implementation of the exponential back-off approach. In the

algorithm mentioned in previous section the adaptive poll interval keeps doubling every

time a worker node fails to steal task. But in the implementation we found out increasing

adaptive poll interval indefinitely can cause starvation if the poll interval becomes too

high. So we set a cap (e.g. 1 sec). Thus the adaptive poll interval increases from initial

start (e.g. 1ms) to this cap value (e.g. 1 sec). Beyond this the poll interval does not change

even if the work stealing fails. It resets itself to the initial start value if the worker node is

successful in stealing tasks. Although it can avoid starvation, this condition can cause

problems at the end of experiment. It is due to the fact that at the end of experiment there

are very few tasks and it is difficult to load balance very few tasks especially when each

26

task runs for a very short time (e.g. 64ms). So having this cap can cause lot of failed work

stealing messages at the end of the experiment. This leads to poor utilization of network

in the perspective of work stealing. So we also maintain a counter that keeps track of

consecutive failed attempts. It the counter goes beyond a threshold value (e.g. logarithm

base-2 of number of worker nodes) then the worker node finds itself doing no useful

work other than causing network congestion. So it just stops its work stealing function

and exits as there were no tasks in its ready queue in the first place. Also, if it is possible

to know the total runtime of the entire workload beforehand, then the work stealing

algorithm can be tuned to be less aggressive at the start and end of experiment, which

means the initial start and cap may be set to a higher value (e.g. instead of 1ms to 1s, it

can be 100ms to 10s). This may sound counter intuitive for load balancing but we learned

through experiments that it can reduce network congestion also possibility of network

communication failures.

3.7 Monitoring

Regardless of the number of dispatchers used to submit tasks to compute nodes,

only one dispatcher keeps monitoring the system utilization and status of submitted tasks,

while all other task dispatchers exit. The monitoring dispatcher periodically sends

requests messages to determine the current load on all compute nodes and calculate the

number of tasks that have completed its execution. The termination condition is that all

the tasks submitted by client are finished.

27

CHAPTER 4

EVALUATION AND EXPERIMENTAL RESULTS

This chapter presents the experimental hardware and software environments, the

evaluation metrics, the essential results of the simulation from SimMatrix paper [57], the

workloads generation, the throughput of dispatcher, the throughput of the run-time

system, the validation of MATRIX against Falkon [29] and SimMatrix [11], and the

study of scalability, load balancing and network traffic caused by the adaptive work

stealing algorithm.

4.1 Experiment Environment, Metrics, Workloads

4.1.1 Testbed. MATRIX is implemented in C++; the dependencies are Linux,

ZHT [50], NoVoHT , Google Protocol Buffer [52], and a modern gcc compiler.

All the experiments in this section were performed on the IBM BlueGene/P

supercomputer [51]. Each node on the BG/P uses a quad-core, 32-bit, 850 MHZ IBM

Power PC 450 with 2GB of memory. A 3D torus network is used for point-to-point

communication among computing nodes. For validation of MATRIX against Falkon,

Falkon runs on the IBM BlueGene/P supercomputer [51] on a scale of 64 nodes up to

1024 nodes in powers of 2.

All the simulations for SimMatrix were performed on fusion.cs.iit.edu, which boasts 48

AMD Opteron cores at 1.93GHz, 256GB RAM, and a 64-bit Linux kernel 2.6.31.5.

 4.1.2 Metrics. We use important metrics to evaluate the performance of the

adaptive work stealing algorithm. They are listed below:

 Throughput: Number of tasks finished per second. Calculated as total-number-of-

tasks/ execution -time.

28

 Efficiency: the ratio between the ideal execution time of completing a given

workload and the real execution time. The ideal execution time is calculated by

taking the average task execution time multiplied by the number of tasks per core.

 Load Balancing: We adopted the coefficient variance [53] of the number of tasks

finished by each node as a measure of the load balancing. The smaller the

coefficient variance is, the better the load balancing would be. It is calculated as

the standard-deviation/average of number of tasks finished by each node.

 Scalability: Total number of tasks, number of nodes, and number of cores

supported.

 Utilization: This is another way of looking the efficiency of load balancing by

visualizing the utilization of the compute nodes in the system.

