
Name CWID

Quiz
1

Sept 24th, 2018
Due Oct 2nd, 11:59pm

Quiz 1: CS525 - Advanced Database
Organization

Results

Please leave this empty! 1.1 1.2 1.3 1.4 Sum

Instructions
• You have to hand in the assignment using your blackboard

• This is an individual and not a group assignment

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 4 parts in this quiz

1. SQL
2. Relational Algebra
3. Index Structures
4. Result Size Estimation

DB - Fall 2018: Page 2 (of 28)

Part 1.1 SQL (Total: 31 + 10 bonus points Points)

Consider the following political party schema and example instance. The example data should not be used to
formulate queries. SQL statements that you write should return the correct result for every possible instance
of the schema!

party
pName leaning established endowment
JDF middle right 1950 6,000,000
LKE middle left 1951 5,500,000
HHH far right 2010 2,300,000
GGK middle 1980 10,000,000

member
name party since
Peter JDF 2014
Bob JDF 2014
Alice JDF 2011
Alice GGK 1990

positions
name pos year salary
Alice Governor of Alaska 2017 100,000
Alice Vice President 2018 200,000
Bob Secretary of State 2016 150,000

donations
pName year donor amount
JDF 2017 Walmart 20,000,000
HHH 2018 Koch 40,000,000

Hints:

• Attributes with black background are the primary key attributes of a relation

• Attribute party of relation member is a foreign keys to relation party.

• Attribute pName of relation donations is a foreign key to relation party.

DB - Fall 2018: Page 3 (of 28)

Question 1.1.1 (2 Points)

Write an SQL query that returns for each party the total amount of donation dollars per year as a rolling sum,
i.e., the output for 2016 will be the sum of all of the donations made in up to and including year 2016.

Solution

SELECT DISTINCT p.pName ,
year ,
sum(amount) OVER (PARTITION BY p.pName

ORDER BY year ASC)
AS totalDon

FROM party p JOIN donations d ON (p.pName = d.pName)

DB - Fall 2018: Page 4 (of 28)

Question 1.1.2 (4 Points)

For each political leaning of parties (attribute leaning), return the names of the three donors which have
donated the largest total donation (sum of donated dollars) to parties with this leaning.

Solution

WITH totalDon AS (
SELECT leaning , donor , sum(amount) AS ttl
FROM party p NATURAL JOIN donations d
GROUP BY leaning , donor

),
ranking AS (

SELECT leaning , donor ,
row_number () OVER (PARTITION BY leaning

ORDER BY ttl DESC) AS rank
FROM totalDon

)
SELECT leaning , donor
FROM ranking
WHERE rank <= 3

Question 1.1.3 (4 Points)

Write a query that calculates the average increase of salaries over positions over the years. That is for year,
you have to compute the average factor by which the average salaries of positions have increased (or decreased)
compared to the previous year. For instance, assuming we have only two positions A and B and in 2014 the
average salary for position A is 20000 and in 2015 it is 40000, then the average pay for this position has increased
by a factor of 2.0.

Solution

DB - Fall 2018: Page 5 (of 28)

WITH posAvg AS (
SELECT avg(salary) AS avgSal , pos , year
FROM positions
GROUP BY pos , year

),
peryearIncr AS (

SELECT DISTINCT pos , year , avgSal - (first_value (avgSal)
OVER (PARTITION BY pos

ORDER BY year ASC
ROWS BETWEEN 1 PRECEDING

AND CURRENT ROW) AS incr
FROM posAvg

)
SELECT year , avg(incr) AS avgIncr
FROM peryearIncr
GROUP BY year

Question 1.1.4 (5 Points)

Write an SQL query that returns positions (attribute pos) which have been held by some members of every
party. That is, for each party we can find a member that has held the position.

Solution

SELECT DISTINCT pos
FROM positions p
WHERE NOT EXISTS (SELECT pName

FROM party y
WHERE NOT EXISTS (SELECT *

FROM member m, positions p2
WHERE m.party = y.pName

AND m.name = p2.name
AND p2.pos = p.pos)

of course the aggregation + comparison version also works!

DB - Fall 2018: Page 6 (of 28)

Question 1.1.5 (2 Points)

Write an SQL Query that returns party members (their name) that have not have held any positions with a
salary larger than $200,000.

