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ABSTRACT 

 

Scheduling large amount of jobs/tasks over large-scale distributed systems play a 

significant role to achieve high system utilization and throughput. Today’s state-of-the-

art job management/scheduling systems have predominantly Master/Slaves architectures, 

which have inherent limitations, such as scalability issues at extreme scales (e.g. 

petascales and beyond) and single point failures. In designing the next-generation job 

management system that addresses both of these limitations, we argue that we must 

distribute the job scheduling and management; however, distributed job management 

introduces new challenges, such as non-trivial load balancing. 

This thesis proposes an adaptive work stealing technique to achieve distributed 

load balancing at extreme scales, those found in todays’ petascale systems towards 

tomorrow’s exascale systems. This thesis also presents the design, analysis and 

implementation of a distributed execution fabric called MATRIX (MAny-Task 

computing execution fabRIc at eXascales). MATRIX utilizes the adaptive work stealing 

algorithm for distributed load balancing and distributed hash tables for managing task 

metadata. MATRIX supports both high-performance computing (HPC) and many-task 

computing (MTC) workloads. We have validated it using synthetic workloads up to 4K-

cores on a IBM BlueGene/P supercomputer. Results show that high efficiencies (e.g. 

90%+) are possible with certain workloads. We study the performance of MATRIX in 

depth, including understanding the network traffic generated by the work stealing 

algorithm. Simulation results are presented up to 1M-node scales which show that work 

stealing is a scalable and efficient load balancing approach for many-core architectures to 

extreme-scale distributed systems.     
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CHAPTER 1 

INTRODUCTION 

 

The goal of job scheduling system is to efficiently manage the distributed 

computing power of workstations, servers, and supercomputers in order to maximize job 

throughput and system utilization. With the dramatically increase of the scales of today’s 

distributed systems, it is urgent to develop efficient job schedulers. Predictions are that by 

the end of this decade, we will have exascale system with millions of nodes and billions 

of threads of execution [1]. Unfortunately, today’s schedulers have centralized 

Master/Slaves architecture (e.g. Slurm [2], Condor [3][4], PBS [5], SGE [6]), where a 

centralized server is in charge of the resource provisioning and job execution. This 

architecture has worked well in grid computing scales and coarse granular workloads 

[63], but it has poor scalability at the extreme scales of petascale systems with fine-

granular workloads [13][29].  

One approach to mitigate the issues arising from centralized architectures is to 

distribute the centralized job manager in either hierarchical or fully distributed 

architectures. Although this addresses potential single point of failures, and increases the 

overall performance of the scheduling system, issues can arise in load balancing work 

across all schedulers and compute nodes.  

Load balancing is the technique of distributing workloads evenly across 

processors of a parallel machine, or across nodes of a supercomputer, so that no single 

processor or computing node is overloaded. Although extensive research about load 

balancing has been done with centralized or hierarchical methods, we believe that 

distributed load balancing techniques are potential approaches to extreme scale. This 
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work adopts work stealing [7][8][9][10] to achieve distributed load balancing, where the 

idle processors steal tasks from the heavily-loaded ones. There are several parameters 

affecting the performance of work stealing, such as the number of tasks to steal, the 

number of neighbors of a node from whom it can steal tasks, static/dynamic neighbors, 

and the polling interval. We explore these parameters through a light-weight job 

scheduling system simulator, SimMatrix [11]. We explore work stealing as an efficient 

method for load balancing jobs/tasks across a variety of systems, from 1000-core many-

core processors with 2D/3D mesh interconnect, to a billion-core exascale system. We 

also explore the performance of work stealing in a real system, MATRIX, at scales of 

1K-nodes and 4K-cores.   

This work is motivated by the Many-Task Computing (MTC) paradigm [12] 

[13][58][62] which bridges the gap between High Performance Computing (HPC) and 

High Throughput Computing (HTC).  MTC was defined in 2008 to describe a class of 

applications that did not fit easily into the categories of traditional HPC or HTC. Many 

MTC applications are structured as graphs of discrete tasks, with explicit input and output 

dependencies forming the graph edges. In many cases, the data dependencies will be files 

that are written to and read from a file system shared between the compute resources; 

however, MTC does not exclude applications in which tasks communicate in other 

manners. MTC applications often demand a short time to solution, may be 

communication intensive or data intensive [59]. Tasks may be small or large, 

uniprocessor or multiprocessor, compute-intensive or data-intensive. The set of tasks may 

be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. 
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The aggregate number of tasks, quantity of computing, and volumes of data may be 

extremely large.  

For many applications, a graph of distinct tasks is a natural way to conceptualize 

the computation. Structuring an application in this way also gives increased flexibility. 

For example, it allows tasks to be run on multiple different supercomputers 

simultaneously; it simplifies failure recovery and allows the application to continue when 

nodes fail, if tasks write their results to persistent storage as they finish; and it permits the 

application to be tested and run on varying numbers of nodes without any rewriting or 

modification. Examples of MTC systems are various workflow systems (e.g. Swift 

[14][61][64], Nimrod [15], Pegasus [16], DAGMan [17], BPEL [18], Taverna [19], 

Triana [20], Kepler [21], CoG Karajan [22], Dryad [23]). Other examples of MTC are 

MapReduce systems (e.g. Google’s MapReduce [24], Yahoo’s Hadoop [25], 

Sector/Sphere [26]), and distributed run-time systems such as Charm++ [27], ParalleX 

[28]. Finally, light-weight task scheduling systems also fit in this category for enabling 

MTC applications (e.g. Falkon [29] , Condor GlideIns [4] , Coaster [30], Sparrow [31]).  

The rest of the chapter explains the Many-Task Computing (MTC) paradigm and 

also discusses the different challenges at exascale computing followed by the 

contributions to this thesis and its outline. 

1.1  Many-Task Computing 

Many-Task Computing (MTC) was introduced by Raicu et al. [12][13] in 2008 to 

describe a class of applications that did not fit easily into the categories of traditional 

high-performance computing (HPC) or high-throughput computing (HTC). Many MTC 

applications are structured as graphs of discrete tasks, with explicit input and output 
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dependencies forming the graph edges. In many cases, the data dependencies will be files 

that are written to and read from a file system shared between the compute resources; 

however, MTC does not exclude applications in which tasks communicate in other 

manners. 

MTC applications often demand a short time to solution, may be communication 

intensive or data intensive, and may comprise of a large number of short tasks. Tasks 

may be small or large, uniprocessor or multiprocessor, compute-intensive or data-

intensive. The set of tasks may be static or dynamic, homogeneous or heterogeneous, 

loosely coupled or tightly coupled. The aggregate number of tasks, quantity of 

computing, and volumes of data may be extremely large. For many applications, a graph 

of distinct tasks is a natural way to conceptualize the computation. Structuring an 

application in this way also gives increased flexibility. For example, it allows tasks to be 

run on multiple different supercomputers simultaneously; it simplifies failure recovery 

and allows the application to continue when nodes fail, if tasks write their results to 

persistent storage as they finish; and it permits the application to be tested and run on 

varying numbers of nodes without any rewriting or modification. 