 Number of messages: is the count of the various messages flowing across the

network caused by the work stealing algorithm.

4.1.3 Workloads. First for testing the functionality of MATRIX we used five

different workload: Bag of tasks, Fan-In DAG, Fan-Out DAG, Pipeline DAG and a

complex random DAG. All the tasks in the DAG had a run-time of 8 seconds. These

different workloads are shown in Figure 4.

Bag of Tasks: This is the simplest workload where there are no dependencies

among the tasks and every task is always ready to execute. For such a workload, the task

dispatcher inserts them directly into the ready queue instead of inserting them into wait

queue first and then moving to ready queue. So some of the ZHT operations are skipped

for the Bag of Tasks workload. Hence, in terms of efficiency, this gives the best

performance among all the workloads.

29

Figure 4. Different Types of Workload used for evaluating functionality of MATRIX

Fan-In DAG: This workload introduces simpler dependencies among the tasks in

the workload and thus adds a little bit of complexity for the execution system. Since not

all the tasks in the workload are readily available at any given instant of time, the system

utilization is lesser when compared to Bag of Tasks workload. The performance of the

execution unit depends also the number of tasks that are ready to execute at any instant of

time and since initially there are large number of ready tasks, the Fan-In workload also

has a better efficiency.

Fan-Out DAG: This workload is similar to Fan-In DAG, except the Fan-Out

DAG is obtained be reversing the Fan-In DAG. Initially since there is only one ready

task, it takes slightly longer to get full utilization which depends on the out-degree of

every node in the graph.

30

Pipeline DAG: This workload is a collection of “pipes” where each task in a pipe

is dependent on the previous task. Here the system utilization depends on the number of

pipelines as at any instant of time the number of ready tasks is equal to the number of

pipelines due to the fact that only one task in a pipeline can execute at any given time.

This workload has a lower efficiency than the above three.

Complex Random DAG: This workload has the largest number of

interdependencies among tasks. Since this DAG is formed randomly, it is hard to predict

the performance. The workload has the lowest efficiency among all. All other workloads

can be treated as a special case of this workload.

In order to study the adaptive work stealing algorithm through MATRIX, the

experiments were run using synthetic workloads composed of sleep tasks of different

durations. We tested the scalability of MATRIX using two sets of sleep tasks. First we

tested it will sleep tasks of duration 1 second up to 8 seconds on a scale of 64 nodes up to

1024 nodes. We also tested the scalability of the system for fine granular workload using

sub-second tasks of duration 64ms up to 512ms on a scale of 1 node up to 1024 nodes.

In both cases, the sleep duration and the type of workload is specified as an

argument to task dispatcher which then initializes the set of tasks of the given type and

submit the workload to the one or more worker nodes.

To amortize the potential slow start and long trailing tasks at the end of

experiment, we fixed the number of tasks such that the each experiment runs for about

1000 seconds. For example, for an experiment with a workload of tasks of 1 second

duration, and with 1024 nodes, where each node has 4 cores, the number of tasks in the

workload would be 4M (1024×4×1000).

31

4.2 Studying the Adaptive Work Stealing Algorithm through simulations

This section explains the essential results obtained through simulations such as

number of tasks to steal number of neighbors of a node, and static/dynamic neighbors.[57]

4.2.1 Number of Tasks to Steal. In the five groups of experiments, steal_1, steal_2,

steal_log, steal_sqrt, steal_half means steal 1, 2, logarithm base-2, square root, and half

number of tasks respectively. Every node was set to have 2 static neighbors. The changes

of the efficiency of each group with respect to the scale are shown in Figure 5. These

results show that stealing half number of tasks is optimal, which confirms both our

intuition and the results from prior work on work stealing [10].

The reason that steal_half is not perfect (efficiency is very low at large scale) for

these experiments is that 2 neighbors of a node is not enough, and starvation can occur

for some nodes that are too far in the id namespace from the original compute node who

is receiving all the task submissions.

Figure 5. Efficiencies of the number of tasks to steal with respect to the scale

32

4.2.2 Number of Neighbors of a Node. There are two ways by which the neighbors

of a node are selected: static neighbors mean the neighbors (consecutive ids) are

determined at first and never change; dynamic random neighbors mean that each time

when does work stealing, a node randomly selects some neighbors.