Solution

SELECT name
FROM members
WHERE name NOT IN (SELECT name FROM positions WHERE salary > 200000)

DB - Fall 2018: Page 7 (of 28)

Question 1.1.6 (2 Points)

Write an SQL query that returns the names of donors that have donated more than 50,000,000 in total.

Solution

SELECT donor
FROM donations
GROUP BY donor
HAVING sum(amount) > 50000000

DB - Fall 2018: Page 8 (of 28)

Question 1.1.7 (5 Points)

Write an SQL query that returns parties whose members have each hold at least one position.

Solution

WITH memInter AS (
SELECT name , party ,

since AS start ,
DECODE (last_value () OVER (PARTITION BY name

ORDER BY since ASC
ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING),

9999) AS end -- any other large enough value would work too
FROM member

),
memPos AS (

SELECT name , party
FROM memInter m, p
WHERE m.name = p.name AND p.year BETWEEN m.start AND m.end

)
SELECT party
FROM members m
GROUP BY party
HAVING count(DISTINCT name) = (SELECT count(DISTINCT name)

FROM memPos
WHERE m2.party = m.party)

Question 1.1.8 (4 Points)

Write an SQL query that returns pairs of persons (party members) that are members of the same set of parties,
e.g., Peter and Alice are both members of JDF, but Alice is also a member of GGK which Bob is not. Thus,
the pair (Alice,Bob) should not be returned. Ensure that a pair of users is only returned once (e.g., do not
both return (Peter,Bob) and (Bob,Alice)).

Solution

DB - Fall 2018: Page 9 (of 28)

WITH samePart AS (
SELECT m1.name AS name1 , m2.name AS name2 , count(DISTINCT m1.party) AS numP
FROM member m1 , member m2
WHERE m1.party = m2.party AND m1.name < m2.name
GROUP BY m1.name , m2.name

),
memParties AS (

SELECT m.name , count (*) AS numP
)

SELECT name1 , name2
FROM samePart , memParties m
WHERE name1 = m1.name AND name2 = m2.name AND m.numP = m.numP

DB - Fall 2018: Page 10 (of 28)

Question 1.1.9 (4 Points)

Write a query that returns for each party and each year, the total amount of donations (dollar amount) the
party has received in that year plus the two previous years. For instance, the result for a party in 2014 should
include all donations made in 2012-2014 to that party.

Solution

SELECT DISTINCT year , pName ,
sum(amount) OVER (PARTITION BY pName ORDER BY year

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS lastThree
FROM donations ;

DB - Fall 2018: Page 11 (of 28)

Question 1.1.10 Optional Bonus Question (10 Bonus Points)

Let’s prove that SQL with recursion and arithmetic expressions is turing complete. To do that we are going
to write a simulator for turing machines as a recursive SQL query. Recall that a turing machine is a tuple
(Q,Γ, b,Σ, q0, F, δ) where Q is a set of states, Γ is tape alphabet, b ∈ Gamma is the “blank” symbol, Σ ⊆ Γ is
the input alphabet, q0 ∈ Q is the initial state, F ⊆ Γ is the set of final states, and δ : (Q−F)×Γ→ Q×Γ×{L,R}
is the transition function. The state of a turing machine is stored on an infinite tape consisting of cells indexed
by position. Each position of the tape stores a symbol from Γ. The initial state of the tape is the input to the
turing machine. Only finitely many cells on the initial tape state may be non-blank (unequal to b). The turing
machine starts in state q0 at position 0 of the tape. In each step of its computation it reads the symbol under
the current position of the tape and applies δ taking its current state and the symbol read from the tape as
input. The result of δ is the new state for the next state, the symbol to be written to the tape at the current
position, and the direction to move on the tape (if L then we update pos = pos−1 and pos = pos+1 otherwise).
The computation of the turing machine stops once the computation reaches a final state qf , i.e., a state in the
set F .
We encode the turing machine and its tape using the following schema:

• states(q) - this relation stores the states of the turing machine, i.e., it encodes Q

• final(q) - this relation stores F

• We denote the start state by the string “q0”.