The hardware of current and future large-scale HPC systems, with their high 

degree of parallelism and support for intensive communication, is well suited for 

achieving low turnaround times with large, intensive MTC applications. Hardware and 

software for MTC must be engineered to support the additional communication and I/O, 

must minimize task dispatch overheads, queue management, and support resource 

management at finer granularity (e.g. at the core level, or node level, as opposed to the 

partition level). The MTC paradigm has been defined and built with the scalability of 
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tomorrow’s systems as a priority and can address many of the HPC shortcomings at 

extreme scales. 

1.2  Challenges at Exascales 

The era of many-core and exascale computing will bring new fundamental 

challenges in how we build computing systems and their hardware, how we manage 

them, and how we program them. The techniques that have been designed decades ago 

will have to be dramatically changed to support the coming wave of extreme-scale 

general purpose parallel computing. The four most significant challenges of exscale 

computing are: Energy and Power; Memory and Storage; Concurrency and Locality; 

Resiliency. Any one of these challenges, if left unaddressed, could halt progress towards 

exascale computing. 

The Energy and Power challenge is the most pervasive of the four, which refers 

to the ability to keep the power consumption at a reasonable level, so that the cost to 

power of a system does not dominate the cost of ownership. The DARPA Exascale report 

[42] defined probably the single most important metric, namely the energy per flop. 

Given the energy consumption of current state-of-the-art technologies which uses 

12.7MW of power, the increase in performance by 100X (to reach exascales), and the 

upper cap of 20MW of power for a single supercomputer, we can conclude that we need 

to reduce the energy per flop by 50X to 100X to make exascale computing viable. 

The Memory and Storage challenge refers to optimizing and minimizing data 

movement through the memory hierarchy (e.g. persistent storage, solid state memory, 

volatile memory, caches, and registers). Exascales will bring unique challenges to the 

memory hierarchy never seen before in supercomputing, such as a significant increase in 
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concurrency at both the node level (number of cores is increasing at a faster rate than the 

memory subsystem performance), and at the infrastructure level (number of cores is 

increasing at a faster rate than persistent storage performance). The memory hierarchy 

will change with new technologies (e.g. non-volatile memory), implying that 

programming models and optimizations must adapt. Optimizing exascale systems for 

data locality will be critical to the realization of future extreme scale systems. 

The Concurrency and Locality challenge refers to how we will harness the many 

magnitude orders of increased parallelism fueled by the many-core computing era, and 

minimize the data movements among billions of threads of execution. The largest 

supercomputers have increased in parallelism at an alarming rate. Many have said that the 

“free ride” software had for many decades, has finally come to a halt, and a new age is 

upon us which paints a bleak picture unless revolutionary progress is made in the entire 

computing stack. 

The Resilience challenge refers to the capability of making both the infrastructure 

(hardware) and applications fault tolerant in face of a decreasing mean-time-to-failure 

(MTTF). In order to achieve exascales, revolutionary advancements must be made in the 

programming paradigm. A more abstract and modern programming paradigm could 

allow parallelism to be harnessed with greater ease, as well as making applications fault 

tolerant diminishing the effects of the decreasing system MTTF. 

The MTC paradigm can address four of the five major challenges of exascale 

computing, namely concurrency, resilience, memory and storage, and heterogeneity. 
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1.3 Contributions 

 The main contributions of this thesis are as follows: 

1. Design and implement MATRIX (a distributed execution fabric for MTC 

workloads at extreme scales) to support distributed task scheduling and 

management through an adaptive work stealing algorithm 

2. Evaluate the functionality of MATRIX using different workload types such 

as Bag of Tasks, Fan-In DAG, Fan-Out DAG, Pipeline DAG and Complex 

Random DAG 

3. Performance evaluation of MATRIX, including analyzing the behavior of 

the load balancing algorithm and network traffic involved at scales of 64 

nodes up to 1024 nodes for synthetic workloads of fine to medium 

granularity (from 64ms to 8 seconds per task) 

4. Validate and compare the performance of MATRIX with SimMatrix (a 

simulator implementing the work stealing algorithm), and with Falkon (a 

light weight task execution framework that supports both a centralized and 

hierarchical architecture) 

1.4  Thesis Outline 

The thesis is organized in several chapters as follows: Chapter 2 describes the 

background information and related work about job scheduling systems, load balancing, 

and work stealing. In Chapter 3 we present the design and implementation of the adaptive 

work stealing algorithm in a real system MATRIX. We show the evaluation and 
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experimental results in Chapter 4. Conclusions are drawn and future work is envisioned 

in Chapter 5. 

CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

This chapter covers essential background information on the topics of clusters, 

grids, supercomputers, high throughput computing and high performance computing. 

This chapter also discusses related work in two main areas: 1) job scheduling, and 2) 

distributed load balancing. Then we present the adaptive work stealing algorithm and 

give a brief overview of the simulator SimMatrix. 

2.1  Clusters, Grids, and Supercomputers 

A computer cluster is a collection of computers, connected together by some 

networking fabric, and is composed of commodity processors, network interconnects, and 

operating systems. Clusters are usually aimed to improve performance and availability 

over that of a single computer; furthermore, clusters are typically more cost-effective 

than a single computer of comparable speed or availability. Middleware such as MPI 

allows cluster computing to be portable to a wide variety of cluster architectures, 

operating systems, and networking offering high performance computing over 

commodity hardware. [32] High throughput computing [33] has also seen good success 

on clusters, as the needed computations are more loosely coupled and most scientists can 

be satisfied by commodity CPUs and memory, essentially making high efficiency not 

playing a major role. 

Grids tend to be composed of multiple clusters, and are typically loosely coupled, 

heterogeneous, and geographically dispersed. The term “the Grid” was coined in the mid-
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1990s to denote a proposed distributed computing infrastructure for advanced science and 

engineering [34]. Foster et al. describes the definition of Grid Computing to be about 

large scale resource sharing, innovative applications, and high performance computing. It 

is meant to offer flexible, secure, coordinated resource sharing among dynamic 

collections of individuals, institutions, and resources, namely virtual organizations. Some 

examples of grids are TeraGrid [35], Open Science Grid (OSG) [36], and Enabling Grids 

for E-sciencE (EGEE) [37]. Some of the major grid middleware are the Globus Toolkit 

[38] and Unicore [39]. Grids have also been used for both HPC and HTC, just as clusters 

have; HPC is more challenging for grids as resources can be geographically distributed 

which can increases latency significantly between nodes, but it can still be done 

effectively with careful tuning for some HPC applications. 

A supercomputer is a highly-tuned computer clusters using commodity processors 

combined with custom network interconnects and typically customized operating system. 

The term supercomputer is rather fluid, as today's supercomputer usually ends up being 

an ordinary computer within a decade. Figure 1 shows the Top500 [40] trends in the 

fastest supercomputers for the past fifteen years, and projecting out for the next decade.  

We have currently surpassed the petaflop/s rating, and it is predicted that we will 

surpass an exaflop/s within the next decade. Much of the predicted increase computing 

power comes from the prediction of increasing the number of cores per processor (see 

Figure 1), which is expected to be in the hundreds to thousands within a decade [41]. 