In the experiments involving Static Neighbors, nb_2, nb_log, nb_sqrt, nb_eighth,

nb_quar, nb_half means 2, logarithm base-2, square root, eighth, a quarter, half neighbors

of all nodes, respectively. In this case, neighbors are chosen as consecutive ids at the

beginning, and will not change. The result in Figure 6 shows that when the number of

neighbors is no less than eighth of all nodes, the efficiency will keep at the value of

higher than 87% within 8192 nodes’ scale. For other numbers of static neighbors, the

efficiencies could not remain, and will drop down to very small values.

Figure 6. Efficiencies of number of static neighbors with respect to the scale

Thus the optimal number of static neighbors is eighth of all nodes, as more

neighbors do not improve performance significantly. However, in reality, an eighth of

neighbors will likely lead to too many neighbors to be practical, especially for an

33

exascale system with millions of nodes (meaning 128K neighbors). In the search for a

lower number of needed neighbors, dynamic multiple random neighbor selection

technique was explored.

In dynamic random neighbors, there were 4 groups of experiments, nb_1, nb_2,

nb_log, nb_sqrt. First nb_1 experiment was done until it started to saturate (the efficiency

is less than 80%), then at which point, nb_2 was started, then nb_log, and nb_sqrt at last.

The results are shown in Figure 7.

Figure 7. Efficiencies of dynamic random neighbors with respect to the scale

Even with 1M-nodes in an exascale system, the square root implies having 1K

neighbors, a reasonable number of nodes for which each node to keep track of with

modest amounts of resources. The conclusion drawn from this section about the optimal

parameters for the adaptive work stealing is to steal half the number of tasks from their

neighbors, and to use the square root number of dynamic random neighbors.

34

4.3 Evaluating the Adaptive Work Stealing Algorithm with MATRIX

All the experiments in this section were performed using Bag of Tasks workload.

4.3.1 Validation: MATRIX vs. SimMatrix. Before evaluating the performance of

the work stealing in the real system, the throughput of the system on a sleep 0 workload

was compared with SimMatrix. Figure 8 shows the validation results comparing

SimMatrix and MATRIX for raw throughput on a sleep 0 workload. The real

performance data matched the simulation with 5.8% difference.

Figure 8. Comparison of MATRIX with SimMatrix throughput of 100K sleep 0 tasks

We also validated the performance of the implementation against SimMatrix up to

1024 nodes. Since the average runtime of every task in the MTC workload used for

simulation was 95.20 seconds, we evaluated MATRIX with a workload of sleep tasks

where each task runs for 100 seconds. The comparison is shown in Figure 9.

35

Figure 9. Comparison of MATRIX with SimMatrix performance up to 1024 nodes (4

 cores per node)

The real performance data matched the simulation with 2.6% difference. This

shows that the work stealing algorithm has the potential to achieve distributed load

balancing, even at exascales with millions of nodes and billions of cores.

4.3.2 Comparison: MATRIX vs. Falkon. Figure 10 shows the results from a study of

how efficient we can utilize up to 2K-cores with varying size tasks using both MATRIX

and the distributed version of Falkon (which used a naïve hierarchical distribution of

tasks); MATRIX are the solid lines, while Falkon are the dotted lines. We see MATRIX

outperform Falkon across the board with across all size tasks, achieving efficiencies

starting at 92% up to 97%, while Falkon only achieved 18% to 82%.

36

Figure 10. Comparison of MATRIX with Falkon efficiency of 256K to 2M sleep tasks

 across 256 to 2K-cores

Figure 11 shows the comparison of average efficiencies between MATRIX and

Falkon for different duration.

Figure 11. Average Efficiency comparison of MATRIX with Falkon

4.3.3 Scalability of Adaptive Work Stealing. In all the following experiments, we use

the sleep workloads, where each node has 4 cores, and the number of tasks is 1000 times

37

of the number of cores. Figure 12 shows the scalability of the adaptive work stealing up

to 1024 nodes for tasks of duration 1 second up to 8 seconds, in terms of efficiency and

coefficient variance.