• delta(qin, sin, qnew, sout, dir) - This relation encodes δ. If δ((q, s)) = (q′, s′, d) then this would
be encoded as a tuple (q,s,q’,s’,d).

• tape(pos,sym) - This relation stores the symbol stored at each position of the initial configuration of the
tape (the input). Positions that store the blank symbol are omitted from the relation.

• For simplicity assume that the blank symbol is the character ’b’ and any symbol from Γ can be encoded
as a single character

Write a single recursive SQL query that simulates the turing machine. The output of the query should be the
final configuration of the tape once the machine reaches one of the final states from F (if the machine halts on
this particular input). An example input database and result (tape state) is shown below.

states
q
q0
q1
q2

final
q
q2

delta
qin sin qnew sout dir
q0 0 q1 1 R
q0 1 q2 1 R
q0 b q2 b R
q1 0 q1 1 R
q1 1 q2 1 R
q1 b q2 b R

tape
pos sym
0 0
1 0
2 0
3 1

result
pos sym
0 1
1 1
2 1
3 1

DB - Fall 2018: Page 12 (of 28)

Solution
Code written for Postgres and uses Postgres’s array datatype and array aggregation function. The problem can
also be solved without arrays, but this requires the use of window functions.
WITH RECURSIVE ntape(pos ,state ,iter ,tape) AS (

SELECT DISTINCT 1 AS pos , ’q0’ AS state , 0 AS iter ,
array_agg (sym) OVER (ORDER BY pos

ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS tape

FROM tape
UNION ALL

SELECT CASE WHEN qnew IN (SELECT * FROM final) THEN pos
WHEN d.dir = ’R’ THEN pos + 1
ELSE pos -1 END AS pos ,

d.qnew AS state ,
iter + 1 AS iter ,
n.tape [1:n.pos -1] || d.sout || n.tape[n.pos +1:] AS tape

FROM ntape n, delta d
WHERE d.qin = n.state

AND (d.sin = n.tape[pos]) OR (n.tape[pos] IS NULL AND d.sin=’b’)
AND d.qin NOT IN (SELECT * FROM final)

)
SELECT row_number () OVER () -1 AS pos , sym , finalState
FROM (SELECT unnest (n.tape) AS sym , state AS finalState

FROM ntape n
WHERE iter = (SELECT max(iter) FROM ntape)
) x;

DB - Fall 2018: Page 13 (of 28)

Part 1.2 Relational Algebra (Total: 29 Points)

Question 1.2.1 Relational Algebra (2 Points)

Write a relational (bag semantics) algebra expression over the schema from the SQL part (part 1) that returns
the names of parties which are far right, were established before 1960, and have an endowment that is larger
than 2,000,000.

Solution

πpName(σleaning=′farright′∧established<1960∧endowment>2000000(party))

Question 1.2.2 Relational Algebra (4 Points)

Write a relational (bag semantics) algebra expression over the schema from the SQL part (part 1) that returns
parties that have gotten more than 3 donations.

Solution

numDon← pNameαcount(∗)→x(donations)
q← πpName(σx>3(numDon))

Question 1.2.3 Relational Algebra (4 Points)

Write a relational (bag semantics) algebra expression over the schema from the SQL part (part 1) that returns
parties that have no members and have not gotten any donations.

Solution

DB - Fall 2018: Page 14 (of 28)

πpName(party)− projectionpName(donations)− πname(member)

Question 1.2.4 SQL → Relational Algebra (5 Points)

Translate the SQL query from Question 1.1.1 into relational algebra (bag semantics).

Solution

joins← party ./year≤oyear∧pName=oName (δ(ρoName,oyear(πpName,year(party))))
q← sum(amount)αpName,oyear(joins)

Question 1.2.5 SQL → Relational Algebra (5 Points)

Translate the SQL query from question 1.1.2 into relational algebra (bag semantics).

Solution

totalDon← donor,leaningαsum(amount)→x(donations ./ donations)
max1← leaningαmax(x)→maxAmount(totalDon)

donMax1← πdonor,leaning,maxAmount(max1 ./maxAmount=x totalDon
max2← leaningαmax(x)→maxAmount(totalDon− donMax1)

donMax2← πdonor,leaning,maxAmount(max2 ./maxAmount=x totalDon
max3← leaningαmax(x)→maxAmount(totalDon− donMax1− donMax2)

donMax3← πdonor,leaning,maxAmount(max3 ./maxAmount=x totalDon
q← donMax1 ∪ donMax2 ∪ donMax3

DB - Fall 2018: Page 15 (of 28)

Question 1.2.6 SQL → Relational Algebra (5 Points)

Translate the SQL query from question 1.1.3 into relational algebra (bag semantics).