Until recently, supercomputers have been strictly HPC systems, but more recently they 

have gained support for HTC as well. 
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Figure 1. Projected Performance of Top500, November 2012 

2.2  Related Work 

The job schedulers could be centralized, where a single dispatcher manages the 

job submission, and job execution state updates; or hierarchical, where several 

dispatchers are organized in a tree-based topology; or distributed, where each computing 

node maintains its own job execution framework. The University of Wisconsin developed 

one of the earliest job schedulers, Condor [3], to harness the unused CPU cycles on 

workstations for long-running batch jobs. Slurm [2] is a resource manager designed for 

Linux clusters of all sizes. It allocates exclusive and/or non-exclusive access to resources 

to users for some duration of time so they can perform work, and provides a framework 

for starting, executing, and monitoring work on a set of allocated nodes. Portable Batch 

System (PBS) [5] was originally developed at NASA Ames to address the needs of HPC, 

which is a highly configurable product that manages batch and inter-active jobs, and adds 
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the ability to signal, rerun and alter jobs. LSF Batch [43] is the load-sharing and batch-

queuing component of a set of workload management tools from Platform Computing of 

Toronto. All these systems target as the HPC or HTC applications, and lack the 

granularity of scheduling jobs at node/core level, making them hard to be applied to the 

MTC applications. What’s more, the centralized dispatcher in these systems suffers 

scalability and reliability issues. In 2007, a light-weight task execution framework, called 

Falkon [29] was developed. Falkon also has a centralized architecture, and although it 

scaled and performed magnitude orders better than the state of the art, its centralized 

architecture will not even scale to petascale systems [13]. A hierarchical implementation 

of Falkon was shown to scale to a petascale system in [13], the approach taken by Falkon 

suffered from poor load balancing under failures or unpredictable task execution times. 

Although distributed load balancing at extreme scales is likely a more scalable 

and resilient solution, there are many challenges that must be addressed (e.g. utilization, 

partitioning). Fully distributed strategies have been proposed, including neighborhood 

averaging scheme (ACWN) [44][45][46][47]. In [47], several distributed and hierarchical 

load balancing strategies are studied, such as Sender/Receiver Initiated Diffusion 

(SID/RID), Gradient Model (GM) and a Hierarchical Balancing Method (HBM). Other 

hierarchical strategies are explored in [46]. Charm++ [27] supports centralized, 

hierarchical and distributed load balancing. In [27], the authors present an automatic 

dynamic hierarchical load balancing method for Charm++, which scales up to 16K-cores 

on a Sun Constellation supercomputer for a synthetic benchmark.     

Work stealing has been used at small scales successfully in parallel languages 

such as Cilk [48], to load balance threads on shared memory parallel machines [8][9][10]. 
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Theoretical work has proved that a work-stealing scheduler can achieve execution space, 

time, and communication bounds all within a constant factor of optimal [8][9]. However, 

the scalability of work stealing has not been well explored on modern large-scale 

systems. In particular, concerns exist that the randomized nature of work stealing can 

lead to long idle times and poor scalability on large-scale clusters [10]. The largest 

studies to date of work stealing have been at thousands of cores scales, showing good to 

excellent efficiency depending on the workloads [10]. 

2.3  Adaptive Work Stealing Algorithm 

We present the adaptive work stealing algorithm, which applies dynamic multiple 

random neighbor selection and adaptive poll interval techniques. These adaptive natures 

of the work stealing algorithm are critical to achieve good scalability and efficiency. 

2.3.1 Dynamic Multi-Random Neighbor Selection. In work stealing, the 

selection of neighbors from which an idle node could steal tasks could be static or 

dynamic/random. In dynamic case, traditional work stealing randomly selects one 

neighbor to steal tasks [10]. Choosing a single neighbor to steal could yield poor 

performance at extreme scales. We propose a multiple random neighbor selection 

strategy, which randomly selects several neighbors instead of one, and chooses the most 

heavily loaded neighbor to steal tasks. We identify the optimal number of neighbors for 

both static and dynamic selection. The multiple-random neighbor selection algorithm is 

given in Algorithm 1. 

 

 

 



 

 

13 

Algorithm 1. Dynamic Multi-Random Neighbor Selection for Work Stealing 

DYN-MUL-SEL(num_neigh,  num_nodes) 

1. let selected[num_nodes] be boolean array initialized false except the node itself 

2. let neigh[num_neigh] be array of neighbors 

3. for i = 1 to num_neigh 

4.   index = random () % num_nodes 

5.   while selected[index]  do 

6.    index = random() % num_nodes 

7.   end while 

8.   selected[index] = true 

9.   neigh[i] = node[index] 

10. end for 

11. return neigh 

When a node is idle, it randomly selects several neighbors from its membership 

list to communicate for stealing work. The time complexity of Algorithm 1 is Ө(n), 

where n is the number of neighbors. The proof is as follows: 

Let   be the kth neighbor to be chosen,   be the number of nodes in the system. 

The possibility that one neighbor that has already be chosen is chosen again is:    
   

 
 .  

So, Let   be the number of times for selecting the kth neighbor, the actual number of 

times is:   (  )
    (    ).  (  )

 -  ( -  ) 

So, the expected number of choosing for selecting the kth neighbor: 

    ∑   (  )
    (    )

∞

     ( 1 ) 
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Let’s say for an exascale system,      , as we could see later, the maximum 

dynamic number of neighbors      √     , so the maximum    
      

 
 
    

 
 

 

    
 .   So, for    , after    ,  

              (  )
 -  ( -  )    (

 

    
)
 

 ( -
 

    
)      -    ( 2 ) 

which is negligible. So, we just need to consider      and    , 

               (
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)    (

 

    
)
 

 (  
 

    
)     ( 3 ) 

So, the time complexity to choose n neighbors is: Ө(n). 

2.3.2 Adaptive Poll Interval. When a node fails to steal tasks from the selected 

neighbors because all selected neighbors have no more tasks, or fails to steal tasks when 

the most heavily loaded neighbor told that it had tasks, but which had already been 

executed at the time when actual stealing happens, the node waits for a period of time and 

then it does stealing again. We call this wait time the poll interval. 

We implement an adaptive poll interval policy in order to achieve reasonable 

performance while still keeping the work stealing algorithm responsive. Without this 

policy, we observed that under idle conditions, many nodes would poll neighbors to do 

work stealing, which would ultimately fail and would lead to more work stealing requests. 

If the polling interval was set large enough to limit the number of work steal events, work 

stealing would not respond quickly to change conditions, and lead to poor load balancing. 

Therefore, we change the poll interval of a node dynamically by doubling it each time 

when work stealing fails; and setting the poll interval back to the default small value 

whenever the node steals some tasks successfully. This technique is similar to the 
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exponential back-off approach in the TCP networking protocol [49]. We set the default 

poll interval to be small value (e.g. 1 ms). The specification of the adaptive work stealing 

algorithm is given in Algorithm 2. Whenever a node has no tasks in its task waiting 

queue, it signals the adaptive work stealing algorithm, which first randomly selects 

several neighbors using the Algorithm 1, and then selects the most heavily loaded 

neighbor to steal tasks. If work stealing fails, the node would double the poll interval and 

wait for that period of time, after which the node tries to do work stealing again. This 

procedure continues until the node finally successfully steals tasks from a neighbor, and 

at which point, it sets the poll interval back to the initial small value (e.g. 1 sec). 

