
Name CWID

Quiz
1

Feb 13th, 2017
Due Feb 27th, 11:59pm

Quiz 1: CS525 - Advanced Database
Organization

Please leave this empty! 1.1 1.2 1.3 1.4 Sum

Instructions
• You have to hand in the assignment using your blackboard

• This is an individual and not a group assignment

• Multiple choice questions are graded in the following way: You get points for correct answers and points
subtracted for wrong answers. The minimum points for each questions is 0. For example, assume there
is a multiple choice question with 6 answers - each may be correct or incorrect - and each answer gives
1 point. If you answer 3 questions correct and 3 incorrect you get 0 points. If you answer 4 questions
correct and 2 incorrect you get 2 points. . . .

• For your convenience the number of points for each part and questions are shown in parenthesis.

• There are 4 parts in this quiz

1. SQL
2. Relational Algebra
3. Index Structures
4. Result Size Estimation

DB - Spring 2017: Page 2 (of 20)

Part 1.1 SQL (Total: 31 + 10 bonus points Points)

Consider the following social network database schema and example instance. The example data should not be
used to formulate queries. SQL statements that you write should return the correct result for every possible
instance of the schema!

user
name userID age state postVisibility

Peter Petersen ppman 17 IL friend
Gert Gertsen supergert 19 CA public
Alice Altmann aa21 21 IL friendOfFriend
Oma Omasen grannyO 67 WI public

friends
userID friendID since
ppman supergert 2014

supergert ppman 2014
grannyO aa21 2011
aa21 supergert 2015

posts
postID userID message date refPostID

1 ppman Weather is great lately! 2017-05-23 NULL
2 supergert ...boooring 2017-05-23 1
3 aa21 not over here! 2017-05-24 1
4 grannyO baked some nice cake for @aa21 2017-07-01 NULL

likes
userID postID date
supergert 2 2017-05-23

aa21 4 2017-07-07

Hints:

• Attributes with black background are the primary key attributes of a relation

• The attributes userID and friendID or relation friends are both foreign keys to relation user.

• The attribute userID of relation posts is a foreign key to relation user.

• The attribute userID of relation likes is a foreign key to relation user.

• The attribute refPostID of relation posts is a foreign key to relation posts.

• The attribute postID of relation likes is a foreign key to relation posts.

DB - Spring 2017: Page 3 (of 20)

Question 1.1.1 (2 Points)

Write an SQL query that returns for each post the total number of responses (other posts that have this post
as a refPostID) as a rolling count. For this question you do not have to consider indirect responses (posts that
respond to a responding post).

Question 1.1.2 (2 Points)

Write a query that returns for each user (their name) the average number of likes each of the users post has
received.

DB - Spring 2017: Page 4 (of 20)

Question 1.1.3 (6 Points)

For each user determine the number of users that can see their posts. The visibility of posts is determined
by the value of attribute postVisibility: public means everybody can see the users posts, friend limits
visibility to direct friends of a person, and friendOfFriends also allows friends of a friend of the poster to see
their posts.

Question 1.1.4 (5 Points)

Write an SQL query that returns posts to which all users in the social network have responded to.

DB - Spring 2017: Page 5 (of 20)

Question 1.1.5 (4 Points)

Write an SQL Query that returns pairs of users that are friends (direct), but have not responded to each others
posts yet.

DB - Spring 2017: Page 6 (of 20)

Question 1.1.6 (3 Points)

Write an SQL query that returns the number of posts that either contain the word “cake” or are direct or
indirect responses to posts with the word “cake” in it.

DB - Spring 2017: Page 7 (of 20)

Question 1.1.7 (2 Points)

Write an SQL query that returns users that have not posted any message yet.

Question 1.1.8 (4 Points)

Return the 3 messages (attribute message of posts) with the most likes.