Solution

posAvg← pos,yearαavg(salary)→x(positions)
perYearInc← ρopos,oyear,ox(posAvg) ./opos=pos∧oyear+1=year posAvg

q← yearαavg(incr)(πx/ox→incr(perYearInc))

Question 1.2.7 Equivalences (4 Points)

Consider the following relation schemas (primary key attributes are underlined):
R(A,B), S(B,C), T (C,D), U(E,F,G).
Furthermore, assume that S.B is a foreign key to R and T.C is a foreign key to S. Check equivalences that
are correct under bag semantics. For example R ./ R ≡ R should be checked, whereas R ≡ S should not be
checked.

q R− (S −R) ≡ R− (R− S)

n R− (R− S) ≡ S − (S −R)

n Gαcount(∗)(U) ≡ Gαsum(c)(F,Gαcount(∗)→c(U))

n πC(S ./ R) ≡ πC(S)

n R B S ≡ R− (πA,B(R ./ S))

n δ(πA(R)) ≡ πA(R)

n δ(πA(R ./ S)) ≡ πA(R ./ S)

q πA(R ./ S) ≡ πA(R)

DB - Fall 2018: Page 16 (of 28)

Part 1.3 Index Structures (Total: 30 Points)

Assume that you have the following table:

Item
SSN name age
1 Pete 53
2 Bob 57
44 John 20
43 Joe 18
45 Alice 19
42 Lily 99
88 Gertrud 60
89 Heinz 14

Question 1.3.1 Construction (12 Points)

Create a B+-tree for table Item on key age with n = 2 (up to two keys per node). You should start with an
empty B+-tree and insert the keys in the order shown in the table above. Write down the resulting B+-tree
after each step.
When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split during insertion and n is even, the left node should get
the extra key. E.g, if n = 2 and we insert a key 4 into a node [1,5], then the resulting nodes should be
[1,4] and [5]. For odd values of n we can always evenly split the keys between the two nodes. In both
cases the value inserted into the parent is the smallest value of the right node.

• Non-Leaf Split: In case a non-leaf node needs to be split and n is odd, we cannot split the node evenly
(one of the new nodes will have one more key). In this case the “middle” value inserted into the parent
should be taken from the right node. E.g., if n = 3 and we have to split a non-leaf node [1,3,4,5], the
resulting nodes would be [1,3] and [5]. The value inserted into the parent would be 4.

• Node Underflow: In case of a node underflow you should first try to redistribute values from a sibling
and only if this fails merge the node with one of its siblings. Both approaches should prefer the left sibling.
E.g., if we can borrow values from both the left and right sibling, you should borrow from the left one.

Solution
53

19 20 57 99

14 18 19 20 53 57 60 99

DB - Fall 2018: Page 17 (of 28)

DB - Fall 2018: Page 18 (of 28)

Question 1.3.2 Operations (10 Points)

Given is the B+-tree shown below (n = 4). Execute the following operations and write down the resulting
B+-tree after each operation:

insert(7), insert(8), insert(103), delete(105), delete(410), insert(1)
Use the conventions for splitting and merging introduced in the previous question.

16 100 105 400

3 6 10 13 16 45 93 100 101 102 104 105 367 410 600

Solution

DB - Fall 2018: Page 19 (of 28)

Insert 7
100

10 16 105 400

3 6 7 10 13 16 45 93 100 101 102 104 105 367 410 600

Insert 8
100

10 16 105 400

3 6 7 8 10 13 16 45 93 100 101 102 104 105 367 410 600

Insert 103

100

10 16 103 105 400

3 6 7 8 10 13 16 45 93 100 101 102 103 104 105 367 410 600

Delete 105

100

10 16 103 400

3 6 7 8 10 13 16 45 93 100 101 102 103 104 367 410 600

DB - Fall 2018: Page 20 (of 28)