At the beginning, just one node (id = 0) has tasks, all the other nodes signal work 

stealing. Let’s say we have m nodes, and each one talks to n neighbors, so within logn (m) 

steps, ideally the tasks should be distributed across all the nodes. At the very end, if there 

are just a few tasks left in the system, the work stealing doesn’t help much, instead it 

would introduce more communication overhead. One way to solve this problem is to set 

an upper bound of the poll interval. After reaching the upper bound, the node would stop 

doing work stealing. 

Algorithm 2. Adaptive Work Stealing Algorithm 

ADA-WORK-STEALING(num_neigh, num_nodes) 

1. Neigh = DYN-MUL-SEL (num_neigh, num_nodes) 

2. most_load_node = Neigh[0] 

3. for i = 1 to num_neigh 

4.   if most_load_node. load < Neigh[i]. load then 
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5.    most_load_node = Neigh[i] 

6.   end if  

7. end for 

8. if most_load_node.load = 0 then 

9.   sleep (poll_interval) 

10.   poll_interval = poll_interval * 2 

11.   ADA-WORK-STEALING(num_neigh, num_nodes) 

12. else 

13.   steal tasks from most_load_node 

14.   if num_task_steal = 0 then 

15.    sleep (poll_interval) 

16.    poll_interval = poll_interval * 2 

17.    ADA-WORK-STEALING(num_neigh, num_nodes) 

18.   else 

19.    poll_interval = 1 

20.    return 

21.   end if 

22. end if 
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2.4  SimMatrix 

SimMatrix is a scalable discrete event simulator for MTC execution fabric, which 

enables the exploring of work stealing at exascales. The design, implementation and 

resource requirements are presented in [11]. SimMatrix simulates the exact behavior as 

mentioned in the implementation of MATRIX above except that it does not support task 

dependency. So it can simulate only the Bag of Tasks type workloads, and also has just 

one ready queue and the other two are not required. SimMatrix supports both centralized 

(best case scenario) and distributed scheduling (worst case scenario). Whenever a worker 

node has no tasks in the ready queue, it triggers work stealing for load balancing. 

The work [57] presents the investigation of adaptive work stealing algorithm at 

exascale levels through simulations. Through the SimMatrix simulator, a wide range of 

parameters important to understanding work stealing is explored at up to exascale levels, 

such as number of tasks to steal number of neighbors of a node, and static/dynamic 

neighbors. Experiment results show that adaptive work stealing configured with optimal 

parameters could scale up to 1 million nodes and 1 billion cores, while achieving 85%+ 

efficiency running on real MTC workload traces obtained from a 17-month period on a 

petascale supercomputer. It provides evidence that work stealing is a scalable method to 

achieve distributed load balancing, even at exascales with millions of nodes and billions 

of cores. Some of the results are presented in the evaluation section for comparing 

MATRIX with SimMatrix. MATRIX is validated against Falkon and the simulator 

SimMatrix and the results show 90% efficiency for synthetic workloads. However, more 

work is needed to scale up the prototype many orders of magnitude needed to help 

validate and prove the simulation results of SimMatrix.  
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CHAPTER 3 

DESIGN AND IMPLEMENTATION OF MATRIX 

 

This work investigates the usability of work stealing towards exascale levels of 

parallelism. There are several parameters which could affect the performance of work 

stealing to achieve load balancing, such as steal tasks from global space or just some 

neighbors, how to select neighbors, how many number of neighbors a node could have, 

how many tasks to steal, and the length of waiting time after which a node signals work 

stealing again, if the node fails to steal tasks from others. Previous work done using 

SimMatrix [11] investigated the search for an ideal set of parameters (e.g. worker’s 

connectivity, number of tasks to steal, static/dynamic neighbors) needed to make work 

stealing a viable and efficient distributed load balancing mechanism. Through 

simulations, it was concluded that work stealing with the right parameters, would work 

well at exascale levels of millions of nodes, billions of cores, and hundreds of billions of 

tasks. This work seeks to validate the work stealing algorithm by implementing it, using 

the optimal parameters suggested in previous works, in a real system called MATRIX, a 

distributed execution fabric for MTC workloads at exascales.  

MATRIX is a distributed many-Task computing execution framework, which 

utilizes the adaptive work stealing algorithm to achieve distributed load balancing. 

MATRIX uses ZHT (a distributed zero hop key-value store) [50] for job metadata 

management, to submit tasks and monitor the task execution progress. We have a 

functional prototype implemented in C/C++, and have scaled this prototype on a BG/P 

supercomputer up to 1024-nodes (4K-cores) with good results. 
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3.1 Architecture  

The components of MATRIX and the communication signals among all the 

components are shown in Figure 2.  For the purpose of evaluation, there are two kinds of 

components, the client and the compute node. The client is just a benchmarking tool that 

issues request to generate a set of tasks to be executed on a cluster of nodes. The 

benchmarking tool has a task dispatcher for which allows the client to submit workload to 

the compute nodes. A compute node can also be referred as worker node and can be used 

interchangeably. Each compute node has a task execution unit along with a NoSQL data 

store for managing the metadata of every task. The task execution unit is the core 

component of MATRIX and the data store is possible through ZHT. 

3.2 Design and Implementation 

The current version of MATRIX supports synthetic workloads. Essentially, it can 

be a set of “sleep” tasks. MATRIX also supports task dependency. This means the order 

of execution among the tasks in the workload can be specified as a part of task 

description and MATRIX would execute the tasks in the right order. For example the 

workload can be a Directed Acyclic Graph (DAG) [54]  where each node in the DAG is a 

task and the edges among the nodes specify the dependency. This can be easily translated 

to give the order of execution among tasks similar to topological sort. The system is 

tested for different types of workloads such as Bag of Tasks, Fan-In DAG, Fan-Out Dag, 

Pipeline DAG and a complex random DAG. These different DAGs are shown in Figure 4. 

Initially at the time of booting, each compute node records its identity and 

location information to a membership list which can be read by all other compute nodes 
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and the client. This membership list ensures that there is an N-N communication possible 

among the compute nodes.  

Upon request from the client, the task dispatcher initializes the workload of given 

type and submits the workload to the one or more compute nodes. With the help of ZHT, 

the task dispatcher could submit tasks to one arbitrary node, or to all the nodes in a 

balanced distribution. The compute nodes execute the tasks in the given order. In the 

background all compute nodes distribute the workload among themselves until the load 

gets balanced using the adaptive work stealing algorithm. The client periodically 

monitors the status of workload until all the tasks present in the workload gets executed 

by the compute nodes.  

ZHT records the instantaneous information of every task and this information is 

distributed across all the compute nodes. Every time when a task is moved from one 

compute node to other due to work stealing, this information is updated instantly. Thus 

task migration can be considered as an atomic process that involves updating ZHT 

followed by the actual movement of task from one compute node to other. So the client 

can look up the status information of any task by performing a “lookup” operation on 

ZHT. 

3.3 Types of Messages 

There are different kinds of messages caused by the work stealing algorithm as 

shown in Figure 2.  

ZHT Insert: The metadata of tasks such as task-id, task-description, task 

submission time etc. are inserted into ZHT before submitting the actual tasks for 

execution. 
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MATRIX Insert: After the metadata of all tasks is stored in ZHT, then the 

workload can be submitted to the queue of execution unit to execute the workload. 