DB - Spring 2017: Page 8 (of 20)

Question 1.1.9 (4 Points)

Write a query that returns users ranked by an activity score. The activity score of a user is the average of their
activity score per year. An activity score per year is computed based on the number of new friends the user has
made, the number of new posts the user has posted, and the number of new likes from that user. These three
measures are then combined into weighted sum (weights are 30% for friends, 50% for posts, and 20% for likes).

DB - Spring 2017: Page 9 (of 20)

Question 1.1.10 Optional Bonus Question (10 Bonus Points)

Write a calculator (interpreter of reverse polish notation expressions) as a recursive SQL query. The expression
to be evaluated by your calculator are stored in a relation stack(pos,type,elem) where pos stores the order
of stack entries, type is the type of entry (operation or operand), and elem stores the value of an operand (if
type is op) or value of an operand (if type is val). You have to support the following arithmetic operations:
addition and multiplication. Your calculator query should return the final result of evaluating the expression
stored in relation stack. Recall that reverse polish notation is a way to represent arithmetic expressions without
the need for parentheses. This is achieved by changing the order in which elements of an arithmetic operation
are written down, i.e., instead of operand operator operand (e.g., 4 + 3) the format is operator operand
operand (e.g., +4 3). An example instance of the stack relation for arithmetic expression * 3 + 4 5 (that is
3 ∗ (4 + 5)) are shown below.

stack
pos type op
0 op *
1 val 3
2 op +
3 val 4
4 val 5

result
result
27

DB - Spring 2017: Page 10 (of 20)

Part 1.2 Relational Algebra (Total: 29 Points)

Question 1.2.1 Relational Algebra (2 Points)

Write a relational algebra expression over the schema from the SQL part (part 1) that returns the names of
users from Illinois that are older than 21 years and have postVisibility set to public.

Question 1.2.2 Relational Algebra (4 Points)

Write a relational algebra expression over the schema from the SQL part (part 1) that returns users (their
userID) that have no friends from Illinois.

Question 1.2.3 Relational Algebra (4 Points)

Write a relational algebra expression over the schema from the SQL part (part 1) that returns the state and
name of users which have posted at least 3 messages.

DB - Spring 2017: Page 11 (of 20)

Question 1.2.4 SQL → Relational Algebra (5 Points)

Translate the SQL query from Question 1.1.2 into relational algebra (bag semantics).

Question 1.2.5 SQL → Relational Algebra (5 Points)

Translate the SQL query from question 1.1.4 into relational algebra (bag semantics).

Question 1.2.6 SQL → Relational Algebra (5 Points)

Translate the SQL query from question 1.1.5 into relational algebra (bag semantics).

DB - Spring 2017: Page 12 (of 20)

Question 1.2.7 Equivalences (4 Points)

Consider the following relation schemas (primary key attributes are underlined):
R(A,B), S(B,C), T (C,D).
Check equivalences that are correct under set semantics. For example R ./ R ≡ R should be checked, whereas
R ≡ S should not be checked.

q αsum(A)(R) ≡ αsum(X)(Bαsum(A)→X(R))

q Bαsum(A)(R ./ S) ≡ Bαsum(A)(R) ./ S

q σB<10(Bαsum(A)(R)) ≡ Bαsum(A)(σB<10(R))

q B,Cαsum(A)(R ./ S) ≡ Bαsum(A)(R) ./ Cαsum(A)(R)

q R B S ≡ R− (πA,B(R ./ S))

q σB=3∨B=5(R) ≡ σB=3(R) ∪ σB=5(R)

q R− (S −R) ≡ S − (R− S)

q R− (R− S) ≡ S − (S −R)

DB - Spring 2017: Page 13 (of 20)

Part 1.3 Index Structures (Total: 30 Points)

Assume that you have the following table:

Item
SSN name age
1 Pete 13
2 Bob 23
44 John 49
43 Joe 45
45 Alice 77
42 Lily 3
88 Gertrud 29
89 Heinz 14