Delete 410

100

10 16 103 367

3 6 7 8 10 13 16 45 93 100 101 102 103 104 367 600

Insert 1

100

7 10 16 103 367

1 3 6 7 8 10 13 16 45 93 100 101 102 103 104 367 600

DB - Fall 2018: Page 21 (of 28)

DB - Fall 2018: Page 22 (of 28)

Question 1.3.3 Extensible Hashing (8 Points)

Consider the extensible Hash index shown below that is the result of inserting values 0, 1, and 2. Each page
holds two keys. Execute the following operations
insert(0),insert(5),insert(8),insert(6)

and write down the resulting index after each operation. Assume the hash function is defined as:
x h(x)
0 1101
1 0000
2 1010
3 1100
4 0001
5 0000
6 1010
7 0111
8 1110

0 1

0000 1101 1010

Solution
insert(0)

00 01 10 11

0000 1010 1101 1101

insert(5)

00 01 10 11

0000 0000 1010 1101 1101

insert(8)

000 001 010 011 100 101 110 111

0000 0000 1010 1101 1101 1110

insert(6)

000 001 010 011 100 101 110 111

0000 0000 1010 1010 1101 1101 1110

DB - Fall 2018: Page 23 (of 28)

DB - Fall 2018: Page 24 (of 28)

DB - Fall 2018: Page 25 (of 28)

Part 1.4 Result Size Estimations (Total: 10 Points)

Consider a table lecture with attributes title, campus, topic, roomSize, a table student with name, major,
age, and a table attendsLecture with attributes student, lecture, and hoursAttended. attendsLecture.student
is a foreign key to student. Attribute lecture of relation attendsService is a foreign key to of relation
lecture. Given are the following statistics:

T (lecture) = 200 T (student) = 30, 000 T (attendsLecture) = 600, 000
V (lecture, title) = 200 V (student, name) = 30, 000 V (attendsLecture, student) = 25, 000

V (lecture, campus) = 3 V (student,major) = 10 V (attendsLecture, lecture) = 150
V (lecture, topic) = 10 V (student, age) = 30 V (attendsLecture, hoursAttended) = 300

V (lecture, roomSize) = 20

Question 1.4.1 Estimate Result Size (3 Points)

Estimate the number of result tuples for the query q = σtopic=DB(lecture) using the first assumption presented
in class (values used in queries are uniformly distributed within the active domain).

Solution

T (q) = T (lecture)
V (lecture, topic) = 200

10 = 20

Question 1.4.2 Estimate Result Size (3 Points)

Estimate the number of result tuples for the query q = σhoursAttended>250(attendsLecture) using the first
assumption presented in class. The minimum and maximum values of attribute hoursAttended are 0 and 299.

DB - Fall 2018: Page 26 (of 28)

Solution

T (q) = 299− 250
max(hoursAttended)−min(hoursAttended) + 1 × T (attendsLecture)

= 49
300 × 600, 000 ∼ 97, 999.99

Question 1.4.3 Estimate Result Size (4 Points)

Estimate the number of result tuples for the query q below using the first assumption presented in class.

q = (student ./name=student σhoursAttended,0(attendsLecture) ./lecture=title σcampus=Mies(lecture)

Solution

DB - Fall 2018: Page 27 (of 28)

q1 = σhoursAttended,0(attendsLecture)

T (q1) = = T (attendsLecture)× (V (attendsLecture, hoursAttended)− 1
V (attendsLecture, hoursAttended) = 600, 000× 299

300 = 598, 000

V (q1, student) =V (attendsLecture, student) = 25, 000

V (q1, lecture) =V (attendsLecture, lecture) = 150

q2 = σcampus=Mies(lecture)

T (q2) = = T (lecture)
V (lecture, campus) = 200

3 ∼ 66.67

V (q2, title) =min(V (lecture, title), T (q2)) = 66.67

T (q) = T (student)× T (q1)× T (q2)
max(V (student, name), V (q1, student))×max(V (q1, lecture), V (q2, title))

= 30, 000× 598, 000× 66.67
max(30, 000, 25, 000)×max(150, 66.67) ∼ 265, 791

DB - Fall 2018: Page 28 (of 28)