ZHT Lookup: This provides an interface to retrieve the existing information from 

ZHT. For instance, it can be used by the execution unit to check for a given task, if all the 

dependency conditions are met so that the task is ready to be executed or to get the task 

description when the task is about to be executed. 

 

Figure 2. MATRIX components and communications among components 

ZHT Update: If any part of metadata of the task existing in ZHT needs to 

modified, then this API can be used to update the given field. For instance after a task has 

finished its execution, the execution unit can signal all the children tasks that were 

waiting for this task to finish its execution. This is also useful, to update the current node 

information of a task, when it is migrating to a different compute node due to work 

stealing. 
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Load Information: Idle nodes can poll a subset of compute nodes for knowing the 

load on all those nodes. 

Work Stealing: After getting the load information of neighboring nodes, the idle 

node can pick the node with maximum load and send a request to steal tasks from that 

node. Then the chosen node will send some of its load to the requested node. 

Client Monitoring: The client periodically monitors the system utilization and the 

rates of completion of task execution. 

If the system is configured to run only Bag of Tasks that have no dependency 

criteria, then no ZHT operations are involved. The only operations to be performed are 

MATRIX Insert, Load Information, Work Stealing and Client Monitoring. This is 

because for running of Bag of Tasks, the system can be optimized for executing the 

workload by storing only the essential information directly in the MATRIX queue and 

hence cutting down all ZHT operations. This difference can be seen in the results show in 

the evaluation section. 

3.4 Task Assignment 

Broadly, MATRIX supports two types of task assignment: best case and worst 

case assignment. The architectures are shown in Figure 3. For simplicity, the ids of all 

nodes are represented as consecutive integer numbers ranging from 0 to the number of 

nodes N-1. 

In the best case situation (Figure 3 left part), the dispatcher initializes the tasks 

and submit them one by one to the compute nodes in round-robin fashion. This is 

possible due to the hashing mechanism in ZHT that maps each task to a compute node 

based on the task-id. This is the best case situation in terms of system utilization because 
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the hashing function of ZHT does most of the load balancing. Another way to realize this 

situation is to have as many dispatchers as compute nodes and divide the total tasks 

among the dispatchers so that there is 1:1 mapping between a task dispatcher and a 

compute node. Then let each task dispatcher submit the tasks to corresponding compute 

node. Here work stealing is useful only at the end of the experiment, when there are very 

few tasks left to be executed, and they are concentrated at only few compute nodes. 

 

Figure 3. MATRIX architecture for both best case and worst case scheduling 

In the worst case situation (Figure 3 right part) there is only one dispatcher which 

initializes all tasks into a single package and submits the package to a single arbitrary 

compute node. This is the worst case situation in terms of system utilization because the 

entire load is on a single compute node. Thus work stealing thread runs from the start to 

ensure that all the tasks get quickly distributed among all compute nodes evenly to reduce 

the time for completing the execution of a workload. Thus it generates considerable 

network traffic for initial load balancing when compared to the best case situation. Then 

throughout the experiment the network traffic caused by work stealing reduces as the 
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system has converged with evenly distribution of workload. It increases again at the end 

of experiment similar to the best case situation when there are very few tasks left to be 

executed which might be concentrated at only few compute nodes and needs to be 

balanced evenly among all other compute nodes. 

The system can also be configured for tuning the number of dispatchers. It can be 

equal to square root, or logarithm-base-2 of number of compute nodes. The best case and 

worst case situation can thus be treated as special cases. The greater the number of 

dispatchers the faster the load gets distributed evenly among the workers. 

3.5 Execution Unit 

The worker running on every compute node maintains three different queues: a 

wait queue, a ready queue and a complete queue. The wait queue is used to hold all the 

incoming tasks. The tasks remain in the wait queue as long as they have dependency 

conditions than needs to be satisfied. Once they are satisfied, the tasks can be moved 

from wait queue to the ready queue. Once in ready queue, the execution unit can then 

execute them one by one in the FIFO way.  After completing task execution, the task is 

then moved to the complete queue. For each task in the complete queue, the execution 

unit is responsible for sending the ZHT update messages to all children tasks of that 

particular task to satisfy the dependency requirements. 

3.6 Load Balancing 

Anytime when a node has no waiting tasks, it will ask the load information of all 

the neighbors in turn, and try to steal tasks from the heaviest loaded neighbor. When a 

node receives a load information request, it will send its load information to the neighbor. 

If a node receives work stealing request, it then checks its queue, if which is not empty, it 
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will send some tasks (e.g. half of the tasks) to the neighbor, or it will send information to 

signal a steal failure. When a node fails to steal tasks, it will wait some time, referred to 

as the poll interval, and then try again. The execution unit can be configured to perform 

work stealing for any queue.  

Each compute node has the knowledge of every other nodes, and can choose to 

have a subset of neighbors to for work stealing. The amount of neighbors is same for 

every worker and is configured at the time of initialization. The number of neighbors 

from which to steal and the number of tasks to steal were set as concluded in the paper 

[57]. It concluded that the optimal parameters for the MTC workloads and adaptive work 

stealing are to steal half the number of tasks from their neighbors, and to use the square 

root number of dynamic random neighbors. These parameters are tunable though and are 

set during initialization time. 

One modification in the implementation of the work stealing algorithm mentioned 

in previous section is in the implementation of the exponential back-off approach. In the 

algorithm mentioned in previous section the adaptive poll interval keeps doubling every 

time a worker node fails to steal task. But in the implementation we found out increasing 

adaptive poll interval indefinitely can cause starvation if the poll interval becomes too 

high. So we set a cap (e.g. 1 sec). Thus the adaptive poll interval increases from initial 

start (e.g. 1ms) to this cap value (e.g. 1 sec). Beyond this the poll interval does not change 

even if the work stealing fails. It resets itself to the initial start value if the worker node is 

successful in stealing tasks. Although it can avoid starvation, this condition can cause 

problems at the end of experiment. It is due to the fact that at the end of experiment there 

are very few tasks and it is difficult to load balance very few tasks especially when each 
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task runs for a very short time (e.g. 64ms). So having this cap can cause lot of failed work 

stealing messages at the end of the experiment. This leads to poor utilization of network 

in the perspective of work stealing. So we also maintain a counter that keeps track of 

consecutive failed attempts. It the counter goes beyond a threshold value (e.g. logarithm 

base-2 of number of worker nodes) then the worker node finds itself doing no useful 

work other than causing network congestion. So it just stops its work stealing function 

and exits as there were no tasks in its ready queue in the first place. Also, if it is possible 

to know the total runtime of the entire workload beforehand, then the work stealing 

algorithm can be tuned to be less aggressive at the start and end of experiment, which 

means the initial start and cap may be set to a higher value (e.g. instead of 1ms to 1s, it 

can be 100ms to 10s). This may sound counter intuitive for load balancing but we learned 

through experiments that it can reduce network congestion also possibility of network 

communication failures. 