The results show that up to 1024 nodes, the adaptive work stealing actually works

quite well, given the right work stealing parameters. We see an efficiency of 88% at a

1024 node scale, with a co-variance of less than 0.05 (e.g. meaning that the standard

deviation of the number of tasks run being a relatively low 500 tasks when on average

each node completed 4K tasks).

Figure 12. Scalability of Adaptive Work Stealing algorithm for sleep tasks (1s to 8s) on a

 scale of 64 nodes up to 1024 nodes (4 cores per node)

The efficiency drops from 100% to 88% (12 percentages) from 1 node to 1024

nodes. The reason that efficiency decreases with the scale is because the run time of

1000 seconds is still not perfectly enough for amortizing the slow start and long trailing

tasks at the end of experiment. We believe that the more tasks per core we set, the higher

38

the efficiency will be, within an upper bound (there are communication overheads, such

as the time taken to submit all the tasks from the client), but the longer it takes to run

large scale experiments. We found that run time of 1000 seconds (or a workload of 4

million tasks – 1000 tasks * 1024 nodes * 4 cores) could balance well between the

efficiency (88%) and the running time to run large scale experiments.

Figure 13 shows the scalability of the adaptive work stealing up to 1024 nodes for

fine granular tasks of duration 64ms up to 512ms, in terms of efficiency and coefficient

variance.

Figure 13. Scalability of Adaptive Work Stealing algorithm for short tasks (64ms to

 512ms) up to 1024 nodes (4 cores per node)

Again the results show that up to 1024 nodes, the adaptive work stealing actually

works quite well even for sub-second tasks starting at 79% up to 98% with the right

parameters.

39

4.3.4 Evaluating functionality of MATRIX. This section explains the

experiments performed to test the functionality of MATRIX. Based on the workload type,

the task dispatcher generates a Directed Acyclic Graph for that type and then submits it to

the execution unit. All tasks in the workload were sleep tasks and had a run-time of 8

seconds. The efficiency of system was measured and is shown in the Figure 14.

The Bag of tasks has highest efficiency because there is no dependency among

any tasks and each task is always in the ready queue. So the system utilization for bag of

tasks reaches maximum immediately at the start of the experiment.

Figure 14. Analysis of work stealing using different workload types via MATRIX

For Fan-In and Fan-Out DAG, completion of one task might satisfy the

dependencies of many other tasks thus providing lot of ready tasks at any instant of time.

This number keeps increasing till the point where the system utilization can reach its

maximum.

40

For Pipeline DAG, the efficiency depends on system utilization which is in turn

depends on the number of pipelines. So if we have greater number of pipelines, then the

efficiency will be greater.

For random DAG, the efficiency is the least because the generated DAG might

contain tasks that have lot of dependencies and is thus hard to have lot of ready tasks at

any instant of time. So we tried evaluating the random DAG at small scales with a

smaller workload on different testbed called HEC which has 64 nodes each having 8

AMD Opteron cores at 2.7GHz, 8GB RAM, and a 64-bit Linux kernel 2.6.28.10. This is

shown in Figure 15. The efficiency is higher for lower scales and lower number of tasks

(100 tasks per core instead of 1000 tasks per core), probably because the generated

smaller workload had fewer dependencies and thus higher number of readily available

tasks at any instant of time. Also, although smaller, HEC is more powerful than BGP.

Figure 15. Evaluating Complex Random DAG at small scales

41

4.3.5 Visualization of Load Balancing. In order to understand more about the

behavior of the algorithm, the system utilization was observed to get an idea of how well

the load is balanced across all the compute nodes. Figure 16 shows the system utilization

when running the eperiment different with different workload types.

Figure 16. System Utilization for different types of workload

For the Bag of Tasks and Fan-In workload, it seems that the load gets balanced

quickly on the entire system and thus takes shorter time to finish the workload when

compared to Fan-Out workload. The reason for such a low utilization for Pipeline and

Complex Random workload is that, there are not sufficient tasks available to keep the

entire system busy. This can be improved by increasing the number of tasks in the

workload.

A more detailed analysis was made for Bag of Tasks workload in terms of

duration of each task. As seen from Figure 17, it is generally difficult to get higher

42

efficiency for shorter jobs since load balancing is not perfect for shorter running jobs like

Sleep 32ms.