Question 1.3.1 Construction (12 Points)

Create a B+-tree for table Item on key age with n = 2 (up to two keys per node). You should start with an
empty B+-tree and insert the keys in the order shown in the table above. Write down the resulting B+-tree
after each step.
When splitting or merging nodes follow these conventions:

• Leaf Split: In case a leaf node needs to be split during insertion and n is even, the left node should get
the extra key. E.g, if n = 2 and we insert a key 4 into a node [1,5], then the resulting nodes should be
[1,4] and [5]. For odd values of n we can always evenly split the keys between the two nodes. In both
cases the value inserted into the parent is the smallest value of the right node.

• Non-Leaf Split: In case a non-leaf node needs to be split and n is odd, we cannot split the node evenly
(one of the new nodes will have one more key). In this case the “middle” value inserted into the parent
should be taken from the right node. E.g., if n = 3 and we have to split a non-leaf node [1,3,4,5], the
resulting nodes would be [1,3] and [5]. The value inserted into the parent would be 4.

• Node Underflow: In case of a node underflow you should first try to redistribute values from a sibling
and only if this fails merge the node with one of its siblings. Both approaches should prefer the left sibling.
E.g., if we can borrow values from both the left and right sibling, you should borrow from the left one.

DB - Spring 2017: Page 14 (of 20)

Question 1.3.2 Operations (10 Points)

Given is the B+-tree shown below (n = 4). Execute the following operations and write down the resulting
B+-tree after each operation:

insert(103), insert(59), insert(60), delete(102), delete(103), delete(101)
Use the conventions for splitting and merging introduced in the previous question.

16 100 105 400

3 6 10 13 16 45 93 100 101 102 104 105 367 410 600

DB - Spring 2017: Page 15 (of 20)

DB - Spring 2017: Page 16 (of 20)

Question 1.3.3 Extensible Hashing (8 Points)

Consider the extensible Hash index shown below that is the result of inserting values 0, 1, and 2. Each page
holds two keys. Execute the following operations
insert(8),insert(5),insert(6),insert(3)

and write down the resulting index after each operation. Assume the hash function is defined as:
x h(x)
0 1101
1 0000
2 1010
3 1100
4 0001
5 0000
6 1010
7 0111
8 1110

0 1

0000 1101 1010

DB - Spring 2017: Page 17 (of 20)

DB - Spring 2017: Page 18 (of 20)

Part 1.4 Result Size Estimations (Total: 10 Points)

Consider a table lecture with attributes title, campus, topic, roomSize, a table student with name, major,
age, and a table attendsLecture with attributes student and lecture. attendsLecture.student is a foreign
key to student. Attribute lecture of relation attendsService is a foreign key to of relation lecture. Given
are the following statistics:

T (lecture) = 200 T (student) = 30, 000 T (attendsLecture) = 600, 000
V (lecture, title) = 200 V (student, name) = 30, 000 V (attendsLecture, student) = 25, 000

V (lecture, campus) = 3 V (student,major) = 10 V (attendsLecture, lecture) = 150
V (lecture, topic) = 10 V (student, age) = 30

V (lecture, roomSize) = 20

Question 1.4.1 Estimate Result Size (3 Points)

Estimate the number of result tuples for the query q = σmajor=CS(student) using the first assumption presented
in class (values used in queries are uniformly distributed within the active domain).

Question 1.4.2 Estimate Result Size (3 Points)

Estimate the number of result tuples for the query q = σage>30∧age≤50(person) using the first assumption
presented in class. The minimum and maximum values of attribute age are 20 and 59.

DB - Spring 2017: Page 19 (of 20)

Question 1.4.3 Estimate Result Size (4 Points)

Estimate the number of result tuples for the query q below using the first assumption presented in class.

q = (student ./name=student attendsLecture ./lecture=title σtopic=CS(lecture)

DB - Spring 2017: Page 20 (of 20)