3.7 Monitoring 

Regardless of the number of dispatchers used to submit tasks to compute nodes, 

only one dispatcher keeps monitoring the system utilization and status of submitted tasks, 

while all other task dispatchers exit. The monitoring dispatcher periodically sends 

requests messages to determine the current load on all compute nodes and calculate the 

number of tasks that have completed its execution. The termination condition is that all 

the tasks submitted by client are finished.  
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CHAPTER 4 

EVALUATION AND EXPERIMENTAL RESULTS 

 

This chapter presents the experimental hardware and software environments, the 

evaluation metrics, the essential results of the simulation from SimMatrix paper [57], the 

workloads generation, the throughput of dispatcher, the throughput of the run-time 

system, the validation of MATRIX against Falkon [29] and SimMatrix [11], and the 

study of scalability, load balancing and network traffic caused by the adaptive work 

stealing algorithm. 

4.1 Experiment Environment, Metrics, Workloads 

4.1.1 Testbed.  MATRIX is implemented in C++; the dependencies are Linux, 

ZHT [50], NoVoHT , Google Protocol Buffer [52], and a modern gcc compiler. 

All the experiments in this section were performed on the IBM BlueGene/P 

supercomputer [51]. Each node on the BG/P uses a quad-core, 32-bit, 850 MHZ IBM 

Power PC 450 with 2GB of memory. A 3D torus network is used for point-to-point 

communication among computing nodes. For validation of MATRIX against Falkon, 

Falkon runs on the IBM BlueGene/P supercomputer [51] on a scale of 64 nodes up to 

1024 nodes in powers of 2. 

All the simulations for SimMatrix were performed on fusion.cs.iit.edu, which boasts 48 

AMD Opteron cores at 1.93GHz, 256GB RAM, and a 64-bit Linux kernel 2.6.31.5. 

 4.1.2 Metrics. We use important metrics to evaluate the performance of the 

adaptive work stealing algorithm. They are listed below: 

 Throughput: Number of tasks finished per second. Calculated as total-number-of-

tasks/ execution -time.  
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 Efficiency: the ratio between the ideal execution time of completing a given 

workload and the real execution time. The ideal execution time is calculated by 

taking the average task execution time multiplied by the number of tasks per core.  

 Load Balancing: We adopted the coefficient variance [53] of the number of tasks 

finished by each node as a measure of the load balancing. The smaller the 

coefficient variance is, the better the load balancing would be. It is calculated as 

the standard-deviation/average of number of tasks finished by each node.  

 Scalability: Total number of tasks, number of nodes, and number of cores 

supported. 

 Utilization: This is another way of looking the efficiency of load balancing by 

visualizing the utilization of the compute nodes in the system. 

 Number of messages: is the count of the various messages flowing across the 

network caused by the work stealing algorithm. 

4.1.3 Workloads. First for testing the functionality of MATRIX we used five 

different workload: Bag of tasks, Fan-In DAG, Fan-Out DAG, Pipeline DAG and a 

complex random DAG. All the tasks in the DAG had a run-time of 8 seconds. These 

different workloads are shown in Figure 4. 

Bag of Tasks: This is the simplest workload where there are no dependencies 

among the tasks and every task is always ready to execute. For such a workload, the task 

dispatcher inserts them directly into the ready queue instead of inserting them into wait 

queue first and then moving to ready queue. So some of the ZHT operations are skipped 

for the Bag of Tasks workload. Hence, in terms of efficiency, this gives the best 

performance among all the workloads. 
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Figure 4. Different Types of Workload used for evaluating functionality of MATRIX 

Fan-In DAG: This workload introduces simpler dependencies among the tasks in 

the workload and thus adds a little bit of complexity for the execution system. Since not 

all the tasks in the workload are readily available at any given instant of time, the system 

utilization is lesser when compared to Bag of Tasks workload. The performance of the 

execution unit depends also the number of tasks that are ready to execute at any instant of 

time and since initially there are large number of ready tasks, the Fan-In workload also 

has a better efficiency. 

Fan-Out DAG: This workload is similar to Fan-In DAG, except the Fan-Out 

DAG is obtained be reversing the Fan-In DAG. Initially since there is only one ready 

task, it takes slightly longer to get full utilization which depends on the out-degree of 

every node in the graph. 
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Pipeline DAG: This workload is a collection of “pipes” where each task in a pipe 

is dependent on the previous task. Here the system utilization depends on the number of 

pipelines as at any instant of time the number of ready tasks is equal to the number of 

pipelines due to the fact that only one task in a pipeline can execute at any given time. 

This workload has a lower efficiency than the above three. 

Complex Random DAG: This workload has the largest number of 

interdependencies among tasks. Since this DAG is formed randomly, it is hard to predict 

the performance. The workload has the lowest efficiency among all. All other workloads 

can be treated as a special case of this workload. 

In order to study the adaptive work stealing algorithm through MATRIX, the 

experiments were run using synthetic workloads composed of sleep tasks of different 

durations. We tested the scalability of MATRIX using two sets of sleep tasks. First we 

tested it will sleep tasks of duration 1 second up to 8 seconds on a scale of 64 nodes up to 

1024 nodes. We also tested the scalability of the system for fine granular workload using 

sub-second tasks of duration 64ms up to 512ms on a scale of 1 node up to 1024 nodes.  

In both cases, the sleep duration and the type of workload is specified as an 

argument to task dispatcher which then initializes the set of tasks of the given type and 

submit the workload to the one or more worker nodes. 

To amortize the potential slow start and long trailing tasks at the end of 

experiment, we fixed the number of tasks such that the each experiment runs for about 

1000 seconds. For example, for an experiment with a workload of tasks of 1 second 

duration, and with 1024 nodes, where each node has 4 cores, the number of tasks in the 

workload would be 4M (1024×4×1000). 
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4.2 Studying the Adaptive Work Stealing Algorithm through simulations 

This section explains the essential results obtained through simulations such as 

number of tasks to steal number of neighbors of a node, and static/dynamic neighbors.[57]  

4.2.1 Number of Tasks to Steal.  In the five groups of experiments, steal_1, steal_2, 

steal_log, steal_sqrt, steal_half means steal 1, 2, logarithm base-2, square root, and half 

number of tasks respectively. Every node was set to have 2 static neighbors. The changes 

of the efficiency of each group with respect to the scale are shown in Figure 5. These 

results show that stealing half number of tasks is optimal, which confirms both our 

intuition and the results from prior work on work stealing [10].  

The reason that steal_half is not perfect (efficiency is very low at large scale) for 

these experiments is that 2 neighbors of a node is not enough, and starvation can occur 

for some nodes that are too far in the id namespace from the original compute node who 

is receiving all the task submissions. 

 

Figure 5. Efficiencies of the number of tasks to steal with respect to the scale 
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4.2.2 Number of Neighbors of a Node. There are two ways by which the neighbors 

of a node are selected: static neighbors mean the neighbors (consecutive ids) are 

determined at first and never change; dynamic random neighbors mean that each time 

when does work stealing, a node randomly selects some neighbors. 

In the experiments involving Static Neighbors, nb_2, nb_log, nb_sqrt, nb_eighth, 

nb_quar, nb_half means 2, logarithm base-2, square root, eighth, a quarter, half neighbors 

of all nodes, respectively. In this case, neighbors are chosen as consecutive ids at the 

beginning, and will not change. The result in Figure 6 shows that when the number of 

neighbors is no less than eighth of all nodes, the efficiency will keep at the value of 

higher than 87% within 8192 nodes’ scale. For other numbers of static neighbors, the 

efficiencies could not remain, and will drop down to very small values. 

