
Name CWID

Exam
1

Oct 22th, 2018

CS525 - Midterm Exam
Solutions

Please leave this empty! 1 2 3 4 Sum

Instructions
• Things that you are not allowed to use

– Personal notes
– Textbook
– Printed lecture notes
– Phone

• The exam is 75 minutes long

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 4 parts in this exam

1. SQL (32)
2. Relational Algebra (26)
3. Index Structures (24)
4. I/O Estimation (18)

DB - Fall 2018: Page 2 (of 16)

Part 1 SQL (Total: 32 Points)

Consider the following database schema and instance:

location
lName city owner sizeSf

Windsor Castle Windsor Queen 40,000
Big Ben London Public 3,500

Stonehedge Amesbury Public 14,000

account
witness time suspect crimeId
Bob 10:30 Peter 1
Peter 10:30 Bob 1
Queen 11:00 Bob 2

crime
id location time type victim
1 Big Ben 10:30 murder Alice
2 Windsor Castle 11:00 theft Queen

Hints:

• When writing queries do only take the schema into account and not the example data given here. That
is your queries should return correct results for all potential instances of this schema.

• Attributes with black background form the primary key of an relation. For example, lName is the primary
key of relation location.

• The attribute crimeId of relation account is a foreign key to the attribute id of relation crime.

DB - Fall 2018: Page 3 (of 16)

Question 1.1 (6 Points)

Write an SQL query that returns the names of persons that are both suspects for a theft in Windsor and for a
murder in London. Make sure that your query returns each such person only once.

Solution

(SELECT suspec t
FROM l o c a t i o n l , account a , cr ime c
WHERE c i t y = ’Windsor ’

AND c . type = ’ t h e f t ’
AND a . cr imeId = c . id
AND l . lName = c . l o c a t i o n)

INTERSECT
(SELECT suspec t
FROM l o c a t i o n l , account a , cr ime c
WHERE c i t y = ’London ’

AND c . type = ’murder ’
AND a . cr imeId = c . id
AND l . lName = c . l o c a t i o n)

DB - Fall 2018: Page 4 (of 16)

Question 1.2 (8 Points)

Write a query that returns witnesses that are not suspects for any crime.

Solution

SELECT DISTINCT witnes s
FROM account
WHERE witnes s NOT IN (SELECT suspec t FROM account) ;

DB - Fall 2018: Page 5 (of 16)

Question 1.3 (9 Points)

Write a query that returns for each witness and city, the number of accounts of this witness for crimes that
took place in a location in that city.

Solution

WITH c i tyCr imes AS (
SELECT id AS cid , c i t y
FROM l o c a t i o n l , cr ime c
WHERE l . lName = c . l o c a t i o n

) ,
w i tnes sCi ty AS (

SELECT DISTINCT witness , c i t y
FROM account a , l o c a t i o n l

) ,
accCount AS (

SELECT witness , c i ty , count (∗) AS numAcc
FROM (SELECT DISTINCT witness , cr imeId

FROM account) a ,
c i tyCr imes c

WHERE a . cr imeId = c . c id
GROUP BY witness , c i t y

)
SELECT w. witness , w. c i ty ,

CASE WHEN numAcc IS NULL THEN 0 ELSE numAcc END AS numAcc
FROM witnes sCi ty w

LEFT OUTER JOIN
accCount a ON (w. w i tnes s = a . w i tnes s AND w. c i t y = a . c i t y) ;

for grading we also except a solution that does not return pairs of witnesses and cities where the witness has
not witnessed any crimes in that city.

DB - Fall 2018: Page 6 (of 16)

Question 1.4 (9 Points)

Write an SQL query that returns for each city the crime with the most suspects. Return the city name and for
each such crime the location, time, type, and victim.

Solution

WITH numSus AS (
SELECT l . c i ty , a . crimeId , count (DISTINCT suspec t) AS nSus
FROM account a , crime c , l o c a t i o n l
WHERE a . cr imeId = c . id AND c . l o c a t i o n = l . lName
GROUP BY l . c i ty , a . cr imeId

) ,
maxSus AS (

SELECT s . c i ty , s . cr imeId
FROM numSus s
WHERE s . nSus = (SELECT max(nSus)

FROM numSus s2
WHERE s2 . c i t y = s . c i t y)

)
SELECT l . c i ty , c . l o ca t i on , c . time , c . type , c . v i c t im
FROM l o c a t i o n l , cr ime c
WHERE l . l o c a t i o n = c . lName

AND c . id IN (SELECT cr imeId
FROM maxSus s) ;

DB - Fall 2018: Page 7 (of 16)

Part 2 Relational Algebra (Total: 26 Points)

Question 2.1 Relational Algebra (6 Points)

Write a relational algebra expression over the schema from the SQL part that returns cities in which no murder
has taken place yet. Use the bag semantics version of relational algebra.