Figure 17. Visualization of load balancing for Bag of Tasks workload

Figure 18 shows a comparison of load balancing for 1s and 32ms tasks on 512

nodes. The Start figures (Figure 18 top half) indicate the convergence of the load i.e. how

quick the entire load get balanced on 512 nodes. The 32ms workload had more number of

tasks so that the run time of the experiment is longer to amortize the ramp up and ramp

down time. As seen for the 32ms workload the time taken for the entire workload to get

distributed evenly is more than double than that required for 1s workload. The End

figures (Figure 18 lower half) tells us about the end of experiment when there are very

few tasks left to be executed.

There can be two reasons for such behavior. The 32ms workload had more

number of tasks. Another possible explanation for this behavior is that, when the task

length is short, before the tasks could be stolen for load balancing, it gets executed at the

43

node where it is present i.e. the queues are changing state so fast that by the time they

want to steal work, there is nothing to steal anymore. Tasks migration is very low as they

all run fast, and any work stealing that tries to occur likely fails.

Figure 18. Comparison of work stealing algorithm performance for 1s and 32ms

 workload at the beginning and the end of the experiment on 512 nodes

4.3.6 Network Traffic generated by Work Stealing. The last thing that was

measured as a part of evaluation of MATRIX is the number of messages per task

involved in testing of different workloads and the percentage of each message type.

Figure 19 shows the the number of messages for different workload types. This shows

that although with increase in the number of nodes the total number of messages is

increased, the number of messages per task has remained almost constant which means

work stealing is a stable algorithm. These numbers were broken down to see the

44

individual contribution of each message type. This is shown in Figure 20.

Figure 19. Number of messages per task for different types of workload

As seen, the most of the messages were of the ZHT Update and Load Information

type. This is understood because in DAGs all the tasks have dependencies and for each

task completion an update message is sent. ZHT Update message is also sent when task

migration occurs due to work stealing to update the current node information. Also the

idle nodes try to steal tasks but all the stealing attempts are unsuccesful. A Load

Information message can be treated as success only if it finds a node with tasks. So it

should be immediately followed by a Work Stealing message. Approximately only 1% of

Load Information messages are succesful. This is a concern and needs to be improved in

the future version of MATRIX by introducing “random stealing”. Here the work stealing

algorithm can be modified to randomly choose one neighbor and steal tasks from if the

45

neighbor has tasks in its queue. This will significantly improve performance for fine

grained tasks significantly.

Figure 20. Breakdown of total number of messages per task into individual message types

Although the number of messages seems high, it is due to the runtime of the

experiment which was fixed to 1000 seconds for amortizing the slow start and long

trailing tasks at the end. The total runtime of the experiment is based on the number of

tasks in the workload.

Throughout the experiment, apart from the initial insert from the task dispatcher

in the beginning, all the inserts happen when a worker sends tasks from its ready queue

upon receiving work stealing request. So essentially, there will be as many inserts as the

stealing. Also work stealing requests occur only after determining the heaviest loaded

worker which is shown by the green line. But not all time the load query is successful.

The successful requests are shown by the black line. Thus the use of adaptive poll

interval to minimize the network traffic by regulating the number of load query requests

seems to be working better for Bag of Tasks than other workload types. As mentioned

46

above, the “random stealing” can help improve the performance for fine grained tasks

significantly.The monitoring information gathered periodically by the dispatcher is used

to determine the status of submitted tasks and the load on all workers for the validation

purposes. The dispatcher can be configured to this less frequently so as to reduce the

monitoring traffic.

47

CHAPTER 5

CONCLUSION AND FUTURE WORK

Large scale distributed systems require efficient job scheduling system to achieve

high throughput and system utilization. Distributed load balancing is critical for

designing job schedulers. Work stealing is a potential technique to achieve distributed

load balancing across many concurrent threads of execution, from many-core processors

to exascale distributed systems. The work stealing algorithm was implemented in a real

system called MATRIX, and a preliminary evaluation up to 4K-core scales was

performed for different types of workload namely Bag of Tasks, Fan-In DAG, Fan-Out

DAG, Pipeline DAG and Complex Random DAG. The parameters of adaptive work

stealing algorithm was configured using the simulation-based results from SimMatrix

[57] (the number of tasks to steal is half and there must be a squared root number of

dynamic neighbors) and its performance was analyzed in terms of system utilzation and

network traffic.