 

Figure 6. Efficiencies of number of static neighbors with respect to the scale 

Thus the optimal number of static neighbors is eighth of all nodes, as more 

neighbors do not improve performance significantly. However, in reality, an eighth of 

neighbors will likely lead to too many neighbors to be practical, especially for an 
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exascale system with millions of nodes (meaning 128K neighbors). In the search for a 

lower number of needed neighbors, dynamic multiple random neighbor selection 

technique was explored. 

In dynamic random neighbors, there were 4 groups of experiments, nb_1, nb_2, 

nb_log, nb_sqrt. First nb_1 experiment was done until it started to saturate (the efficiency 

is less than 80%), then at which point, nb_2 was started, then nb_log, and nb_sqrt at last. 

The results are shown in Figure 7. 

 

Figure 7. Efficiencies of dynamic random neighbors with respect to the scale 

Even with 1M-nodes in an exascale system, the square root implies having 1K 

neighbors, a reasonable number of nodes for which each node to keep track of with 

modest amounts of resources. The conclusion drawn from this section about the optimal 

parameters for the adaptive work stealing is to steal half the number of tasks from their 

neighbors, and to use the square root number of dynamic random neighbors. 
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4.3 Evaluating the Adaptive Work Stealing Algorithm with MATRIX 

All the experiments in this section were performed using Bag of Tasks workload. 

4.3.1 Validation: MATRIX vs. SimMatrix. Before evaluating the performance of 

the work stealing in the real system, the throughput of the system on a sleep 0 workload 

was compared with SimMatrix. Figure 8 shows the validation results comparing 

SimMatrix and MATRIX for raw throughput on a sleep 0 workload. The real 

performance data matched the simulation with 5.8% difference.  

 

Figure 8. Comparison of MATRIX with SimMatrix throughput of 100K sleep 0 tasks 

We also validated the performance of the implementation against SimMatrix up to 

1024 nodes. Since the average runtime of every task in the MTC workload used for 

simulation was 95.20 seconds, we evaluated MATRIX with a workload of sleep tasks 

where each task runs for 100 seconds. The comparison is shown in Figure 9. 
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Figure 9. Comparison of MATRIX with SimMatrix performance up to 1024 nodes (4 

   cores per node) 

The real performance data matched the simulation with 2.6% difference. This 

shows that the work stealing algorithm has the potential to achieve distributed load 

balancing, even at exascales with millions of nodes and billions of cores. 

4.3.2 Comparison: MATRIX vs. Falkon. Figure 10 shows the results from a study of 

how efficient we can utilize up to 2K-cores with varying size tasks using both MATRIX 

and the distributed version of Falkon (which used a naïve hierarchical distribution of 

tasks); MATRIX are the solid lines, while Falkon are the dotted lines. We see MATRIX 

outperform Falkon across the board with across all size tasks, achieving efficiencies 

starting at 92% up to 97%, while Falkon only achieved 18% to 82%.  
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Figure 10. Comparison of MATRIX with Falkon efficiency of 256K to 2M sleep tasks  

   across 256 to 2K-cores 

Figure 11 shows the comparison of average efficiencies between MATRIX and 

Falkon for different duration. 

 

Figure 11. Average Efficiency comparison of MATRIX with Falkon 

4.3.3 Scalability of Adaptive Work Stealing. In all the following experiments, we use 

the sleep workloads, where each node has 4 cores, and the number of tasks is 1000 times 
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of the number of cores. Figure 12 shows the scalability of the adaptive work stealing up 

to 1024 nodes for tasks of duration 1 second up to 8 seconds, in terms of efficiency and 

coefficient variance. 

The results show that up to 1024 nodes, the adaptive work stealing actually works 

quite well, given the right work stealing parameters. We see an efficiency of 88% at a 

1024 node scale, with a co-variance of less than 0.05 (e.g. meaning that the standard 

deviation of the number of tasks run being a relatively low 500 tasks when on average 

each node completed 4K tasks). 

 

Figure 12. Scalability of Adaptive Work Stealing algorithm for sleep tasks (1s to 8s) on a  

   scale of 64 nodes up to 1024 nodes (4 cores per node) 

The efficiency drops from 100% to 88% (12 percentages) from 1 node to 1024 

nodes.  The reason that efficiency decreases with the scale is because the run time of 

1000 seconds is still not perfectly enough for amortizing the slow start and long trailing 

tasks at the end of experiment. We believe that the more tasks per core we set, the higher 
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the efficiency will be, within an upper bound (there are communication overheads, such 

as the time taken to submit all the tasks from the client), but the longer it takes to run 

large scale experiments. We found that run time of 1000 seconds (or a workload of 4 

million tasks – 1000 tasks * 1024 nodes * 4 cores) could balance well between the 

efficiency (88%) and the running time to run large scale experiments.   

Figure 13 shows the scalability of the adaptive work stealing up to 1024 nodes for 

fine granular tasks of duration 64ms up to 512ms, in terms of efficiency and coefficient 

variance.  

 

Figure 13. Scalability of Adaptive Work Stealing algorithm for short tasks (64ms to  

   512ms) up to 1024 nodes (4 cores per node) 

Again the results show that up to 1024 nodes, the adaptive work stealing actually 

works quite well even for sub-second tasks starting at 79% up to 98% with the right 

parameters. 
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4.3.4 Evaluating functionality of MATRIX. This section explains the 

experiments performed to test the functionality of MATRIX. Based on the workload type, 

the task dispatcher generates a Directed Acyclic Graph for that type and then submits it to 

the execution unit. All tasks in the workload were sleep tasks and had a run-time of 8 

seconds. The efficiency of system was measured and is shown in the Figure 14. 

The Bag of tasks has highest efficiency because there is no dependency among 

any tasks and each task is always in the ready queue. So the system utilization for bag of 

tasks reaches maximum immediately at the start of the experiment. 

 

Figure 14. Analysis of work stealing using different workload types via MATRIX 

For Fan-In and Fan-Out DAG, completion of one task might satisfy the 

dependencies of many other tasks thus providing lot of ready tasks at any instant of time. 

This number keeps increasing till the point where the system utilization can reach its 

maximum. 
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For Pipeline DAG, the efficiency depends on system utilization which is in turn 

depends on the number of pipelines. So if we have greater number of pipelines, then the 

efficiency will be greater. 

For random DAG, the efficiency is the least because the generated DAG might 

contain tasks that have lot of dependencies and is thus hard to have lot of ready tasks at 

any instant of time. So we tried evaluating the random DAG at small scales with a 

smaller workload on different testbed called HEC which has 64 nodes each having 8 

AMD Opteron cores at 2.7GHz, 8GB RAM, and a 64-bit Linux kernel 2.6.28.10. This is 

shown in Figure 15. The efficiency is higher for lower scales and lower number of tasks 

(100 tasks per core instead of 1000 tasks per core), probably because the generated 

smaller workload had fewer dependencies and thus higher number of readily available 

tasks at any instant of time. Also, although smaller, HEC is more powerful than BGP. 