Solution

qmurderCity = πcity(location ./lName=location σtype=murder(crime))
q = δ(πcity(location)− qmurderCity)

The duplicate elimination is optional since we did not require that no duplicates are returned.

DB - Fall 2018: Page 8 (of 16)

Question 2.2 Relational Algebra (12 Points)

Write a relational algebra expression over the schema from the SQL part that returns for each crime, the type,
victim, the city of the location of the crime, and the number of witnesses for the crime. Use the bag semantics
version of relational algebra.

Solution

numW = crimeIdαcount(∗)(δ(πwitness,crimeId(crime ./crimeId=id account)))
q = crime ./id=crimId numW

DB - Fall 2018: Page 9 (of 16)

Question 2.3 Relational Algebra (8 Points)

Write a relational algebra expression over the schema from the SQL part that returns victims of crimes which
are also suspects in some crime.

Solution

q = δ(πsuspect(account ./suspect=victim πvictim(crime)))

DB - Fall 2018: Page 10 (of 16)

Part 3 Index Structures (Total: 24 Points)

Question 3.1 B+-tree Operations (24 Points)

Given is the B+-tree shown below (n = 3). Execute the following operations and write down the resulting
B+-tree after each step:

insert(22),delete(23),delete(500),insert(16)

When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split, the left node should get the extra key if the keys cannot
be split evenly.

• Non-Leaf Split: In case a non-leaf node is split evenly, the “middle” value should be taken from the
right node.

• Node Underflow: In case of a node underflow you should first try to redistribute and only if this fails
merge. Both approaches should prefer the left sibling.

20 25 100

1 15 19 20 21 23 25 70 103 500

Solution

DB - Fall 2018: Page 11 (of 16)

insert(22)
25

20 22 100

1 15 19 20 21 22 23 25 70 103 500

delete(23)
25

20 100

1 15 19 20 21 22 25 70 103 500

delete(500)

20 25

1 15 19 20 21 22 25 70 103

insert(16)

16 20 25

1 15 16 19 20 21 22 25 70 103

DB - Fall 2018: Page 12 (of 16)

Part 4 I/O Estimation (Total: 18 Points)

Question 4.1 I/O Cost Estimation (12 = 4 + 4 + 4 Points)

Consider two relations R and S with B(R) = 80, 000, 000 and B(S) = 200, 000. You have M = 201 memory
pages available. Compute the number of I/O operations needed to join these two relations using block-nested-
loop join, merge-join (the inputs are not sorted), and hash-join. You can assume that the hash function
distributes keys evenly across buckets. Justify you result by showing the I/O cost estimation for each join
method.

Solution
Block Nested-loop:
Use smaller table S as the inner. We only have 1, 000 chunks of size 200. Thus, we get 1, 000 × (200 + B(R))
= 80,000,200,000 I/Os.
Merge-join:
Relation R can be sorted with three merge phases resulting in 4∗2∗B(R) = 640, 000, 000 I/Os merging 10 runs in
the last phase. Relation S requires two merge phases, merging 5 runs in the last phase: 3×2×B(S) = 1, 200, 000
I/Os. The last merge phase of relation S can be combined with the last merge phase of R (10 + 5 = 15 blocks
of memory required). The merge join can be execute during these merge phases avoiding on read of relations R
and S. Without optimizations we get 9 ∗B(R) + 7 ∗B(S) = 721, 400, 000. If we execute the merge-join during
the last merge phases we get 7 ∗B(R) + 5 ∗B(S) = 561, 000, 000.
Hash-join:
We need two partitioning phases for the partitions of relation S to fit into memory. Thus, the hash-join requires
5 ∗ (B(R) +B(S)) = 401, 000, 000 I/Os.

Question 4.2 External Sorting (6 Points)

Consider a relation R with B(R) = 500, 000. Assume that M = 127 memory pages are available for sorting.
How many I/O operations are needed to sort this relation using no more than M memory pages.

Solution

External sorting requires 2× (1 + dlogM−1(B(R)
M)e)×B(R) = 2× 3× 500, 000 = 3, 000, 000 I/Os.

DB - Fall 2018: Page 13 (of 16)

DB - Fall 2018: Page 14 (of 16)

DB - Fall 2018: Page 15 (of 16)

DB - Fall 2018: Page 16 (of 16)