We modified the MATRIX implementation and developed a job launch

framework to add scheduling support for HPC workloads. We plan to evaluate it and

integrate it with the Slurm job manager [2]. We plan to integrate MATRIX with Swift

[14] (a data-flow parallel programming systems) for running real application Directed

Acyclic Graphs.

Some of the features in MATRIX such as Message Batching, Atomic updates,

Distribued Queue and selective lookups can be added to ZHT [50] to make it more

general so that many new applications can benefit from it. Also the current version of

ZHT has a N-N network topology where each compute node can communicate with

48

every other node. We plan to add new network topologies such as logarithmic topology

to allow each compute node select neighbors based on location. This can help optimize

the network traffic.

We will also continue to develop the MATRIX system. Based on the simulation

results, we expect that MATRIX should scale to 160K-cores on the IBM BlueGene/P

supercomputer we conducted our preliminary evaluation. We also plan to test it on the

newly built IBM BlueGene/Q supercomputer at a full 768K-core (3M hardware threads)

scale. MATRIX will also be integrated with other projects, such as large-scale distributed

file systems [60] FusionFS [56] and large scale programming runtime systems Charm++

[27]. A potential future software stack is shown in Figure 21. The gray areas represent the

traditional HPC-stack. The green areas are additional components, such as support for

many-task computing applications, using lower level components such as MATRIX,

ZHT [50], and FusionFS [56]. The yellow areas represent the simulation components

aiming to help explore peta/exascales levels on modest terascale systems. Once

SimMatrix is extended more complex network topologies, we could address the

remaining challenge of I/O and memory through data-aware scheduling. [55].

49

Figure 21. Building blocks for future parallel programming systems and distributed

 applications

50

BIBLIOGRAPHY

[1] P. Kogge, et. al., “Exascale computing study: Technology challenges in achieving

exascale systems,” 2008.

[2] M. A. Jette et. al, Slurm: Simple linux utility for resource management. In In Lecture

Notes in Computer Sicence: Proceedings of Job Scheduling Strategies for Prarallel

Procesing (JSSPP) 2003 (2002), Springer-Verlag, pp. 44-60.

[3] D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in Practice: The Condor

Experience” Concurrency and Computation: Practice and Experience 17 (2-4), pp. 323-

356, 2005.

[4] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke. “Condor-G: A Computation

Management Agent for Multi-Institutional Grids,” Cluster Computing, 2002.

[5] B. Bode et. al. “The Portable Batch Scheduler and the Maui Scheduler on Linux

Clusters,” Usenix, 4th Annual Linux Showcase & Conference, 2000.

[6] W. Gentzsch, et. al. “Sun Grid Engine: Towards Creating a Compute Power Grid,” 1st

International Symposium on Cluster Computing and the Grid, 2001.

[7] Work Stealing: www.cs.cmu.edu/~acw/15740/proposal.html, 2012.

[8] R. D. Blumofe, et. al. “Scheduling multithreaded computations by work stealing,” In

Proc. 35th FOCS, pages 356–368, Nov. 1994.

[9] V. Kumar, et. al. “Scalable load balancing techniques for parallel computers,” J.

Parallel Distrib. Comput., 22(1):60–79, 1994.

[10] J. Dinan et. al. “Scalable work stealing,” In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis (SC '09), 2009.

[11] K. Wang, K. Brandstatter, I. Raicu, “SimMatrix: Simulator for Many-Task computing

execution fabRIc at eXascales,” technical report,

http://datasys.cs.iit.edu/~kewang/publications.html.

[12] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and Supercomputers,”

1st IEEE Workshop on Many-Task Computing on Grids and Supercomputers

(MTAGS) 2008.

[13] I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale Systems,” IEEE

SC 2008.

[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu, T. Stef-Praun,

M. Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel Computation,” IEEE

Workshop on Scientific Workflows 2007.

51

[15] D. Abramson, et. al. “Parameter Space Exploration Using Scientific Workflows,”

Computational Science—ICCS 2009, LNCS 5544, Springer, 2009, pp. 104-113.

[16] E. Deelman, et. al. “Pegasus: A Framework for Mapping ComplexScientific Workflows

onto Distributed Systems.” Scientific Programming, 13 (3). 219-237.