 

Figure 15. Evaluating Complex Random DAG at small scales 
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4.3.5 Visualization of Load Balancing. In order to understand more about the 

behavior of the algorithm, the system utilization was observed to get an idea of how well 

the load is balanced across all the compute nodes. Figure 16 shows the system utilization 

when running the eperiment different with different workload types. 

 

Figure 16. System Utilization for different types of workload 

For the Bag of Tasks and Fan-In workload, it seems that the load gets balanced 

quickly on the entire system and thus takes shorter time to finish the workload when 

compared to Fan-Out workload. The reason for such a low utilization for Pipeline and 

Complex Random workload is that, there are not sufficient tasks available to keep the 

entire system busy. This can be improved by increasing the number of tasks in the 

workload. 

A more detailed analysis was made for Bag of Tasks workload in terms of 

duration of each task. As seen from Figure 17, it is generally difficult to get higher 
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efficiency for shorter jobs since load balancing is not perfect for shorter running jobs like 

Sleep 32ms.  

 

Figure 17. Visualization of load balancing for Bag of Tasks workload 

Figure 18 shows a comparison of load balancing for 1s and 32ms tasks on 512 

nodes. The Start figures (Figure 18 top half) indicate the convergence of the load i.e. how 

quick the entire load get balanced on 512 nodes. The 32ms workload had more number of 

tasks so that the run time of the experiment is longer to amortize the ramp up and ramp 

down time. As seen for the 32ms workload the time taken for the entire workload to get 

distributed evenly is more than double than that required for 1s workload. The End 

figures (Figure 18 lower half) tells us about the end of experiment when there are very 

few tasks left to be executed. 

There can be two reasons for such behavior. The 32ms workload had more 

number of tasks. Another possible explanation for this behavior is that, when the task 

length is short, before the tasks could be stolen for load balancing, it gets executed at the 
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node where it is present i.e. the queues are changing state so fast that by the time they 

want to steal work, there is nothing to steal anymore. Tasks migration is very low as they 

all run fast, and any work stealing that tries to occur likely fails.  

 

Figure 18. Comparison of work stealing algorithm performance for 1s and 32ms  

   workload at the beginning and the end of the experiment on 512 nodes 

4.3.6 Network Traffic generated by Work Stealing.  The last thing that was 

measured as a part of evaluation of MATRIX is the number of messages per task 

involved in testing of different workloads and the percentage of each message type. 

Figure 19 shows the the number of messages for different workload types. This shows 

that although with increase in the  number of nodes the total number of messages is 

increased, the number of messages per task has remained almost constant which means 

work stealing is a stable algorithm. These numbers were broken down to see the 
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individual contribution of each message type. This is shown in Figure 20.

 

Figure 19. Number of messages per task for different types of workload 

As seen, the most of the messages were of the ZHT Update and Load Information 

type. This is understood because in DAGs all the tasks have dependencies and for each 

task completion an update message is sent. ZHT Update message is also sent when task 

migration occurs due to work stealing to update the current node information. Also the 

idle nodes try to steal tasks but all the stealing attempts are unsuccesful. A Load 

Information message can be treated as success only if it finds a node with tasks. So it 

should be immediately followed by a Work Stealing message. Approximately only 1% of 

Load Information messages are succesful. This is a  concern and needs to be improved in 

the future version of MATRIX by introducing “random stealing”. Here the work stealing 

algorithm can be modified to randomly choose one neighbor and steal tasks from if the 
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neighbor has tasks in its queue. This will significantly improve performance for fine 

grained tasks significantly. 

 

Figure 20. Breakdown of total number of messages per task into individual message types 

Although the number of messages seems high, it is due to the runtime of the 

experiment which was fixed to 1000 seconds for amortizing the slow start and long 

trailing tasks at the end. The total runtime of the experiment is based on the number of 

tasks in the workload.  

Throughout the experiment, apart from the initial insert from the task dispatcher 

in the beginning, all the inserts happen when a worker sends tasks from its ready queue 

upon receiving work stealing request. So essentially, there will be as many inserts as the 

stealing. Also work stealing requests occur only after determining the heaviest loaded 

worker which is shown by the green line. But not all time the load query is successful. 

The successful requests are shown by the black line. Thus the use of adaptive poll 

interval to minimize the network traffic by regulating the number of load query requests 

seems to be working better for Bag of Tasks than other workload types. As mentioned 
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above, the “random stealing” can help improve the performance for fine grained tasks 

significantly.The monitoring information gathered periodically by the dispatcher is used 

to determine the status of submitted tasks and the load on all workers for the validation 

purposes. The dispatcher can be configured to this less frequently so as to reduce the 

monitoring traffic. 

  



 

 

47 

CHAPTER 5 

CONCLUSION AND FUTURE WORK  

 

Large scale distributed systems require efficient job scheduling system to achieve 

high throughput and system utilization. Distributed load balancing is critical for 

designing job schedulers. Work stealing is a potential technique to achieve distributed 

load balancing across many concurrent threads of execution, from many-core processors 

to exascale distributed systems. The work stealing algorithm was implemented in a real 

system called MATRIX, and a preliminary evaluation up to 4K-core scales was 

performed for different types of workload namely Bag of Tasks, Fan-In DAG, Fan-Out 

DAG, Pipeline DAG and Complex Random DAG. The parameters of adaptive work 

stealing algorithm was configured using the simulation-based results from SimMatrix 

[57] (the number of tasks to steal is half and there must be a squared root number of 

dynamic neighbors) and its performance was analyzed in terms of system utilzation and 

network traffic. 

We modified the MATRIX implementation and developed a job launch 

framework to add scheduling support for HPC workloads. We plan to evaluate it and 

integrate it with the Slurm job manager [2]. We plan to integrate MATRIX with Swift 

[14] (a data-flow parallel programming systems) for running real application Directed 

Acyclic Graphs. 

Some of the features in MATRIX such as Message Batching, Atomic updates, 

Distribued Queue and selective lookups can be added to ZHT [50] to make it more 

general so that many new applications can benefit from it. Also the current version of 

ZHT has a N-N network topology where each compute node can communicate with 
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every other node. We plan to add new network topologies such as logarithmic topology 

to allow each compute node select neighbors based on location. This can help optimize 

the network traffic. 

We will also continue to develop the MATRIX system. Based on the simulation 

results, we expect that MATRIX should scale to 160K-cores on the IBM BlueGene/P 

supercomputer we conducted our preliminary evaluation. We also plan to test it on the 

newly built IBM BlueGene/Q supercomputer at a full 768K-core (3M hardware threads) 

scale. MATRIX will also be integrated with other projects, such as large-scale distributed 

file systems [60] FusionFS [56] and large scale programming runtime systems Charm++ 

[27]. A potential future software stack is shown in Figure 21. The gray areas represent the 

traditional HPC-stack. The green areas are additional components, such as support for 

many-task computing applications, using lower level components such as MATRIX, 

ZHT [50], and FusionFS [56]. The yellow areas represent the simulation components 

aiming to help explore peta/exascales levels on modest terascale systems. Once 

SimMatrix is extended more complex network topologies, we could address the 

remaining challenge of I/O and memory through data-aware scheduling. [55]. 
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Figure 21. Building blocks for future parallel programming systems and distributed  

   applications  
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