[17] The Condor DAGMan (Directed Acyclic Graph Manager),

http://www.cs.wisc.edu/condor/dagman, 2007.

[18] Business Process Execution Language for Web Services, Version 1.0, http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/, 2002.

[19] T. Oinn, et. al. A Tool for the Composition and Enactment of Bioinformatics

Workflows Bioinformatics Journal, 20 (17). 3045-3054.

[20] I. Taylor et. al. “Visual Grid Workflow in Triana.” Journal of Grid Computing, 3 (3-4).

153-169.

[21] I. Altintas, et. al. “Kepler: An Extensible System for Design and Execution of

Scientific Workflows.” 16th Intl. Conf. on Scientific and Statistical Database

Management, (2004).

[22] G. Laszewski, et. al. Java CoG Kit Workflow. in Workflows for eScience, 2007, 340-

356.

[23] M. Isard, et. al. “Dryad: Distributed Data-Parallel Programs from Sequential Building

Blocks,” ACM SIGOPS Operating System Rev., June 2007, pp. 59-72..

[24] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Comm. ACM, Jan. 2008, pp. 107-113.

[25] Hadoop Overview: wiki.apache.org/hadoop/ProjectDescription, 2012.

[26] Y. Gu and R.L. Grossman, “Sector and Sphere: The Design and Implementation of a

High Performance Data Cloud,” Philosophical Trans. Royal Society A, 28 June 2009,

pp. 2429-2445.

[27] G. Zhang, et. al, “Hierarchical Load Balancing for Charm++ Applications on Large

Supercomputers,” In Proceedings of the 2010 39th International Conference on Parallel

Processing Workshops, ICPPW 10, pages 436-444, Washington, DC, USA, 2010.

[28] H. Kaiser, M. Brodowicz, T. Sterling. “ParalleX An Advanced Parallel Execution

Model for Scaling-Impaired Applications”, Parallel Processing Workshops, 2009.

[29] I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON Framework,”

IEEE/ACM SC 2007.

52

[30] K. Maheshwari, et. al. “Flexible Cloud Computing through Swift Coasters.” In

Proceedings of Cloud Computing and its Applications, Chicago, April 2011. Open

Cloud Consortium.

[31] K. Ousterhout et. al. “Batch Sampling: Low Overhead Scheduling for Sub-Second

Prallel Jobs.” University of California, Berkeley, 2012.

[32] D. Bader, R. Pennington. "Cluster Computing: Applications". Georgia Tech College of

Computing, June 1996

[33] M. Livny, J. Basney, R. Raman, T. Tannenbaum. “Mechanisms for High Throughput

Computing,” SPEEDUP Journal 1(1), 1997

[34] I. Foster and C. Kesselman, Eds., “The Grid: Blueprint for a Future Computing

Infrastructure”, “Chapter 2: Computational Grids.” Morgan Kaufmann Publishers, 1999

[35] C. Catlett, et al. “TeraGrid: Analysis of Organization, System Architecture, and

Middleware Enabling New Types of Applications,” HPC 2006

[36] Open Science Grid (OSG), https://www.opensciencegrid.org/bin/view, 2013

[37] F. Gagliardi, The EGEE European Grid Infrastructure Project, LNCS, Volume

3402/2005, p. 194-203, 2005

[38] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,”

Conference on Network and Parallel Computing, 2005

[39] D. W. Erwin and D. F. Snelling, “UNICORE: A Grid Computing Environment”, Euro-

Par 2001, LNCS Volume 2150/2001: p. 825-834, 2001

[40] Top500, November 2012, http://www.top500.org/lists/2012/11/, 2013

[41] P. Helland, Microsoft, “The Irresistible Forces Meet the Movable Objects”, November

9th, 2007

[42] V. Sarkar, S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E.

Elnohazy, M. Hall, R. Harrison, W. Harrod, K. Hill, J. Hiller, S. Karp, C. Koelbel, D.

Koester, P. Kogge, J. Levesque, D. Reed, R. Schreiber, M. Richards, A. Scarpelli, J.

Shalf, A. Snavely, T. Sterling, “ExaScale Software Study: Software Challenges in

Extreme Scale Systems”, ExaScale Computing Study, DARPA IPTO, 2009.

[43] LSF: http://platform.com/Products/TheLSFSuite/Batch, 2012.

[44] L. V. Kal´e et. al. “Comparing the performance of two dynamic load distribution

methods,” In Proceedings of the 1988 International Conference on Parallel Processing,

pages 8–11, August 1988.

53

[45] W. W. Shu and L. V. Kal´e, “A dynamic load balancing strategy for the Chare Kernel

system,” In Proceedings of Supercomputing ’89, pages 389–398, November 1989.

[46] A. Sinha and L.V. Kal´e, “A load balancing strategy for prioritized execution of tasks,”

In International Parallel Processing Symposium, pages 230–237, April 1993.

[47] M.H. Willebeek-LeMair, A.P. Reeves, “Strategies for dynamic load balancing on

highly parallel computers,” In IEEE Transactions on Parallel and Distributed Systems,

volume 4, September 1993.

[48] M. Frigo, et. al, “The implementation of the Cilk-5 multithreaded language,” In Proc.

Conf. on Prog. Language Design and Implementation (PLDI), pages 212–223. ACM

SIGPLAN, 1998.

[49] V. G. Cerf, R. E. Kahn, “A Protocol for Packet Network Intercommunication,” IEEE

Transactions on Communications 22 (5): 637–648, May 1974.

[50] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, I. Raicu,

“ZHT: A Light-weight Reliable Persistent Dynamic Scalable Zero-hop Distributed

Hash Table”, to appear at the 27th IEEE International Parallel & Distributed Processing

Symposium (IPDPS), 2013

[51] IntrBlue Gene/P Solution: http://www.top500.org/system/176322, 2013.

[52] Google Protocol Buffers: https://developers.google.com/protocol-buffers/, 2013

[53] Coefficient Variance: http://en.wikipedia.org/wiki/Coefficient_of_variation, 2013.

[54] Directed Acyclic Graph: http://en.wikipedia.org/wiki/Directed_acyclic_graph, 2013

[55] Ioan Raicu, et. al. “The Quest for Scalable Support of Data Intensive Workloads in

Distributed Systems,” ACM HPDC 2009.

[56] FusionFS: Fusion Distributed File System, http://datasys.cs.iit.edu/projects/FusionFS/,

2013.

[57] K. Wang, I. Raicu. "SimMatrix: SIMulator for MAny-Task computing execution

fabRIc at eXascales", Oral Qualifier, Illinois Institute of Technology, 2012

[58] I. Raicu. "Many-Task Computing: Bridging the Gap between High Throughput

Computing and High Performance Computing", Computer Science Dept., University of

Chicago, Doctorate Dissertation, March 2009

[59] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C.M. Moretti, A. Chaudhary, D. Thain.

“Towards Data Intensive Many-Task Computing”, book chapter in Data Intensive

Distributed Computing: Challenges and Solutions for Large-Scale Information

Management, IGI Global Publishers, 2011

54

[60] I. Raicu, P. Beckman, I. Foster. “Making a Case for Distributed File Systems at

Exascale”, Invited Paper, ACM Workshop on Large-scale System and Application

Performance (LSAP), 2011

[61] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M. Hategan, K. Iskra, P.

Beckman, I. Foster. “Extreme-scale scripting: Opportunities for large task-parallel

applications on petascale computers”, Scientific Discovery through Advanced

Computing Conference (SciDAC09), 2009

[62] I. Raicu, I. Foster, M. Wilde, Z. Zhang, A. Szalay, K. Iskra, P. Beckman, Y. Zhao, A.

Choudhary, P. Little, C. Moretti, A. Chaudhary, D. Thain. "Middleware Support for

Many-Task Computing", Cluster Computing, The Journal of Networks, Software Tools

and Applications, 2010

[63] C. Dumitrescu, I. Raicu, I. Foster. “Experiences in Running Workloads over Grid3”,

The 4th International Conference on Grid and Cooperative Computing (GCC 2005)

[64] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M. Wilde. “Realizing Fast,

Scalable and Reliable Scientific Computations in Grid Environments”, book chapter in

Grid Computing Research Progress, ISBN: 978-1-60456-404-4, Nova Publisher 2008

